JPH03129736A - Manufacture of oxide film - Google Patents

Manufacture of oxide film

Info

Publication number
JPH03129736A
JPH03129736A JP6627090A JP6627090A JPH03129736A JP H03129736 A JPH03129736 A JP H03129736A JP 6627090 A JP6627090 A JP 6627090A JP 6627090 A JP6627090 A JP 6627090A JP H03129736 A JPH03129736 A JP H03129736A
Authority
JP
Japan
Prior art keywords
substrate
oxide film
temperature
energy
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6627090A
Other languages
Japanese (ja)
Other versions
JPH069197B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP7093379A external-priority patent/JPS55163848A/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2066270A priority Critical patent/JPH069197B2/en
Publication of JPH03129736A publication Critical patent/JPH03129736A/en
Publication of JPH069197B2 publication Critical patent/JPH069197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To add a halogen element such as chlorine into a silicon oxide film formed on the surface of a substrate semiconductor at a temperature lower than that in conventional cases by a method wherein a reactive gas is activated or decomposed chemically by using a high-frequency or microwave energy. CONSTITUTION:A sufficiently cleaned substrate 1 is loaded into a reaction furnace 3 at a temperature of 500 to 700 deg.C; a whole system is evacuated to produce a vacuum of 0.01 to 0.0001Torr. After that, HF at a concentration of 1 to 10%, especially 4%, from a valve 11 is mixed with oxygen from a valve 12. This mixed gas is introduced into a reaction system. Before this operation, a high-frequency energy 6 at, e.g. 135MHz is applied. In addition, when a pressure inside the reaction furnace is set to, e.g. 30Torr, the surface of the substrate is oxidized on the basis of an oxygen partial pressure recognized by the pressure. An oxidation temperature at this time is set to 1050 deg.C or lower, e.g. 900 deg.C.

Description

【発明の詳細な説明】 本発明は、1気圧以下に減圧された反応系において、弗
素系反応性気体を含む反応性気体と酸素またはその他の
酸化性気体とを誘導エネルギにより活性量たは分解する
ことにより、1050”C以下の温度好ましくは500
〜1050℃の温度に保持された雰囲気において、珪素
半導体を酸化せしめ、弗素元素を含む酸化被膜を作製す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an active amount or decomposition of a reactive gas including a fluorine-based reactive gas and oxygen or other oxidizing gas by induction energy in a reaction system whose pressure is reduced to 1 atmosphere or less. By doing so, the temperature is below 1050"C, preferably 500"C.
The present invention relates to a method for producing an oxide film containing elemental fluorine by oxidizing a silicon semiconductor in an atmosphere maintained at a temperature of ~1050°C.

本発明はこの高周波またはマイクロ波エネルギにより反
応性気体を化学的に活性化または分解−仕しめることに
より、これまでよりも50〜500 ’Cも低い温度で
基板半導体表面に作られる酸化珪素被膜中に塩素のごと
きハロゲン元素が添加された酸化膜の作製方法に関する
The present invention uses high frequency or microwave energy to chemically activate or decompose the reactive gas, thereby forming a silicon oxide film on the surface of the substrate semiconductor at a temperature 50 to 500'C lower than previously. The present invention relates to a method for producing an oxide film to which a halogen element such as chlorine is added.

従来、半導体を放置、特に絶縁ゲイト型電界効果半導体
を放置(以下MOS、FETという)またはそれらを同
一基板に集積化したIC,LSI、 VLSIにおいて
、そのゲイト絶縁膜をこれまでよりも薄(100〜10
00人の厚さ特に100〜500人の厚さに設けること
が求められている。しかもそのゲイト絶縁膜のうちで最
も重要な酸化珪素膜は基板半導体特に珪素との界面に界
面電荷がきわめて少ないことが期待されている。このた
め、従来においては、この界面電荷を10”cm−”以
下、特に5 X10’cm−”以下にするため、この酸
化珪素膜を1ioo″C以上特に1200℃の温度で基
板半導体を酸素と塩化水素(IIcI)中で加熱酸化し
て作ることがきわめて優れているものとして知られてい
る。
Conventionally, in ICs, LSIs, and VLSIs in which semiconductors are left alone, especially insulated gate field-effect semiconductors (hereinafter referred to as MOS and FET), or these are integrated on the same substrate, the gate insulating film has been made thinner than before (100 mm). ~10
00 people, especially 100 to 500 people. Moreover, the silicon oxide film, which is the most important of the gate insulating films, is expected to have very little interfacial charge at the interface with the substrate semiconductor, especially silicon. For this reason, in the past, in order to reduce the interfacial charge to 10"cm-" or less, particularly 5 x 10'cm-" or less, this silicon oxide film was heated to a temperature of 1ioo"C or more, especially 1200°C, and the substrate semiconductor was exposed to oxygen. It is known that it is extremely effective to make it by heating and oxidizing it in hydrogen chloride (IIcI).

しかし、MOS、ICがVLSI (Very Lar
ge 5cale Int−egraHor+)化する
に従って、使用されるシリコンウェハがかかる高温での
熱処理によりその反応炉内への50〜200枚ものスラ
イスの出し入れに伴う熱歪によってソリが生じ、所謂ポ
テトチップ化が避けられないものとなってしまった。
However, MOS and IC are VLSI (Very Lar
ge 5cale Int-egraHor+), the silicon wafers used are subjected to high-temperature heat treatment, which causes warping due to thermal strain caused by 50 to 200 slices being taken in and out of the reactor, resulting in the formation of so-called potato chips. It has become unavoidable.

このためこのゲイト酸化膜等の絶縁膜を600〜800
 ’Cの低温で作ることが求められている。しかしかか
る温度特に1100℃以下ではハロゲン化物が化学的に
活性化せず、結果としてかかるハロゲン化物を酸化工程
において添加しても被膜中に拡散せず、まったく効果が
ないことがわかった。
Therefore, the thickness of the insulating film such as this gate oxide film is 600 to 800
It is required to be made at a low temperature of 'C. However, it has been found that at such temperatures, especially below 1100° C., the halides are not chemically activated, and as a result, even if such halides are added in the oxidation step, they do not diffuse into the film and have no effect at all.

本発明はかかる従来の方法において、1050’C以下
の低温酸化であっても、またゲイト膜厚が100〜10
00人のゲイト膜厚または10〜100人の厚さの不揮
発性メモリ用の薄い膜であっても、均質にかつ化学的に
活性の弗素元素を含有する、即ち界面電荷である珪素の
不対結合手の中和とナトリュム等の可動イオンの中和と
をなし得る酸化珪素被膜を作製せんとしたものである。
In this conventional method, the present invention can be used for low-temperature oxidation of 1050'C or less, and the gate film thickness is 100 to 10%.
Even thin films for non-volatile memory with a gate film thickness of 0.000 μm or 10 to 100 μm thickness contain uniformly and chemically active fluorine elements, i.e., the interfacial charge of silicon unpaired. The aim was to create a silicon oxide film that could neutralize bonds and mobile ions such as sodium.

また本発明はかかる方法を実施するため、弗素化物の化
学的活性化を高周波エネルギまたはマイクロ波エネルギ
を弗素化物に与え、その反応物を更にプラズマ化して化
学的活性化せんとしたものである。このため反応系を1
気圧以下とし、この1気圧以下の減圧状態特に0.1〜
100 torr代表的には5〜50torrにおいて
は酸化性気体である酸素等の分圧も75Qtorrに比
べて小さく、相対的に酸化速度を遅くすることができた
。珪素基板上に所定の膜厚を形成させるに必要な時間が
を放置の運転上も1〜5分といったごとくに短すぎない
ように調整し、15〜60分の範囲にし得たことも本発
明の特徴である。
Further, in order to carry out such a method, the present invention aims to chemically activate a fluoride by applying high frequency energy or microwave energy to the fluoride and further converting the reactant into plasma. For this reason, the reaction system is
Atmospheric pressure or less, and this reduced pressure state of 1 atm or less, especially 0.1 to
At 100 torr, typically from 5 to 50 torr, the partial pressure of oxygen, which is an oxidizing gas, is also lower than at 75 Qtorr, and the oxidation rate can be relatively slowed down. The present invention also makes it possible to adjust the time required to form a predetermined film thickness on a silicon substrate so that it is not too short, such as 1 to 5 minutes, even during idle operation, and to make it within the range of 15 to 60 minutes. It is a characteristic of

以下に実施例に従って本発明の特徴を述べる。The features of the present invention will be described below according to examples.

実施例1 第1図は本発明の実施例の一つを示す。Example 1 FIG. 1 shows one embodiment of the invention.

図面は基板(1)を石英ポート(2)にローディングし
、反応炉(酸化炉)(3)内に設置している。この反応
炉での反応性気体の混合をよくするため、ホモジナイザ
(4)が気体の導入口(5)側に設けてあり、基板(1
)ボート(2)は排出口(8)側より出し入れがなされ
る。基板(ここでは基板というが、それらはすでにいく
つかの工程を経ている半導体基板特にシリコン単結晶半
導体基板またはSOSのごとく基板の一部表面に半導体
膜が構成された基板の総称)(1)は固相−気相反応を
行う本発明においては、少なくともその一部表面が珪素
半導体でなければならない。
In the drawing, a substrate (1) is loaded into a quartz port (2) and placed in a reactor (oxidation furnace) (3). In order to improve the mixing of the reactive gases in this reactor, a homogenizer (4) is provided on the gas inlet (5) side, and the substrate (1
) The boat (2) is loaded and unloaded from the discharge port (8) side. Substrate (herein, the term "substrate" is a general term for semiconductor substrates that have already gone through several processes, especially silicon single crystal semiconductor substrates, or substrates with a semiconductor film formed on a part of the surface of the substrate, such as SOS) (1) In the present invention, which performs a solid phase-vapor phase reaction, at least a portion of the surface must be a silicon semiconductor.

第1図に記載のように、基板より離れた位置において弗
素系反応性気体が(11)より、酸化性気体か(12)
より導入される。また、不活性気体を(13)よりパー
ジ用および希釈用として、さらに高周波誘導アニール用
として水素、lteが(18)より導入される。これら
を高周波エネルギにより化学的に活性化または分解する
ための高周波誘導炉(6)が設けられている。さらに基
板を加熱するため抵抗加熱炉(7)が設けられ、反応を
した弗素元素および酸化性気体はバルブ(16)(9)
をへて真空ポンプによる減圧世気系より排出される。
As shown in Figure 1, the fluorine-based reactive gas at a position away from the substrate is more likely to be an oxidizing gas (12) than (11).
will be introduced. Further, inert gas is introduced from (13) for purging and dilution, and hydrogen and lte are introduced from (18) for high frequency induction annealing. A high frequency induction furnace (6) is provided for chemically activating or decomposing these with high frequency energy. Furthermore, a resistance heating furnace (7) is provided to heat the substrate, and the reacted fluorine element and oxidizing gas are heated through valves (16) and (9).
It is then discharged from a decompression system using a vacuum pump.

バルブ(9)はニードルバルブであり、反応炉内の圧力
を調整するためのものである。弗素元素を含む反応性気
体は(11)よりニードルバルブを経て導入される。こ
の反応性気体としては弗化水素(IIF)が代表的であ
る。
The valve (9) is a needle valve and is for adjusting the pressure inside the reactor. A reactive gas containing elemental fluorine is introduced from (11) through a needle valve. Hydrogen fluoride (IIF) is a typical example of this reactive gas.

酸化性気体としては、酸素(0□)、オゾン(03)水
()1,0)、亜酸化二窒素(NO2)等が代表的なも
のであるが、この実施例においては02を用いた。
Typical oxidizing gases include oxygen (0□), ozone (03), water ()1,0), and nitrous oxide (NO2), but in this example, 02 was used. .

反応は十分清浄にされた基板を50〜200枚500〜
700″Cの温度の反応炉に装填し、系全体を0.01
〜O,0O1torrに真空引きをした。この後11F
を1〜10%特に4%の濃度に酸素中に混入した。この
混合気体をパージライン(17)よりバルブ(15) 
ヲ閉に、バルブ(16)を開にして反応系に入れ換えた
。これに先立ち、高周波エネルギ(6)を1〜20MI
Iz例えば13.5HzのRFを印加させた。特ニコの
誘導エネルギは電圧励起を起こさせるようにして100
〜300Wのパワーを入れておく。すると反応炉内の圧
力が0.001〜l torrにおいて実験的にはプラ
スマ状態のグロー玖電が確認された。
The reaction is carried out using 50 to 200 sufficiently cleaned substrates and 500 to 200 sheets.
Loaded into a reactor at a temperature of 700″C, the entire system was heated to 0.01
A vacuum was drawn to ~0,001 torr. After this 11F
was mixed in oxygen at a concentration of 1-10%, especially 4%. This mixed gas is transferred from the purge line (17) to the valve (15).
Then, the valve (16) was opened and the reactor was replaced with the reaction system. Prior to this, high frequency energy (6) was applied for 1 to 20 MI.
Iz, for example, 13.5 Hz RF was applied. Special Nico's induction energy is 100% to cause voltage excitation.
Turn on ~300W of power. Glow electricity in a plasma state was experimentally confirmed when the pressure inside the reactor was 0.001 to 1 torr.

さらに反応炉内の圧力を1〜100torr例えば30
torrにすると、この圧力によって認められた酸素分
圧に基づき、基板表面が酸化された。この時の酸化温度
は800〜1000″C1特に900″Cとした。膜厚
を100〜1000人特に100〜300人とした。膜
厚を500〜1000人とするには酸化温度を1000
〜1050℃とすると好ましい。
Furthermore, the pressure inside the reactor is 1 to 100 torr, for example 30
torr, the substrate surface was oxidized based on the oxygen partial pressure observed due to this pressure. The oxidation temperature at this time was 800-1000''C1, especially 900''C. The film thickness was set to 100 to 1000 people, especially 100 to 300 people. To make the film thickness 500 to 1000, the oxidation temperature should be 1000.
It is preferable to set the temperature to 1050°C.

しかし逆に膜厚を10〜100人とするには600〜8
00℃にすると好ましかった。
However, on the other hand, in order to increase the film thickness to 10 to 100 people, 600 to 8
It was preferable to set the temperature to 00°C.

また 酸化を中止せんとするならば、反応系の酸素圧を
0.ITorr以下になるように、直ちに反応炉内を真
空びきすれば良かった。所定の時間の酸化が完了した後
、反応系を減圧排気系により0.01torrにまで強
制的に減圧して酸化反応を中止し、その後、不活性ガス
を反応系に充満して流し、かつ反応系の温度を酸化温度
より100〜300″C下げた後この酸化珪素被膜の形
成されたを放置を系を常圧にし、基板(1)を外に取り
出した。
Also, if you want to stop the oxidation, reduce the oxygen pressure in the reaction system to 0. It would have been better to immediately evacuate the inside of the reactor so that the pressure was below ITorr. After the oxidation for a predetermined period of time is completed, the pressure of the reaction system is forcibly reduced to 0.01 torr using a vacuum exhaust system to stop the oxidation reaction, and then the reaction system is filled with an inert gas to flow, and the reaction is stopped. After lowering the temperature of the system by 100 to 300"C below the oxidation temperature, the silicon oxide film was left to stand, the system was brought to normal pressure, and the substrate (1) was taken out.

酸化珪素被膜の評価を行うために、この被膜上にアルミ
ニュームまたはシリコン半導体(リンドープ)の電極を
設け、C−VI特性(ゲイト容it−ゲイト電圧特性)
を求めた。その結果、1050’C以下例えば800℃
の温度で形成された酸化珪素被膜は200℃130分(
電界強度I X10’V 7cm)の±BT (バイア
ス−温度処理)を行った。その結果において、Vいのド
リフトは本発明の高周波励起を行った塩酸酸化法におい
ては0.1V以下であった。
In order to evaluate the silicon oxide film, an aluminum or silicon semiconductor (phosphorus-doped) electrode is provided on the film, and the C-VI characteristics (gate capacity it - gate voltage characteristics) are measured.
I asked for As a result, below 1050'C, e.g. 800°C
The silicon oxide film formed at a temperature of 200°C for 130 minutes (
±BT (bias-temperature treatment) with electric field strength I x 10'V 7 cm) was performed. The results showed that the drift of V was 0.1 V or less in the hydrochloric acid oxidation method using high frequency excitation of the present invention.

しかし高周波励起を行わない従来方法の場合は0゜3〜
0.8Vのドリフトがあった。またこれはハロゲン元素
を添加しないで酸化した場合の酸化膜のドリフト量と概
略同じであり、単にハロゲン元素が添加されるのみでな
く、化学的に活性化したまたは分解したハロゲン元素が
酸化珪素中に添加されることが重要であることがわかっ
た。特に900 ’C以下例えば700〜800℃の温
度で、塩化水素が分解し、化学的に活性の塩素と水素と
を発生される本発明方法はきわめて半導体エレクトロニ
クスにおいて重要であることがわかった。
However, in the case of the conventional method that does not use high frequency excitation, the
There was a drift of 0.8V. In addition, this is roughly the same as the drift amount of the oxide film when oxidized without adding a halogen element, and not only a halogen element is added, but also a chemically activated or decomposed halogen element is added to the silicon oxide. It was found that it is important to add It has been found that the process of the invention, in which hydrogen chloride decomposes and generates chemically active chlorine and hydrogen, particularly at temperatures below 900'C, e.g. 700-800C, is of great importance in semiconductor electronics.

又初期(イニシアル)の界面電荷も5X109〜10I
010l0が高周波エネルギにより化学的に活性化また
分解させた本発明方法において得られた。
Also, the initial interfacial charge is 5X109~10I
01010 was obtained in the process of the invention, which was chemically activated and decomposed by radiofrequency energy.

本実施例においては、高周波誘導エネルギを酸素と塩化
水素とを混合した後に加えた。しかしハロゲン元素のみ
に対して高周波エネルギを導入口(12)のバルブ(1
8)の付近で加えてもよい。この時は塩化水素の化学的
活性化または分解が行われるが、酸素の如き酸化性気体
の化学活性化または分解は行われない。その結果、同じ
温度において酸化速度は特に速くはなかったが、活性化
した塩素、水素の効果が界面電荷を少なくし、かつB−
T処理で安定化させるのに効果が著しかった。
In this example, high frequency induction energy was applied after mixing the oxygen and hydrogen chloride. However, high frequency energy is applied only to the halogen element through the valve (1) of the inlet (12).
It may be added near 8). At this time, chemical activation or decomposition of hydrogen chloride takes place, but chemical activation or decomposition of oxidizing gases such as oxygen does not take place. As a result, although the oxidation rate was not particularly fast at the same temperature, the effect of activated chlorine and hydrogen reduced the interfacial charge and B-
The T treatment had a significant stabilizing effect.

また酸化物被膜を作製してしまった後に、同様に活性状
態のハロゲン元素例えば塩素を水素で共にこの被膜中に
添加しても、界面電荷を少なくする効果が見られた。
Furthermore, even when a halogen element in an active state, such as chlorine, was added to the film together with hydrogen after the oxide film had been formed, the effect of reducing the interfacial charge was observed.

高周波誘導エネルギの有無で酸化速度は1.5〜4倍と
なり、それはハロゲン化物が化学的に活性化するのみで
はなく、酸化性気体である酸素も活性化し、発生期の酸
素またはオゾン化した酸素が酸化速度を助長しているこ
とがわかった。
The oxidation rate increases by 1.5 to 4 times depending on the presence or absence of high-frequency induction energy, and this is because not only the halides are chemically activated, but also oxygen, which is an oxidizing gas, is activated, and nascent oxygen or ozonized oxygen is activated. was found to accelerate the oxidation rate.

実施例2 第2図は本発明の他の実施例を示す。Example 2 FIG. 2 shows another embodiment of the invention.

第2図は実施例1と同様の基板(1)を石英ボート(2
)にローディングした反応炉(3)に設置している。こ
のローディングは反応系を不活性ガスにてパージまたは
酸素にてパージを続けている雰囲気で実施した。
Figure 2 shows a substrate (1) similar to that in Example 1 and a quartz boat (2
) is installed in the reactor (3). This loading was carried out in an atmosphere in which the reaction system was continuously purged with an inert gas or oxygen.

この反応炉には混合を助長するためホモジナイザ(4)
が導入口(5)側に設けである。基板(1)にボート(
2)を乗せて排気口(8)より出し入れを行っている。
This reactor has a homogenizer (4) to facilitate mixing.
is provided on the inlet (5) side. Attach the boat (
2) is loaded and taken out from the exhaust port (8).

第2図においては、基板より離れた位置で電気エネルギ
特にマイクロ波エネルギにより反応性気体を化学的に活
性化または分解するためのエキサイタ(20)が設けで
ある。加えて、抵抗加熱炉(7)の内側の炉芯(3)側
に高周波エネルギの発振源である誘導励起系(23)が
設けである。マイクロ波は1〜4 G It zの周波
数であり、実施例1と同様のハロゲン元素例えば弗化水
素(HF)および酸化性気体例えば酸素(0□)を化学
的に活性化または分解し、いわゆる物性的な励起状態ま
たは化学的な活性状態または発生期の状態を有せしめた
In FIG. 2, an exciter (20) is provided for chemically activating or decomposing the reactive gas by means of electrical energy, particularly microwave energy, at a location remote from the substrate. In addition, an induction excitation system (23), which is an oscillation source of high-frequency energy, is provided on the inner furnace core (3) side of the resistance heating furnace (7). The microwave has a frequency of 1 to 4 G It z, and chemically activates or decomposes the same halogen elements such as hydrogen fluoride (HF) and oxidizing gases such as oxygen (0□) as in Example 1, so-called It has a physically excited state, a chemically active state, or a nascent state.

反応は十分清浄になった基板(3〜5インチ)を50〜
200枚反応炉に導入し、予め1〜10%例えば4%の
濃度に調整されたO2とHF(気体の混合比が4%)と
をパージライン(17)よりバルブ(15) (16)
を開閉して反応炉内に導入した。
For the reaction, a sufficiently clean substrate (3 to 5 inches) is
200 sheets are introduced into the reactor, and O2 and HF (gas mixture ratio is 4%), which have been adjusted in advance to a concentration of 1 to 10%, for example, 4%, are passed through the purge line (17) through the valves (15) (16).
was opened and closed and introduced into the reactor.

その他の反応炉の取扱手順は実施例1と同様であった。The other procedures for handling the reactor were the same as in Example 1.

 パルプ(11)〜(16)の開閉は時間的にシーケン
シアルにしたマイクロコンピュータ制御とした。 ハロ
ゲンが添加された酸化珪素被膜の成長速度と温度との関
係を第3図に示す。
The opening and closing of pulps (11) to (16) was controlled by a microcomputer in a temporally sequential manner. FIG. 3 shows the relationship between the growth rate and temperature of a halogen-doped silicon oxide film.

第3図(A)は反応炉の内の基板の温度と被膜の成長速
度との関係を示したものである。図面にり明らかなごと
く、反応温度が高くなると被膜成長速度は速くなる。ま
た、マイクロ波エネルギ(20)または高周波エネルギ
(23)を用いない時は曲線(30)と成長速度は少な
い。しかしマイクロ波エネルギ(20)によりHFと酸
素とを基板が装填された反応炉内部より離れた位置に設
置してみると、この成長速度が増加して曲線(31)に
なった。またエネルギパワーを増加すると、ある程度の
成長速度の増加が見られたが、30W以上では飽和傾向
がみられた。
FIG. 3(A) shows the relationship between the temperature of the substrate in the reactor and the growth rate of the film. As is clear from the drawings, the higher the reaction temperature, the faster the film growth rate. Furthermore, when microwave energy (20) or high frequency energy (23) is not used, the growth rate is low as shown by curve (30). However, when microwave energy (20) was used to place HF and oxygen at a position away from the inside of the reactor loaded with the substrate, this growth rate increased and became curve (31). Further, when the energy power was increased, a certain increase in the growth rate was observed, but a tendency towards saturation was observed at 30 W or more.

また、抵抗加熱炉の内側に設けた高周波誘導炉(23)
はその電界が加熱炉(7)に対し直角方向に位置して設
けられ、高周波エネルギが抵抗加熱炉により吸収されな
いように工夫した。この誘導エネルギは基板の加熱にエ
ネルギが用いられる電流励起ではなく、電圧励起として
反応性気体の化学的活性化または分解を基板上またはそ
の近傍で実施させた。もちろんHF、0.のみではなく
、その時の雰囲気である)le、H2も同時に活性化ま
たは分解される。その結果、励起状態または発生期の反
応性気体は安定状態に移ることなくただちに基板と反応
し、酸化し、かつ珪素の不対結合手と結合した。この場
合は圧力が100〜760torrでも活性化させる、
即ちQssを下げる効果があった。
In addition, a high frequency induction furnace (23) installed inside the resistance heating furnace
The electric field was placed in a direction perpendicular to the heating furnace (7), and the high frequency energy was devised so that it would not be absorbed by the resistance heating furnace. This induced energy was used as voltage excitation to cause chemical activation or decomposition of reactive gases on or near the substrate, rather than current excitation, where the energy was used to heat the substrate. Of course HF, 0. (not just the atmosphere at that time) le and H2 are activated or decomposed at the same time. As a result, the excited or nascent reactive gas immediately reacted with the substrate, oxidized, and bonded to the dangling bonds of silicon without transitioning to a stable state. In this case, it is activated even at a pressure of 100 to 760 torr.
That is, it had the effect of lowering Qss.

第3図(A)より明らかなごとく、酸化速度も速くなり
、またこの場合高周波誘導エネルギを用いるため、電力
は100〜300W以上の高出力まで発生させることが
容易にできた。
As is clear from FIG. 3(A), the oxidation rate became faster, and since high-frequency induction energy was used in this case, it was possible to easily generate high power of 100 to 300 W or more.

第3図(B)は高周波誘導エネルギを用いた時の反応炉
内の圧力と被膜成長速度との関係を示す。
FIG. 3(B) shows the relationship between the pressure inside the reactor and the film growth rate when high frequency induction energy is used.

マイクロ波及び高周波エネルギを加えると曲線(31”
)となった。この場合の基板温度は800″Cであった
When microwave and radio frequency energy is added, the curve (31”
). The substrate temperature in this case was 800''C.

もちろん基板温度を可変したり、またこれら2つのエネ
ルギを併用することも可能であることはいうまでもない
Of course, it is also possible to vary the substrate temperature or to use these two energies together.

本実施例において得られたハロゲン元素が添加された酸
化珪素膜をディト電極につけたMOS、FETのゲイト
絶縁物として用いたところ、Nssは10’〜1010
cm−2でありかつB−T処理に対してもハロゲン元素
を添加した効果は実施例1と同様に著しかった。またM
OS、FETとしてのgm (相互コンダクタンス)も
高く、かつディト絶縁物破壊強度もピンホールがきわめ
て少なく均質な1!質のため8〜10 X 10’V 
/ cmがゲイト膜厚が200〜300人で得られきわ
めて好ましい特性を得た。
When the silicon oxide film doped with a halogen element obtained in this example was used as a gate insulator of a MOS and FET attached to a DET electrode, Nss was 10' to 1010.
cm-2, and the effect of adding a halogen element to the B-T treatment was remarkable as in Example 1. Also M
The gm (mutual conductance) as an OS and FET is high, and the dielectric breakdown strength is homogeneous with very few pinholes! 8-10 x 10'V for quality
/cm was obtained with a gate film thickness of 200 to 300 mm, and extremely favorable characteristics were obtained.

以上の説明のごとく、本発明は基板温度が低い状態で均
質なピンホールのない膜質を得るため、これまで110
0℃以上の高温でしか可能でなかった活性のハロゲン元
素である弗素を600〜1000’Cの温度でも作るこ
とができるようになり、超LSIの開発に重要な薄い膜
厚のゲイト絶縁物をウェハを熱処理によりポテトチップ
状態に反らせることなく可能にしたことは工業上きわめ
て重要なことである。
As explained above, in order to obtain a homogeneous pinhole-free film quality at a low substrate temperature, the present invention has been developed over 110 times.
Fluorine, an active halogen element, which was previously possible only at temperatures above 0°C, can now be produced at temperatures of 600 to 1000'C, making it possible to produce thin gate insulators, which are important for the development of VLSIs. It is extremely important industrially that wafers can be heat treated without causing them to warp into a potato chip state.

本発明は1気圧以下であることを特長としたが、圧力は
1気圧であっても効果は若干見られ、特に第2図におい
て高周波エネルギを基板近傍に加えた時は顕著であった
。このため第2図の誘導エネルギ(23)は酸化速度を
常圧または加圧状態で大きくするのに効果があった。こ
のためフィード絶縁物をl〜2μ作り、LOGOSとす
る場合等に本発明方法を適用することは有効であった。
Although the present invention is characterized by a pressure of 1 atm or less, some effects were seen even at a pressure of 1 atm, and this was particularly noticeable when high frequency energy was applied near the substrate in FIG. 2. Therefore, the induced energy (23) in FIG. 2 was effective in increasing the oxidation rate under normal pressure or pressurized conditions. For this reason, it was effective to apply the method of the present invention to cases where feed insulators were made from 1 to 2μ and used as LOGOS.

また本発明はゲイト絶縁膜の上側に窒化珪素膜等のバリ
ア層を設けたNMO5構造のMIS、FETとしたり、
また浮遊ゲイトを設けた不揮発性メモリに応用すること
が可能である。
The present invention also provides an NMO5 structure MIS or FET in which a barrier layer such as a silicon nitride film is provided on the upper side of the gate insulating film.
It is also possible to apply it to a nonvolatile memory provided with a floating gate.

本発明方法はこの上側に不純物がドープされたシリコン
よりなるゲイト電極、WSi等珪化物金属、Mo−3t
の金属−半導体の多層電極にすることを否定するもので
はないことはいうまでもない。
The method of the present invention includes a gate electrode made of impurity-doped silicon on the upper side, a silicide metal such as WSi, and a Mo-3t
Needless to say, this does not negate the use of a metal-semiconductor multilayer electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明方法を実施するための本発
明の半導体を放置の作製を放置の一例である。 第3図は第2図のを放置により得られた被y、成長速度
の特性図である。 W−− 弔 図 第 図 魔力(Torr)
FIGS. 1 and 2 are an example of the fabrication of a semiconductor of the present invention for carrying out the method of the present invention. FIG. 3 is a characteristic diagram of the growth rate and the growth rate obtained by leaving the material shown in FIG. 2 undisturbed. W-- Funeral map magic power (Torr)

Claims (1)

【特許請求の範囲】 1、誘導エネルギにより弗素を含む反応性気体と酸化性
気体とを混合した1050℃以下の温度の雰囲気に珪素
半導体を放置し、酸化せしめることにより、弗素を含む
酸化珪素被膜を前記半導体上に作製することを特徴とし
た酸化膜作製方法。 2、特許請求の範囲第1項において、弗素元素を含む反
応性気体は酸化物気体に対し10%以下の混合比で添加
されたことを特徴とする酸化膜作製方法。
[Scope of Claims] 1. A silicon oxide film containing fluorine is formed by leaving a silicon semiconductor in an atmosphere at a temperature of 1050°C or less in which a reactive gas containing fluorine and an oxidizing gas are mixed by induction energy to oxidize it. A method for producing an oxide film, the method comprising: producing an oxide film on the semiconductor. 2. The method for producing an oxide film according to claim 1, characterized in that the reactive gas containing elemental fluorine is added at a mixing ratio of 10% or less to the oxide gas.
JP2066270A 1979-06-06 1990-03-16 Gate insulating film fabrication method Expired - Lifetime JPH069197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2066270A JPH069197B2 (en) 1979-06-06 1990-03-16 Gate insulating film fabrication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7093379A JPS55163848A (en) 1979-06-06 1979-06-06 Manufacture of semiconductor device and its manufacturing device
JP2066270A JPH069197B2 (en) 1979-06-06 1990-03-16 Gate insulating film fabrication method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7093379A Division JPS55163848A (en) 1979-06-06 1979-06-06 Manufacture of semiconductor device and its manufacturing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2333695A Division JPH0837183A (en) 1995-01-19 1995-01-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH03129736A true JPH03129736A (en) 1991-06-03
JPH069197B2 JPH069197B2 (en) 1994-02-02

Family

ID=26407451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2066270A Expired - Lifetime JPH069197B2 (en) 1979-06-06 1990-03-16 Gate insulating film fabrication method

Country Status (1)

Country Link
JP (1) JPH069197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194071A (en) * 2009-02-25 2010-09-09 Yoshio Kuroda Bristle material for toothbrush, and toothbrush

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163848A (en) * 1979-06-06 1980-12-20 Shunpei Yamazaki Manufacture of semiconductor device and its manufacturing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163848A (en) * 1979-06-06 1980-12-20 Shunpei Yamazaki Manufacture of semiconductor device and its manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194071A (en) * 2009-02-25 2010-09-09 Yoshio Kuroda Bristle material for toothbrush, and toothbrush

Also Published As

Publication number Publication date
JPH069197B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US7964514B2 (en) Multiple nitrogen plasma treatments for thin SiON dielectrics
US9117661B2 (en) Method of improving oxide growth rate of selective oxidation processes
JP5105627B2 (en) Formation of silicon oxynitride gate dielectric using multiple annealing steps
JP4408653B2 (en) Substrate processing method and semiconductor device manufacturing method
JP4277268B2 (en) Method for manufacturing metal compound thin film, and method for manufacturing semiconductor device including the metal compound thin film
JPWO2003096403A1 (en) Substrate processing method
TW200406024A (en) Manufacture method of semiconductor device with gate insulating films of different thickness
JP2002532900A (en) Silicon oxynitride film
JP4742867B2 (en) Semiconductor device provided with MIS field effect transistor
JP3399413B2 (en) Oxynitride film and method for forming the same
JP2003142483A (en) Method of forming extremely thin oxynitride gate dielectric highly doped with nitrogen
JPS6356311B2 (en)
US7160818B2 (en) Semiconductor device and method for fabricating same
JPH03129736A (en) Manufacture of oxide film
US7358198B2 (en) Semiconductor device and method for fabricating same
JP2001148381A (en) Method for forming insulating film and device therefor
JP2006073758A (en) Manufacturing method for semiconductor device
JPH0837183A (en) Semiconductor device
JPH09260372A (en) Manufacture of insulating film of semiconductor device
JPH05251439A (en) Forming method for insulating film of semiconductor device
JP2005302892A (en) Semiconductor device and its manufacturing method
JP2004214305A (en) Semiconductor device and manufacturing method thereof
JPH03280471A (en) Manufacture of semiconductor device
KR970000704B1 (en) Manufacturing method of capacitor insulating film in semiconductor device
JPH01239852A (en) Formation of thin film