JPH03129270A - Lamination type evaporator - Google Patents

Lamination type evaporator

Info

Publication number
JPH03129270A
JPH03129270A JP1242062A JP24206289A JPH03129270A JP H03129270 A JPH03129270 A JP H03129270A JP 1242062 A JP1242062 A JP 1242062A JP 24206289 A JP24206289 A JP 24206289A JP H03129270 A JPH03129270 A JP H03129270A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
flow
stacked
evaporator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1242062A
Other languages
Japanese (ja)
Inventor
Takatomo Sawahata
澤幡 敬智
Heitaro Yamamori
山森 平太郎
Seigo Miyamoto
宮本 誠吾
Mitsuo Kudo
工藤 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to KR1019900010700A priority Critical patent/KR910003336A/en
Publication of JPH03129270A publication Critical patent/JPH03129270A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To sufficiently heat-exchange a liquid refrigerant with air to evaporate so as to prevent the outflow of the refrigerant by allowing a refrigerant to meander to flow toward the flow direction of air. CONSTITUTION:A liquid refrigerant allowed to flow in from an introduction pipe 8 is allowed to flow in first refrigerant passages 4-4c connected transversely and meander to flow in the direction shown by arrow marks in second refrigerant passages 6-6c a plurality of times to always become a counterflow to the flow of air. Accordingly, the refrigerant is allowed to meander to flow in the refrigerant passages 6-6c to evaporate and is gradually phase-changed from liquid to gas to increase a specific volume. Thereby the whole refrigerant is evaporated so as to prevent the outflow of the liquid refrigerant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自[用空調装置等に用いる積層型蒸発器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a stacked evaporator used in a private air conditioner or the like.

〔従来の技術〕[Conventional technology]

従来の積層型蒸発器は、実開昭50−154774号公
報及び実開昭63−173673号公報に記載のように
風下側から流入した冷媒の流れをできるだけ空気に対し
て対向流的に流すように工夫されている。
Conventional stacked evaporators are designed to cause the refrigerant flowing in from the leeward side to flow as counter-currently as possible to the air, as described in Japanese Utility Model Application Publications No. 50-154774 and No. 63-173673. It has been devised.

すなわち、実開昭60−154774号公報の第4図。That is, FIG. 4 of Utility Model Application Publication No. 60-154774.

及び実開昭63−173673号公報の第1図に示す如
く冷媒を風下側から風上側へUターンさせ、冷媒の流れ
が対向流になるようにし、熱効率を向上させているが、
実際には液体冷媒が蒸発するために必要な熱量を空気か
らもらう機会は2回しかなく、その結果、液体冷媒の温
度と流入空気の温度との温度差が小さい場合、液体冷媒
が蒸発しきらずに流出してしまうという不具合があった
As shown in Figure 1 of Japanese Utility Model Application Publication No. 63-173673, the refrigerant is made a U-turn from the leeward side to the windward side, so that the flow of the refrigerant becomes a counterflow, thereby improving thermal efficiency.
In reality, there are only two opportunities for the liquid refrigerant to obtain the amount of heat required for evaporation from the air, and as a result, if the temperature difference between the temperature of the liquid refrigerant and the temperature of the incoming air is small, the liquid refrigerant will not fully evaporate. There was a problem with the data being leaked.

一方、積層型蒸発器の熱交換率の向上の他の方法として
、空気の流入する側に多くの液体冷媒を流す方法があり
、実開昭63−175769号公報の第1図によれば、
最も温度の高い空気の多量の液体冷媒が熱交換して蒸発
が促進され、比容積が増大した冷媒は広い断面積の通路
を流れることができ。
On the other hand, as another method for improving the heat exchange coefficient of a stacked evaporator, there is a method of flowing a large amount of liquid refrigerant on the air inflow side, and according to Fig. 1 of Japanese Utility Model Application No. 175769/1982,
A large amount of liquid refrigerant exchanges heat with the highest temperature air to promote evaporation, and the refrigerant with increased specific volume can flow through passages with a wide cross-sectional area.

熱交換効率がよくなる6しかしながら、上記構造の熱交
換器では冷媒の流れは空気の流れに対して対向流ではな
く、直角方向に蛇行して流れるため。
Improved heat exchange efficiency 6 However, in the heat exchanger having the above structure, the flow of the refrigerant is not a counterflow to the flow of air, but a meandering flow in a direction perpendicular to the flow of air.

風下側の液冷媒が蒸発しきれずに蒸発器から流出してし
まうという不具合があった。
There was a problem in which the liquid refrigerant on the leeward side could not be completely evaporated and flowed out of the evaporator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術はいずれも、液体冷媒を空気と十分に熱交
換させて蒸発させるという点について配慮がされておら
ず、液体冷媒が流出してしまうという問題があった。
In all of the above conventional techniques, no consideration is given to sufficiently exchanging heat with air to evaporate the liquid refrigerant, and there is a problem in that the liquid refrigerant flows out.

本発明は、液体冷媒を空気と十分に熱交換させて蒸発さ
せ、液体冷媒の流出を防止することを可能とした積層型
蒸発器を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a stacked evaporator that can sufficiently exchange heat with air to evaporate liquid refrigerant and prevent the liquid refrigerant from flowing out.

本発明の他の目的とするところは、熱交換効率を向上し
得る構造のflF型蒸発器を提供することにある。
Another object of the present invention is to provide an flF type evaporator having a structure capable of improving heat exchange efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、空気の流入方向に向って冷
媒を複数回蛇行させて流すようにしたものである。
In order to achieve the above object, the refrigerant is made to flow in a meandering manner multiple times in the direction of air inflow.

また、効果的に熱交換させるために、冷媒を複数回蛇行
させて流すと共に、冷媒通路の断面積を冷媒の流れる方
向に従って徐々に大きくしたものである。
Furthermore, in order to effectively exchange heat, the refrigerant is caused to flow in a meandering manner multiple times, and the cross-sectional area of the refrigerant passage is gradually increased in the direction in which the refrigerant flows.

さらに、上記目的を達成するために、冷媒を複数回蛇行
させて流すと共に、冷媒通路の幅を徐々に大きくしたも
のである。
Furthermore, in order to achieve the above object, the refrigerant is caused to flow in a meandering manner multiple times, and the width of the refrigerant passage is gradually increased.

〔作用〕[Effect]

熱交換器に流入した冷媒は、空気の流入方向に向って全
て対向流として流れ、かつ複数回蛇行して流れる。それ
によって液体冷媒が蒸発しやすくなるので熱交換効率が
スムースに行われる。
The refrigerant that has flowed into the heat exchanger flows in a countercurrent flow toward the direction in which the air flows, and it flows in a meandering manner multiple times. This makes it easier for the liquid refrigerant to evaporate, resulting in smooth heat exchange efficiency.

また、冷媒は、空気の流入方向に向って全て対向流とし
て複数回蛇行して流れ、徐々に通路抵抗が小さくなる。
In addition, the refrigerant flows in a meandering manner multiple times as a countercurrent flow toward the inflow direction of the air, and the passage resistance gradually decreases.

従って、全液体冷媒が確実に熱交換される。Therefore, it is ensured that all liquid refrigerant undergoes heat exchange.

(実施例〕 以下、本発明の一実施例を第1図から第4図により説明
する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 to 4.

本積暦型蒸発器は第3図、第4図に示す通り、アルミニ
ウム材から構成される一対のチューブプレートl、11
と、該チューブプレート間に配され、ロウ材により固定
されるコルゲートフィン2とから構成されるチューブプ
レート組体3と、該チューブプレート組体3を並列に並
べ相互に連結される横軸の第1の冷媒通路4と、前記チ
ューブプレート組体3の相互間及びサイドプレート5゜
5a間に形成される縦軸の第2の冷媒通路6と、サイド
カバー7.7aと、該サイドカバー7゜7a間に固着さ
れ、前記第1の冷媒通路4の導入側に連結される冷媒導
入パイプ8と、前記第1の冷媒通路4の吐出側に連結さ
れる吐出パイプ9とから構成され、結合される上記部品
はそれぞれ相互に積み重ねられた後、炉中ロウ材等によ
り一体に気密的に接合される。
As shown in Figures 3 and 4, this integral calendar type evaporator consists of a pair of tube plates L and 11 made of aluminum.
and a corrugated fin 2 disposed between the tube plates and fixed by brazing material, and the tube plate assembly 3 is arranged in parallel and connected to 1 refrigerant passage 4, a second refrigerant passage 6 with a vertical axis formed between the tube plate assemblies 3 and between the side plates 5.5a, a side cover 7.7a, and the side cover 7.7a. 7a, and is composed of a refrigerant introduction pipe 8 connected to the introduction side of the first refrigerant passage 4, and a discharge pipe 9 connected to the discharge side of the first refrigerant passage 4, which are connected to each other. After the above-mentioned parts are stacked on top of each other, they are hermetically joined together by brazing filler metal or the like in a furnace.

第1図はチューブプレート1の正面図で、プレート成形
された一枚を示す。
FIG. 1 is a front view of the tube plate 1, showing one plate molded.

長方形状に打抜かれたアルミニウム製プレート1は周囲
に凸状に形成される周囲仕切ulaと、該周囲仕切壁の
上、下に交互に連接し、縦軸の第2の冷媒通路6〜6c
を形成する複数個の中間仕切壁1bとを備えている。前
記第2の冷媒通路6の通路幅℃は冷媒の流れる方向に従
って徐々に大きくなっている。
An aluminum plate 1 punched into a rectangular shape has a peripheral partition ula formed in a convex shape around the periphery, and second refrigerant passages 6 to 6c connected alternately above and below the peripheral partition wall and having a vertical axis.
A plurality of intermediate partition walls 1b are provided. The passage width °C of the second refrigerant passage 6 gradually increases in the direction in which the refrigerant flows.

また、前記冷媒通路6〜6cにはビート1cが通路に向
けて形成され、冷媒の偏流防止と、蒸発器の耐圧向上を
図っている。
In addition, beats 1c are formed in the refrigerant passages 6 to 6c toward the passages to prevent uneven flow of the refrigerant and to improve pressure resistance of the evaporator.

上記構成において、導入パイプ8から流入される液体冷
媒は第2図に示す如く、第1の冷媒通路4〜4cを横に
つながりをもって流れ、第2の冷媒通路6〜6cでは矢
印で示す方向に複数回蛇行して流れ、空気の流れに対し
て必ず対向流となる。
In the above configuration, as shown in FIG. 2, the liquid refrigerant flowing in from the introduction pipe 8 flows horizontally in the first refrigerant passages 4 to 4c, and flows in the direction shown by the arrow in the second refrigerant passages 6 to 6c. The flow meanderes multiple times, always creating a counterflow to the air flow.

従って冷媒通路6〜6cを冷媒が蛇行して流れる時、冷
媒は蒸発され、液体から気体に徐々に相変化し、比容積
が大きくなる。
Therefore, when the refrigerant flows in a meandering manner through the refrigerant passages 6 to 6c, the refrigerant is evaporated and its phase gradually changes from liquid to gas, and its specific volume increases.

ここで、一般には冷媒通路の断面積が、冷媒の流れ始め
から終りまで変化せず一定であると、冷媒が相変化して
気体冷媒の占める割合が多くなるに従って、比容積が増
加するにもかかわらず通路断面積が増加しないため冷媒
流れの抵抗となる。
Generally, if the cross-sectional area of the refrigerant passage remains constant from the beginning to the end of the refrigerant flow, the specific volume will increase as the refrigerant changes phase and the proportion occupied by gas refrigerant increases. Regardless, the cross-sectional area of the passage does not increase, creating resistance to the flow of refrigerant.

その結果、冷媒の流量が減少し、蒸発器の冷房能力が低
下してしまうが、本発明ではチューブプレート1の仕切
壁1bで区画された冷媒通路の幅01〜Q4を徐々に大
きくして冷媒通路断面積を除徐に増加させているので、
従来に反し、冷媒の流れの抵抗増大を小さくすることが
できる。
As a result, the flow rate of the refrigerant decreases, and the cooling capacity of the evaporator decreases. However, in the present invention, the widths 01 to Q4 of the refrigerant passages divided by the partition walls 1b of the tube plate 1 are gradually increased. Since the passage cross-sectional area is gradually increased,
Contrary to the conventional art, the increase in resistance to the flow of refrigerant can be reduced.

本発明の第2の実施例を第5図、第6図により説明する
。第5図、第6図は第1図と同様、第3図に示す積層型
蒸発器のチューブプレートを示す。
A second embodiment of the present invention will be explained with reference to FIGS. 5 and 6. Similar to FIG. 1, FIGS. 5 and 6 show the tube plate of the stacked evaporator shown in FIG. 3.

(尚、第5図、第6図では第1図に記載したチューブプ
レート1のビート1cは省略しである。)第5図におい
て、チューブプレート1に設けた複数個の仕切壁1bの
開口部1dのそれぞれの開口長さwt l Wl y 
W3の大きさを、矢印で示す冷媒の流れる方向に徐々に
大きくしている。前記したように冷媒は液体から気体へ
と徐々に相変化し、比容積が大きくなる。仕切壁1bの
開口部1dの開口長さが全て同一であると、流れの抵抗
になり、冷媒の流量が減少し、熱交換量が減少し、蒸発
器の冷房能力が減少してしまう。そこで、仕切壁1bの
開口部1dの開口長さWl、Wl。
(In addition, in FIG. 5 and FIG. 6, the beat 1c of the tube plate 1 shown in FIG. 1 is omitted.) In FIG. 1d each opening length wt l Wl y
The size of W3 is gradually increased in the direction in which the refrigerant flows as indicated by the arrow. As described above, the phase of the refrigerant gradually changes from liquid to gas, and its specific volume increases. If all the opening lengths of the openings 1d of the partition wall 1b are the same, there will be flow resistance, the flow rate of the refrigerant will decrease, the amount of heat exchange will decrease, and the cooling capacity of the evaporator will decrease. Therefore, the opening lengths Wl, Wl of the opening 1d of the partition wall 1b.

W、の大きさを、徐々に大きくして冷媒の流れの抵抗の
増大を小さくすることができる。
By gradually increasing the size of W, it is possible to reduce the increase in resistance to the flow of the refrigerant.

さらに、液体冷媒が気体冷媒に徐々に相変化するにした
がって増加する比容積の増加割合に比例して、前記仕切
壁1bの開口部1dの開口長さwl 、Wl 、W3の
大きさを、徐々に大きくすることにより、冷媒の抵抗の
増大を防止することができる。前記開口部1dの幅w1
 + Wl HW3はそれぞれ前通路の幅L+ r f
)、z 、 Q3より少なくとも大きくする様に設計さ
れる。
Further, the opening lengths wl, Wl, and W3 of the opening 1d of the partition wall 1b are gradually changed in proportion to the rate of increase in the specific volume as the liquid refrigerant gradually changes phase to a gaseous refrigerant. By increasing the refrigerant resistance, it is possible to prevent an increase in the resistance of the refrigerant. Width w1 of the opening 1d
+ Wl HW3 is the width of the front passage L + r f
), z, is designed to be at least larger than Q3.

以上1本発明の実施例によれば、空気の流入方向に向っ
て冷媒の流れが対向流になっており、かつ複数回蛇行し
て流れるため冷媒は蒸発し易く、液体から気体に徐々に
相変化し、液体冷媒の流出を防止することができる。
According to the first embodiment of the present invention, the flow of the refrigerant is a counterflow toward the inflow direction of the air, and the refrigerant flows in a meandering manner multiple times, so that the refrigerant easily evaporates and gradually changes from a liquid to a gas. This can prevent liquid refrigerant from flowing out.

また、液体冷媒の通路幅を吐出方向に向って。Also, the width of the liquid refrigerant passage in the discharge direction.

徐々に大きくしであるため冷媒の流れの抵抗の増大を防
ぎ、熱交換効率を向上させることができる。
Since it is gradually enlarged, it is possible to prevent an increase in resistance to the flow of refrigerant and improve heat exchange efficiency.

さらに、本実施例では第1の冷媒通路4〜4cで表わさ
れる熱交換しないタンク部分が、上端部あるいは下端部
のいずれか一方しかないので、同じ前面面積であれば、
伝熱面積を多くとることができる。
Furthermore, in this embodiment, the tank portion that does not exchange heat, represented by the first refrigerant passages 4 to 4c, has only one of the upper end and the lower end, so if the front area is the same,
A large heat transfer area can be obtained.

構成上から見れば、チューブプレートはプレス加工によ
り成形したものを積層ロウ付するだけであるため、任意
に冷媒通路の幅、長さを設定できるので必要に応じて任
意に構成できる利点がある。
From a structural point of view, since the tube plate is simply formed by press working and then laminated and brazed, the width and length of the refrigerant passage can be set arbitrarily, so there is an advantage that the tube plate can be configured as desired.

尚、第6図は、第5図に対し第1の冷媒通路4〜4cが
下側にあることのみ異なり、その効果は第5図のものと
同じである。
Note that FIG. 6 differs from FIG. 5 only in that the first refrigerant passages 4 to 4c are located on the lower side, and the effect is the same as that in FIG. 5.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、空気の流入方向に向って冷媒が流れる
ように複数回蛇行させているため、全ての冷媒を蒸発さ
せて、液体冷媒の流出を防止できる効果がある。
According to the present invention, since the refrigerant is made to meander multiple times so as to flow in the direction of air inflow, it is possible to evaporate all the refrigerant and prevent the liquid refrigerant from flowing out.

また、冷媒通路断面積を吐出方向に向って徐々に大きく
することにより、冷媒の流れの抵抗の増大を抑えて、熱
交換率を向上できる効果もある。
Further, by gradually increasing the cross-sectional area of the refrigerant passage in the discharge direction, it is possible to suppress an increase in resistance to the flow of the refrigerant and improve the heat exchange efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、チューブプレートの正面図、第2図は冷媒の
流路を示す模式線図、第3図は斜視図、第4図は第3図
の要部断面図、第S図は他の実施例におけるチューブプ
レートの正面図、第6図は他の実施例におけるチューブ
プレートの正面図である。 1・・・チューブプレート、1a・・・周囲壁、1b・
・・仕切壁、1c・=ビード、4,4a、4b、4cm
第1の冷媒通路、6 、6 a 、 6 b 、 6 
c−第2の冷媒通路。 帛20 寓6図
Figure 1 is a front view of the tube plate, Figure 2 is a schematic diagram showing the refrigerant flow path, Figure 3 is a perspective view, Figure 4 is a sectional view of the main part of Figure 3, and Figure S is another diagram. FIG. 6 is a front view of the tube plate in another embodiment. 1... Tube plate, 1a... Surrounding wall, 1b.
・・Partition wall, 1c・=bead, 4, 4a, 4b, 4cm
First refrigerant passage, 6, 6a, 6b, 6
c-Second refrigerant passage. Plate 20 Fable 6

Claims (1)

【特許請求の範囲】 1、2枚の成形プレートを最中合せにすることにより、
上端部あるいは下端部のいずれか一方に一対以上のタン
ク部及びこのタンク部を連通するU字形状の流体通路を
形成したチューブエレメントを構成し、該チューブエレ
メントとコルゲートフィンとを交互に積層して成る積層
型蒸発器において、空気の流入方向に向つて冷媒を複数
回蛇行させて流すことを特徴とする積層型蒸発器。 2、冷媒通路の断面積を冷媒の流れる方向に従つて徐々
に大きくしてなることを特徴とする請求項1記載の積層
型蒸発器。 3、前記冷媒通路は冷媒の比容積変化に応じて通路断面
積を変化させることを特徴とする請求項1記載の積層型
蒸発器。 4、前記冷媒通路断面積は該通路の幅を徐々に大きくす
ることで変化させていることを特徴とする請求項1記載
の積層型蒸発器。 5、前記冷媒通路を仕切る仕切部の開口部の長さを徐々
に大きくすることを特徴とする請求項1乃至4のいずれ
か記載の積層型蒸発器。 6、前記冷媒の通路断面積を冷媒の比容積の増加割合に
比例して、冷媒の流れる方向に徐々に大きくすることを
特徴とした請求項1記載の積層型蒸発器。 7、空気の流入方向に向つて冷媒を複数回蛇行させると
共に、その回数を3回以上奇数回とすることを特徴とす
る請求項2乃至6のいずれか記載の積層型蒸発器。 8、空気の流入方向に向つて冷媒を複数回蛇行させると
共に冷媒の通路抵抗を徐々に低下させることを特徴とす
る請求項7記載の積層型蒸発器。
[Claims] By aligning one or two molded plates,
A tube element is constructed in which a pair of tank parts or more and a U-shaped fluid passage communicating with the tank parts are formed at either the upper end or the lower end, and the tube elements and corrugated fins are alternately stacked. A stacked evaporator comprising a stacked evaporator, characterized in that the refrigerant flows in a meandering manner multiple times in the direction of air inflow. 2. The stacked evaporator according to claim 1, wherein the cross-sectional area of the refrigerant passage is gradually increased in accordance with the direction in which the refrigerant flows. 3. The stacked evaporator according to claim 1, wherein the refrigerant passage has a passage cross-sectional area that changes according to a change in the specific volume of the refrigerant. 4. The stacked evaporator according to claim 1, wherein the cross-sectional area of the refrigerant passage is changed by gradually increasing the width of the passage. 5. The stacked evaporator according to any one of claims 1 to 4, characterized in that the length of the opening of the partition that partitions the refrigerant passage is gradually increased. 6. The stacked evaporator according to claim 1, wherein the cross-sectional area of the refrigerant passage is gradually increased in the flow direction of the refrigerant in proportion to the rate of increase in the specific volume of the refrigerant. 7. The laminated evaporator according to any one of claims 2 to 6, wherein the refrigerant is meandered a plurality of times in the direction of air inflow, and the number of times is an odd number of three or more times. 8. The stacked evaporator according to claim 7, wherein the refrigerant is meandered multiple times in the direction of air inflow and the passage resistance of the refrigerant is gradually reduced.
JP1242062A 1989-07-21 1989-09-20 Lamination type evaporator Pending JPH03129270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900010700A KR910003336A (en) 1989-07-21 1990-07-14 Stacked Evaporator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-187354 1989-07-21
JP18735489 1989-07-21

Publications (1)

Publication Number Publication Date
JPH03129270A true JPH03129270A (en) 1991-06-03

Family

ID=16204527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242062A Pending JPH03129270A (en) 1989-07-21 1989-09-20 Lamination type evaporator

Country Status (2)

Country Link
JP (1) JPH03129270A (en)
KR (1) KR910003336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101000A (en) * 1994-09-30 1996-04-16 Hisaka Works Ltd Plate-type heat exchanger
JPH09178297A (en) * 1995-12-22 1997-07-11 Denso Corp Refrigerant vaporizer
US5667007A (en) * 1995-03-30 1997-09-16 Zexel Corporation Laminated heat exchanger
JPH09318196A (en) * 1996-05-29 1997-12-12 Denso Corp Laminated evaporator
KR100531016B1 (en) * 1998-12-31 2006-02-01 한라공조주식회사 Heat exchanger manifold plate and heat exchanger using the same to improve refrigerant flow

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101000A (en) * 1994-09-30 1996-04-16 Hisaka Works Ltd Plate-type heat exchanger
US5667007A (en) * 1995-03-30 1997-09-16 Zexel Corporation Laminated heat exchanger
JPH09178297A (en) * 1995-12-22 1997-07-11 Denso Corp Refrigerant vaporizer
JPH09318196A (en) * 1996-05-29 1997-12-12 Denso Corp Laminated evaporator
KR100531016B1 (en) * 1998-12-31 2006-02-01 한라공조주식회사 Heat exchanger manifold plate and heat exchanger using the same to improve refrigerant flow

Also Published As

Publication number Publication date
KR910003336A (en) 1991-02-27

Similar Documents

Publication Publication Date Title
JPS62252891A (en) Counterflow floating plate type heat exchanger
JP2002130977A (en) Heat exchanger
JPS6334466A (en) Condenser
US10451352B2 (en) Micro-channel heat exchanger
JPH03129270A (en) Lamination type evaporator
JPS63271099A (en) Heat exchanger
JPH03140795A (en) Lamination type heat exchanger
JP3403544B2 (en) Heat exchanger
JPS63210595A (en) Plate fin type heat exchanger
JPH02106697A (en) Lamination type heat exchanger
JP2602788Y2 (en) Stacked evaporator elements
JP7247717B2 (en) Heat exchanger
JPH0833287B2 (en) Aluminum condenser for air conditioner
JP2001091101A (en) Heat exchanger for air conditioner
JPH03117887A (en) Heat exchanger
JPS62131195A (en) Heat exchanger
JP2570310Y2 (en) Heat exchanger
JPH09138081A (en) Heat exchanger for mixed refrigerant
JPS63131993A (en) Heat exchanger
JP3218053B2 (en) Condenser
JPH02171591A (en) Laminated type heat exchanger
JPH0666487A (en) Laminated type heat exchanger
JP2941768B1 (en) Stacked heat exchanger
CN219572764U (en) Brazed heat exchanger
JP2001012883A (en) Heat exchanger