JP2602788Y2 - Stacked evaporator elements - Google Patents

Stacked evaporator elements

Info

Publication number
JP2602788Y2
JP2602788Y2 JP1992069157U JP6915792U JP2602788Y2 JP 2602788 Y2 JP2602788 Y2 JP 2602788Y2 JP 1992069157 U JP1992069157 U JP 1992069157U JP 6915792 U JP6915792 U JP 6915792U JP 2602788 Y2 JP2602788 Y2 JP 2602788Y2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
ridge
shaped
small flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1992069157U
Other languages
Japanese (ja)
Other versions
JPH0630680U (en
Inventor
敏昭 山本
Original Assignee
カルソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニック株式会社 filed Critical カルソニック株式会社
Priority to JP1992069157U priority Critical patent/JP2602788Y2/en
Publication of JPH0630680U publication Critical patent/JPH0630680U/en
Application granted granted Critical
Publication of JP2602788Y2 publication Critical patent/JP2602788Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/035Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other with U-flow or serpentine-flow inside the conduits

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】この考案は、例えば自動車の冷房
装置に組込まれて、液化冷媒を内部で気化させ、外面に
沿って流れる空気を冷却する積層型エバポレータの素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated evaporator element which is incorporated in, for example, a cooling system of an automobile to vaporize a liquefied refrigerant inside and cool air flowing along an outer surface.

【0002】[0002]

【従来の技術】積層型エバポレータは、縁部及び中間隆
条を平板部から隆起させ、冷媒の出入り口となる半管状
部を形成した2枚のアルミニウム合金等の金属板のチュ
ーブシートを最中合せに重ね、縁部、中間隆条、半管状
部をろう付けして扁平な素子を造り、複数の素子をフィ
ンを挟んで並べてタンクに結合し、タンクを介して素子
内に流入させた液化冷媒を素子内で気化させて素子の温
度を低下させ、素子外面に沿って流れる空気を冷却する
ものである。
2. Description of the Related Art A laminated evaporator is a tube of two metal plates made of aluminum alloy or the like in which an edge and an intermediate ridge are raised from a flat plate portion to form a semi-tubular portion serving as a refrigerant inlet / outlet. Laminate the sheet in the middle, braze the edge, middle ridge, semi-tubular part to make a flat element, combine multiple elements side by side with fins, connect to the tank, and into the element through the tank The inflowing liquefied refrigerant is vaporized in the element to lower the temperature of the element and cool the air flowing along the outer surface of the element.

【0003】図5〜図8は、積層型エバポレータの従来
例を示す。図5は正面図、図6は底面図、図7は図5の
A−A断面図、図8は素子を造るチューブシートの斜視
図である。
FIGS. 5 to 8 show a conventional example of a laminated evaporator. FIG. 5 is a front view, FIG. 6 is a bottom view, FIG. 7 is a cross-sectional view taken along line AA of FIG. 5, and FIG. 8 is a perspective view of a tube sheet for forming an element.

【0004】エバポレータ1は、複数の素子2、2をフ
ィン3を挟んで並べ、素子の冷媒口4、5をタンク6、
7に接続し、全体をろう付けして造られる。
In the evaporator 1, a plurality of elements 2 and 2 are arranged with a fin 3 interposed therebetween, and refrigerant ports 4 and 5 of the elements are connected to a tank 6 and
Connected to 7 and brazed as a whole.

【0005】最中合せに重ねられて素子2を構成するチ
ューブシート8は、図7、図8に見るように、アルミニ
ウム合金等の金属の四角形平板をプレスして平板部8a
から縁部8b、中間隆条8cを隆起させ、冷媒を出入さ
せる冷媒口4、5となる管状部4a、5aを形成す
る。隆起した各部の端部は、ろう付け面を広くするため
折返されている。平板部8aには、冷媒の流れを乱すた
めの丸ビード8d又は傾斜ビード8e、楕円ビード8f
が打起し形成される。
As shown in FIGS. 7 and 8, a tube sheet 8 which is superposed in the middle and constitutes the element 2 is formed by pressing a rectangular flat plate made of a metal such as an aluminum alloy.
Then, the semi- tubular portions 4a and 5a that become the refrigerant ports 4 and 5 through which the edge 8b and the intermediate ridge 8c are raised to form the refrigerant inlet / outlet are formed. The end of each raised section is folded over to increase the brazing surface. The flat plate portion 8a has a round bead 8d or an inclined bead 8e for disturbing the flow of the refrigerant, and an elliptical bead 8f.
Is formed.

【0006】このチューブシート8の2枚を最中合せに
重ねて各隆起部の端面をろう付けし形成された冷媒口
4、5にタンク6、7をろう付けして接続すると、図7
に見るようなタンク6、7を連通するU字形の冷媒流路
2aが形成される。一方のタンク7には、冷媒の入口管
9、出口管10を接続し、両管9、10の間を仕切板1
1で仕切っている。そこで、入口管9からタンク7に
入させた気液2相の冷媒は、図5の左半部において、
の部分に連結された素子群内に各冷媒口4から入り、中
間隆条8cによりU字形に形成された素子内の流路2a
を通って冷媒口5から他のタンク6の左半部に入り、
続いてこのタンク6の右半部に移り、この右半部に連結
された素子群内に各冷媒口5を通って入り、各素子のU
字形流路2aを通過して各冷媒口4からタンク7の右半
部に入り、出口管10から排出される。このように多数
の素子2内を流通する間に液化冷媒は蒸発して温度低下
し、素子2の外面及びフィン3に接触しつつ流れる空
気を冷却する。
[0006] When two of the tube sheets 8 are superimposed in the middle and the end faces of the raised portions are brazed, the tanks 6 and 7 are connected to the coolant ports 4 and 5 formed by brazing.
A U-shaped refrigerant passage 2a communicating the tanks 6, 7 as shown in FIG. An inlet pipe 9 and an outlet pipe 10 for the refrigerant are connected to one of the tanks 7, and a partition plate 1 is provided between the two pipes 9 and 10.
It is divided by 1. Therefore, the water flows from the inlet pipe 9 to the tank 7.
Refrigerant inlet Toe gas-liquid two-phase, in the left half of FIG. 5, this
Flow path 2a of the refrigerant inlet to the linked element in the group of the portion 4 or et input is, by the intermediate ridges 8c in elements formed in a U-shape
Through each refrigerant port 5 and into the left half of the other tank 6,
Then move to the right half of this tank 6 and connect to this right half
Through the respective coolant ports 5 into the group of elements,
The right half of the tank 7 from each refrigerant port 4 after passing through the U-shaped flow path 2a
Part and is discharged from the outlet pipe 10. As described above, the liquefied refrigerant evaporates and decreases in temperature while flowing through the multiple elements 2, and cools the air flowing while contacting the outer surface of each element 2 and the fins 3.

【0007】素子2を構成するチューブシート8として
は、図9のように、シート内に穿孔したタンク部12、
13を打起して形成し、素子を並列させたときに隣り合
うタンク部を接触連通させてタンクの作用をさせるもの
もある。この構成において、一つのタンク部を穿孔しな
いでおけば、図5、図6の仕切板11の作用をさせるこ
とができる。
As shown in FIG. 9, the tube sheet 8 constituting the element 2 has a tank portion 12 perforated in the sheet.
13 is formed by elongating the element 13 so that adjacent tank portions are brought into contact with each other when the elements are arranged in parallel to act as a tank. In this configuration, the operation of the partition plate 11 shown in FIGS. 5 and 6 can be performed unless one tank is perforated.

【0008】[0008]

【考案が解決しようとする課題】このように素子2内に
U字形の冷媒流路を形成し冷媒を流すと、図10にハッ
チングを施して示すような冷媒の動きの悪い部分(以下
この部分を滞溜部という)14〜17を生じることが判
った。このような滞溜を生じると、素子2の有効熱交
換面積が減少し、エバポレータの熱交換効率が低下す
る。本考案はこのような冷媒の滯溜を生じさせない素子
を得たものである。
As described above, when a U-shaped refrigerant flow path is formed in the element 2 to flow the refrigerant, a portion where the refrigerant does not move as indicated by hatching in FIG. 14 to 17). When such a stagnant portion occurs, the effective heat exchange area of the element 2 decreases, and the heat exchange efficiency of the evaporator decreases. This invention is intended to obtain a device which does not cause滯溜of such refrigerant.

【0009】[0009]

【課題を解決する為の手段】本考案者は上記のような冷
媒の滞溜を生じるのは、幅が広いU字形流路2aを流
れる冷媒が横方向に移動し易いため、流路が曲る隅部
おいて流速の大きな主流が横移動してしまい、この主流
を外れた流速の小さい部分に滞溜を生じるものと考え
た。この考えに基いて本考案は、U字形に形成される素
子内の冷媒流路2aを、複数の補助隆条により複数の幅
の狭い小流路に区画し、これに伴って流路長い外周小
流路の断面積を、流路の短い内周小流路の断面積より大
きくして、各小流路の通路抵抗を調整したものである。
Means for Solving the Problems The present inventor has to produce Todokotamari portion of the refrigerant as described above, liable to move refrigerant flowing through the wide U-shaped flow path 2a is laterally flow path It was considered that the main flow having a large flow velocity moved laterally at the corner where the bend was generated, and a stagnant portion was formed at a portion where the flow velocity was small outside the main flow. Based on this idea, the present invention divides the coolant flow path 2a in the U-shaped element into a plurality of narrow small flow paths by a plurality of auxiliary ridges, and accordingly, a long flow path . The cross-sectional area of the outer small flow path is made larger than the cross-sectional area of the inner small flow path having a short flow path, and the passage resistance of each small flow path is adjusted.

【0010】[0010]

【作用】素子内のU字形流路2aは、幅の狭い複数の小
流路に区画されたので、この小流路内では、冷媒の流れ
後続する冷媒に押されて進行し、横移動しないでほぼ
一様に流通する従って滞溜を生じない。又、小流路
断面積を変えて外周側小流路により多くの冷媒が流通
するように各小流路の抵抗を調整したので、各小流路
通過する冷媒の熱交換状態をほぼ同等にすることができ
る。
[Action] U-shaped flow path 2a in the device, since it was divided into narrow plurality of small passages width, in this small flow path, the refrigerant flow proceeds is pushed to a subsequent refrigerant, lateral movement It flows almost uniformly not. Therefore, there is no accumulation part . Also, by changing the cross-sectional area of the small flow path, more refrigerant flows through the outer small flow path.
Having adjusted the resistance of each small flow path to the heat exchange state of the refrigerant passing through each small flow path can and almost equally to Turkey.

【0011】[0011]

【実施例】図1〜図4は本考案の実施例を示し、図1は
チューブシートの内面図、図2は図1の右方から見た側
面図、図3、図4はチューブシートの別例を示す内面図
である。前記の従来例と同等部分は同符号で示すと共に
説明を省略して、次にこれを説明する。
1 to 4 show an embodiment of the present invention. FIG. 1 is an inner view of a tube sheet, FIG. 2 is a side view seen from the right side of FIG. 1, and FIGS. It is an inside view which shows another example. The same parts as those in the above-described conventional example are denoted by the same reference numerals, and the description thereof will be omitted.

【0012】図1、図2において、四角形の金属のチ
ューブシート8は平板部8aから縁部8b、中間隆条8
cを隆起させて形成し、冷媒口となる半管状部4a、
5aを形成することは従来と同様である。
In FIG. 1 and FIG. 2, a tube sheet 8 made of a square metal plate includes a flat plate portion 8a to an edge portion 8b, an intermediate ridge 8
half-pipe portion 4a is raised to c formed, and a coolant outlet,
Forming 5a is the same as in the prior art.

【0013】この実施例においては、縁部8bと中間隆
条8cとが形成するU字形流路2a内に5個の補助隆条
18〜2を中央の中間隆条8cと同様に隆起させてU
字形に形成している。これらの補助隆条は、四角形をな
す縁部8bの3辺に平行で、半管状部4a、5aに向け
て開いたU字形をなしており、その折曲がった隅部には
縁部8bと同様に丸味を持たせている。これらの補助隆
条18〜22は左右対称に形成されるから、2個のチュ
ーブシート8を最中合せに重ねてろう付けすると、各隆
条18〜2は縁部8b、中央の隆条8cと同様にろう
付けされて補助隔壁を形成し、各隔壁の間に狭いU字形
の小流路24〜29、及び冷媒口4、5が形成される。
[0013] In this embodiment, to uplift the five auxiliary ridges 18-2 2 to U-shaped flow path 2a to form and the edge 8b and the intermediate ridge 8c similar to the central middle ridge 8c U
It is shaped like a letter. These auxiliary ridges form a square.
Parallel to the three sides of the edge 8b, facing the semi-tubular portions 4a, 5a
It has a U-shape that is open and has a bent corner
Like the edge 8b, it is rounded. Since these auxiliary ridges 18 to 22 is formed symmetrically, when attached earthenware pots Iro overlaid on combined during the two tubesheets 8, KakuTakashijo 18-2 2 edges 8b, central ridge 8c, brazing is performed to form auxiliary partition walls, and narrow U-shaped small flow paths 24 to 29 and refrigerant ports 4 and 5 are formed between the partition walls.

【0014】最中合せに重ねられた2枚のチューブシー
8が形成する一方の冷媒口4から素子内に流入した冷
媒は、各小流路24〜29に分配され、冷媒口5から流
出する。小流路24〜29は、幅が狭く、且つ隅部には
丸味を持たせているから、冷媒の流れは円滑に屈曲して
流れ、冷媒の流れが大きく横移動することがないから、
小流路の曲る部分において滞溜を生じることない。
The refrigerant that has flowed into the element from one of the refrigerant ports 4 formed by the two tube sheets 8 superposed in the middle is distributed to the small flow paths 24 to 29 and flows out of the refrigerant port 5. . The small channels 24 to 29 are narrow in width and at the corners
Because they rounded, the refrigerant flow is smoothly bent
Since the flow and the flow of the refrigerant do not move laterally greatly,
It does not cause Todokotamari portion at flex portions of small channels.

【0015】に、小流路24〜29は、断面積が同じ
であると、中間隆条8cに近いもの程長さが短いので、
素子の外面を流れる空気と熱交換する時間が短かくな
り、外周側の小路18、19を通って長い時間をかけ
て熱交換した冷媒との間で温度差を生じ、エバポレータ
の熱交換効率が悪くなる。
[0015] Further, the small channels 24 to 29 are cross-sectional area the same
, The closer to the middle ridge 8c, the shorter the length ,
Time heat exchange with the air flowing through the outer surface of the element becomes shorter, Ji raw temperature difference between the outer peripheral side refrigerant over time through the small flow path 18, 19 and heat exchange, the evaporator of the heat The exchange efficiency becomes worse.

【0016】熱交換効率を良くするために、この考案で
は、平板部8aと接触する時間が長 い外周側小流路の断
面積を大きく、平板部8aとの接触時間の短い内周側の
小流路の断面積を小さくしている。各小流路は平板部と
直角方向の長さが一定であるから、断面積、従って通路
抵抗の大小は、平板部に平行な幅の大小により決まる。
流路の通路抵抗調整は、小流路内にビードを打出し、そ
の形、数、高さにより通路抵抗を変えることでもでき
[0016] In order to improve the heat exchange efficiency, in this invention, the outer peripheral side small passages time in contact with the flat portion 8a is long cross
The area on the inner peripheral side is large and the contact time with the flat plate portion 8a is short.
The cross-sectional area of the small channel is reduced. Each small channel has a flat part
The cross-sectional area, and hence the passage, because the length in the perpendicular direction is constant
The magnitude of the resistance is determined by the magnitude of the width parallel to the flat portion.
Passage resistance adjustment of the flow path can also be done by punching a bead into a small flow path and changing the path resistance according to its shape, number and height
You .

【0017】図3は、補助隆条18〜2の入口部の
を変えると共に、これらの間隔を中間隆条8cに近く
なるに従って狭くして、小流路の通路抵抗を調整する例
を示す。
[0017] FIG. 3, the length of the inlet portion of the auxiliary ridges 18-2 2
With changing of, and narrower as closer to the middle HazamaTakashijo 8c these intervals, showing an example of adjusting the passage resistance of the small flow path.

【0018】冷媒の流入する冷媒口4に近く開口する小
流路には冷媒が入り易く、冷媒口4から離れた小流路に
は冷媒が入り難いことから、何れの小流路にも冷媒が入
り易いように、図の構造において補助隆条の入口
長さを変え、補助隆条18〜2の先端を冷媒口4
に対してV字形に配列したものである。このように配列
した上で、更に前記のように小流路の断面積(幅)を変
えて通路抵抗の調整を行なっている。冷媒の出口部分で
は、隆条の先端をこのように配列する必要はないが、
同形のチューブシートを最中合せにするため、各隆条、
冷媒口等は左右対称に形成するから、補助隆条の先端部
出口部分でも同様のV字形配列とする。
The refrigerant also likely contain the refrigerant in small passages which open near the refrigerant outlet 4 for flow of refrigerant, since the hardly contains the refrigerant in small passages away from the refrigerant inlet 4, in any small channels of to facilitate contains the, the inlet portion of the auxiliary Takashi Article in the structure of FIG. 1
By changing the length, the auxiliary ridges 18-2 second tip refrigerant outlet 4
Are arranged in a V-shape. After arranging in this manner, the cross-sectional area (width) of the small flow path is further changed as described above.
Have you row Do not adjust the passage resistance Ete. The outlet portion of the coolant need not be arranged in this way the tip of the ridge,
Each ridge,
Since the refrigerant port is formed symmetrically, the tip of the auxiliary ridge
Is the same V-shaped arrangement in the outlet portion.

【0019】図4の例は、更に外周側の補助隆条18、
内周側の補助隆条23の先端部18a、23aを冷媒口
4、5の中心寄りに寄せて各小流路への冷媒流入量を制
御するように構成したものである。
FIG. 4 shows an auxiliary ridge 18 on the outer peripheral side,
The distal end portions 18a, 23a of the auxiliary ridges 23 on the inner peripheral side are moved toward the center of the refrigerant ports 4, 5 so as to control the amount of refrigerant flowing into each small flow path.

【0020】なお、実開昭61−181210号公報に
は、U字形流路内に幅を異にした直線の補助隆条を形成
することが記載されているが、このものは、補助隆条の
形成する小流路への流体流入を均等にしようとするもの
で、U字形補助隆条により流路の隅部に滞溜部が発生す
るのを防止する本考案とは目的、構成、作用、効果の何
れの点でも別異である。
Japanese Utility Model Application Laid-Open No. 61-181210 discloses that a linear auxiliary ridge having a different width is formed in a U-shaped flow path. The purpose of the present invention is to make the inflow of the fluid into the small flow path formed by the U-shaped auxiliary ridge to prevent a stagnant portion from being generated at the corner of the flow path. , And the effect is different.

【0021】[0021]

【考案の効果】(1) 素子内に形成される冷媒のU字形流
路を複数のU字形小流路に区画し、各小流路の断面積
(幅)を元のU字形流路よりも小さくしたから、冷媒の
横移動を抑えて、曲り部分にも冷媒の滞溜部を生じさせ
ない。
(1) The U-shaped flow path of the refrigerant formed in the element is divided into a plurality of U-shaped small flow paths, and the cross-sectional area (width) of each of the small flow paths is calculated from the original U-shaped flow path. Also, since the lateral movement of the refrigerant is suppressed, the refrigerant does not accumulate in the bent portion.

【0022】(2) 小流路の通路抵抗を調整することによ
り、各小流路を通る冷媒の熱交換程度を同等にして、エ
バポレータ全体としての熱交換効率を良くすることがで
きる。
(2) By adjusting the passage resistance of the small flow passages, the degree of heat exchange of the refrigerant passing through each small flow passage can be made equal, and the heat exchange efficiency of the entire evaporator can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の実施例を示すチューブシートの内面
図。
FIG. 1 is an inner view of a tube sheet showing an embodiment of the present invention.

【図2】同チューブシートの側面図。FIG. 2 is a side view of the tube sheet.

【図3】本考案の別の実施例を示すチューブシートの内
面図。
FIG. 3 is an inner view of a tube sheet showing another embodiment of the present invention.

【図4】本考案の更に別の実施例を示すチューブシート
の内面図。
FIG. 4 is an inner view of a tube sheet showing still another embodiment of the present invention.

【図5】従来の積層型エバポレータを例示する側面図。FIG. 5 is a side view illustrating a conventional laminated evaporator.

【図6】これの底面図。FIG. 6 is a bottom view of this.

【図7】図5のA−A断面図。FIG. 7 is a sectional view taken along the line AA of FIG. 5;

【図8】素子を造る従来のチューブシートの内面斜視
図。
FIG. 8 is an inner perspective view of a conventional tube sheet for producing an element.

【図9】従来のチューブシートの別例の内面図。FIG. 9 is an inner view of another example of the conventional tube sheet.

【図10】素子内での冷媒の滞溜状態を示すチューブシ
ートの内面図。
FIG. 10 is an inner view of a tube sheet showing a state in which a refrigerant has accumulated in the element.

【符号の説明】[Explanation of symbols]

1 エバポレータ 2 素子 2a 流路 3 フィン 4、5 冷媒口 4a、5a 半管状部 6、7 タンク 8 チューブシート 8a 平板部 8b 縁部 8c 中間隆条 8d 丸ビード 8e 傾斜ビード 8f 楕円ビード 9 入口管 10 出口管 11 仕切板 12、13 タンク部 14、15、16、17 滞溜部 18 補助隆条18a 先端部 19、20、21、22、23 補助隆条23a 先端部 24、25、26、27、28、29 小流路REFERENCE SIGNS LIST 1 evaporator 2 element 2 a flow path 3 fin 4, 5 refrigerant port 4 a, 5 a semi- tubular part 6, 7 tank 8 tube sheet 8 a flat plate part 8 b edge 8 c middle ridge 8 d round bead 8 e inclined bead 8 f elliptical bead 9 inlet pipe 10 Outlet pipe 11 Partition plate 12, 13 Tank part 14, 15, 16, 17 Reservation part 18 Auxiliary ridge 18a Tip 19, 20, 21, 22, 23 Auxiliary ridge 23a Tip 24, 25, 26, 27, 28, 29 Small flow path

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 四角形の金属板の4辺に、隅部に丸味を
持たせた縁部(8b)と、縁部の1つの中央部からこれ
に直交して金属板内に突出する中間隆条(8c)と、こ
の中間隆条(8c)の両側の縁部に冷媒口(4)(5)
となる半管状部(4a)(5a)とを、隆起させて形成
したチューブシート(8)の2枚を、最中合わせに重ね
てろう付けした積層型エバポレータの素子において、縁
部(8b)と中間隆条(8c)とが形成するU字形の冷
媒流路内に、縁部(8b)の3辺に平行し冷媒口(4)
(5)に向けて開口する複数のU字形の補助隆条(18
〜22)を形成して、元のU字形流路内を複数のU字形
の小流路(24〜29)に区画し、各補助隆条の隅部に
は丸味を持たせると共に、中間隆条(8c)から遠い小
流路の断面積を中間隆条(8c)に近い小流路の断面積
よりも大きくした積層型エバポレータの素子。
1. An edge (8b) having a rounded corner at four sides of a rectangular metal plate, and an intermediate ridge protruding from the center of one of the edges into the metal plate at right angles thereto. The refrigerant ports (4) (5)
In the element of the laminated evaporator, two tube sheets (8) formed by raising the semi-tubular portions (4a) and (5a) are overlapped in the middle and brazed. And a middle ridge (8c) formed in a U-shaped refrigerant flow path, the refrigerant port (4) being parallel to three sides of the edge (8b).
A plurality of U-shaped auxiliary ridges (18) opening toward (5)
22) to divide the original U-shaped flow path into a plurality of U-shaped small flow paths (24 to 29). Each auxiliary ridge has a rounded corner and a middle ridge. A stacked evaporator element in which the cross-sectional area of the small flow path remote from the strip (8c) is larger than the cross-sectional area of the small flow path near the intermediate ridge (8c).
JP1992069157U 1992-09-09 1992-09-09 Stacked evaporator elements Expired - Fee Related JP2602788Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992069157U JP2602788Y2 (en) 1992-09-09 1992-09-09 Stacked evaporator elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992069157U JP2602788Y2 (en) 1992-09-09 1992-09-09 Stacked evaporator elements

Publications (2)

Publication Number Publication Date
JPH0630680U JPH0630680U (en) 1994-04-22
JP2602788Y2 true JP2602788Y2 (en) 2000-01-24

Family

ID=13394575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992069157U Expired - Fee Related JP2602788Y2 (en) 1992-09-09 1992-09-09 Stacked evaporator elements

Country Status (1)

Country Link
JP (1) JP2602788Y2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151505B2 (en) * 1994-09-28 2001-04-03 昭和アルミニウム株式会社 Stacked heat exchanger
CN1500198A (en) * 2001-02-19 2004-05-26 昭和电工株式会社 Heat exchanger
JP2003056990A (en) * 2001-08-16 2003-02-26 Sasakura Engineering Co Ltd Plate type evaporator
GB2444792B (en) * 2007-03-17 2008-11-12 Senior Uk Ltd U-shaped cooler
JP2009103360A (en) * 2007-10-23 2009-05-14 Tokyo Roki Co Ltd Plate laminated heat exchanger
JP5413433B2 (en) * 2010-11-09 2014-02-12 株式会社デンソー Heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239122Y2 (en) * 1985-05-02 1990-10-22

Also Published As

Publication number Publication date
JPH0630680U (en) 1994-04-22

Similar Documents

Publication Publication Date Title
US5193611A (en) Heat exchangers
US7607473B2 (en) Heat exchanger
JP5096134B2 (en) Heat exchanger cross rib plate pair
JP5453797B2 (en) Heat exchanger
JP2002062085A (en) Heat-exchange fin for brazed-plate heat exchanger, and heat exchanger
JPH0611280A (en) Evaporator or condenser functioning as evaporator in combination
US20140060789A1 (en) Heat exchanger and method of operating the same
JPH04155191A (en) Lamination type heat exchanger
US6942024B2 (en) Corrugated heat exchange element
EP0415584B1 (en) Stack type evaporator
JP2602788Y2 (en) Stacked evaporator elements
JPH07167578A (en) Lamination type heat exchanger
JPH0926278A (en) Heat exchanger refrigerant flow pipe and car air-conditioner condenser
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
JPH0654198B2 (en) Stacked heat exchanger
US6446715B2 (en) Flat heat exchange tubes
JP2891486B2 (en) Heat exchanger
JPH0545474U (en) Heat exchanger
JP2002130973A (en) Heat exchanger
JPH07167581A (en) Tube elements of lamination type heat exchanger
JP2000055573A (en) Refrigerant evaporator
JP4513207B2 (en) Air heat exchanger
JPH0894274A (en) Accumulated type heat exchanger
JPS58200997A (en) Heat exchanger
JPS63131993A (en) Heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees