JPH03127990A - Production of immobilized biocatalyst and apparatus therefor - Google Patents

Production of immobilized biocatalyst and apparatus therefor

Info

Publication number
JPH03127990A
JPH03127990A JP26547889A JP26547889A JPH03127990A JP H03127990 A JPH03127990 A JP H03127990A JP 26547889 A JP26547889 A JP 26547889A JP 26547889 A JP26547889 A JP 26547889A JP H03127990 A JPH03127990 A JP H03127990A
Authority
JP
Japan
Prior art keywords
aqueous solution
biocatalyst
coagulation
polyvinyl alcohol
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26547889A
Other languages
Japanese (ja)
Other versions
JP2826137B2 (en
Inventor
Hiroaki Fujii
弘明 藤井
Toshihiro Hamada
敏裕 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP26547889A priority Critical patent/JP2826137B2/en
Publication of JPH03127990A publication Critical patent/JPH03127990A/en
Application granted granted Critical
Publication of JP2826137B2 publication Critical patent/JP2826137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To easily obtain a large amount of immobilized biocatalyst consisting of spherical gel and having high activity by dropping a liquid mixture of an aqueous solution of polyvinyl alcohol, an aqueous solution of a gelatinizable water-soluble polymeric polysaccharide and a biocatalyst into a coagulation liquid to effect the coagulation of the components, separating the coagulum from the liquid and freezing and then thawing the product. CONSTITUTION:The objective immobilized biocatalyst is formed by the following steps A to G. (A) A step to dissolve polyvinyl alcohol; (B) a step to dissolve a water-soluble polymeric polysaccharide gelatinizable by contacting with at least one kind of cation; (C) a step to mix the aqueous solution of polyvinyl alcohol, the aqueous solution of the above watersoluble polymeric polysaccharide and a biocatalyst; (D) a dropping step; (E) a coagulation step; (F) a liquid remov ing step and (G) a freezing and thawing step.

Description

【発明の詳細な説明】 A、の 本発明は、種々の化学反応などに有用な固定化生体触媒
の製造およびそれに用いる製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention A. relates to the production of immobilized biocatalysts useful for various chemical reactions and the production apparatus used therefor.

B、  技 および  が解決しよ゛とする課題近年、
酵素・微生物などの生体触媒を固定化して、その機能を
効率よく利用する研究が行なわれている。
In recent years, the problems that B.
Research is being conducted to immobilize biocatalysts such as enzymes and microorganisms and utilize their functions efficiently.

生体触媒を固定化する方法のひとつに、高分子素材を用
いて生体触媒をそのまま包み込む包括固定化法があり、
この方法によく用いられる高分子素材として、寒天・ア
ルギン酸塩・カラギーナン・ポリアクリルアミド・ポリ
ビニルアルコール・光硬化性樹脂などがある。固定化担
体の形状としては、活性表面が広くとれる点、流動性や
充填硬化が良い点、取り汲いの容易さから、球体である
ことが望ましい。
One of the methods for immobilizing biocatalysts is the entrapment immobilization method, in which the biocatalyst is wrapped in a polymeric material.
Polymer materials commonly used in this method include agar, alginates, carrageenan, polyacrylamide, polyvinyl alcohol, and photocurable resins. The shape of the immobilization carrier is preferably spherical because it provides a wide active surface, has good fluidity and filling hardening, and is easy to scoop out.

ポリビニルアルコール(以下PVAと略記する)を用い
た球状ゲルについては、PVA、少なくとも1種のカチ
オンとの接触によりゲル化する能力のある水溶性高分子
多糖類および生体触媒の混合液をカチオン含有化合物を
含む水溶液に接触させ、球状成形させた後、凍結を行な
うことにより、ゲル化させる方法が知られているが、こ
の生体触媒の固定化を工業的規模で行う製法およびそれ
に用いる製造装置については知られていなかつた。
For spherical gels using polyvinyl alcohol (hereinafter abbreviated as PVA), a mixture of PVA, a water-soluble polymer polysaccharide capable of gelling upon contact with at least one cation, and a biocatalyst is mixed with a cation-containing compound. A known method is to gel the biocatalyst by contacting it with an aqueous solution containing the biocatalyst, molding it into a spherical shape, and then freezing it. It was unknown.

C課題を 決するための 本発明者らは鋭意検討した結果、溶解工程(装置)、混
合工程(装置)、滴下工程(装置)、凝固工程(装置)
、脱液工程(装置)、凍結工程(装置)を組み合わせる
ことにより、高い生体触媒活性を有した均一な性質の球
状ゲルを工業的規模で大量かつ容易に製造することを見
い出し本発明を完成させるに到った。
As a result of intensive study by the present inventors to resolve the problem C, the melting process (equipment), mixing process (equipment), dropping process (equipment), and coagulation process (equipment) were found.
By combining the deliquification process (equipment) and the freezing process (equipment), they discovered that spherical gels with uniform properties and high biocatalytic activity can be easily produced in large quantities on an industrial scale, and completed the present invention. reached.

以下、製造工程と装置とを具体的に説明する。The manufacturing process and apparatus will be specifically explained below.

(A)および(():PVA溶解工程は公知の溶解装置
で行なうが、加熱・攪拌を備えた槽であることが好まし
い。PVAを完全にかつ均一に溶解するために加圧装置
・脱泡装置を備えていてもよい。
(A) and ((): The PVA melting step is carried out using a known melting device, but preferably a tank equipped with heating and stirring.In order to completely and uniformly dissolve PVA, a pressurizing device and a defoaming device are used. It may be equipped with a device.

(B)および0):少なくとも1種のカチオンとの接触
によりゲル化する能力のある水溶性高分子多糖類の溶解
工程は公知の溶解装置で行なうが、加熱・攪拌を備えた
槽であることが好ましい。また本装置(0で上記の装置
(イ)を兼ねても良く、PVAを完全にかつ均一に溶解
するために加圧装置・脱泡装置を備えていてもよい。
(B) and 0): The step of dissolving the water-soluble polymeric polysaccharide capable of gelling upon contact with at least one type of cation is carried out using a known dissolving device, but the tank must be equipped with heating and stirring. is preferred. Moreover, this apparatus (0) may also serve as the above-mentioned apparatus (a), and may be equipped with a pressurizing device and a defoaming device in order to completely and uniformly dissolve PVA.

(C)および(ハ):混合工程は公知の混合装置で行な
うが、温度調節装置・攪拌装置を備えた槽であることが
好ましい。また、脱泡装置を備えていてもよい。
(C) and (C): The mixing step is carried out using a known mixing device, preferably a tank equipped with a temperature control device and a stirring device. Further, a defoaming device may be provided.

(D)および(ニ):滴下工程は公知の滴下装置で行な
うか、ノズルであることが好ましい。さらに、好ましく
は、ノズル孔近傍に切り込みを入れ、混合液の孔付近へ
の粘着を防止する。切り込み角度は10度以上90度以
下が好ましい。
(D) and (d): The dropping step is preferably carried out using a known dropping device or a nozzle. Furthermore, preferably, a cut is made near the nozzle hole to prevent the liquid mixture from sticking near the hole. The cutting angle is preferably 10 degrees or more and 90 degrees or less.

(E)および(ネ):凝固工程はカチオン含有化合物を
含む公知の凝固液槽で行なう。好ましくは、カチオン含
有化合物を含む凝固液を多段式凝固液槽を流下させ、そ
こに前記のノズルから混合液を滴下させると、滴下物ど
うしが膠着することがなく、滞留時間を制御できるため
、均一な性質のゲルを製造することができる。凝固液を
一定の流速で流し、滴下物を凝固液と共に移動させれば
、凝固液の流速の調整により、滴下物の滞留時間を抑制
できる。滞留時間を長くとることが必要な場合は、単に
凝固槽を長くしたり、流速を遅くしたりしたのでは、水
流が凝固槽全体で均一にすることができず、滴下物を水
流と共に移動させることが困難である。したがって、多
段式凝固槽を用いれば、水流を均一にすることができる
。さらに長い滞留時間を必要とする場合には、段の数を
増やせばよい。
(E) and (N): The coagulation step is carried out in a known coagulation bath containing a cation-containing compound. Preferably, if the coagulating liquid containing the cation-containing compound is allowed to flow down a multi-stage coagulating liquid tank and the mixed liquid is dropped therein from the nozzle, the drops will not stick to each other and the residence time can be controlled. Gels with uniform properties can be produced. If the coagulating liquid is allowed to flow at a constant flow rate and the dropped material is moved together with the coagulating liquid, the residence time of the dropped material can be suppressed by adjusting the flow rate of the coagulating liquid. If it is necessary to increase the residence time, simply increasing the length of the coagulation tank or slowing down the flow rate will not make the water flow uniform throughout the coagulation tank, and the drippings will move with the water flow. It is difficult to do so. Therefore, if a multistage coagulation tank is used, the water flow can be made uniform. If a longer residence time is required, the number of stages may be increased.

(F)および(へ):脱液工程は滴下成形物と凝固液が
分離できる公知の脱液装置で行なう。−例として、滴下
成形物と凝固液をメツシュ状物で分離する装置が考えら
れる。また、分離した凝固液は回収して再使用してもよ
い。
(F) and (F): The liquid removal step is carried out using a known liquid removal apparatus that can separate the dropped molded product and the coagulated liquid. - As an example, a device that separates the dropping molded product and the coagulating liquid using a mesh-like material can be considered. Further, the separated coagulating liquid may be recovered and reused.

(G)および(ト):凍結工程は0℃以下に冷却できる
公知の凍結装置で行なうが、好ましくは−10℃以下に
冷却できる凍結装置がよい。解凍工程は室温で行なえば
よいが、解凍装置を備え、積極的に解凍してもよい。
(G) and (g): The freezing step is carried out using a known freezing device capable of cooling to 0°C or lower, preferably a freezing device capable of cooling to -10°C or lower. The thawing step may be carried out at room temperature, but a thawing device may be provided to actively thaw.

肛−二【思」L 以下、図面に基づいて本発明を具体的に説明するが、本
発明は、これらの実施例により、なんら限定されるもの
ではない。
The present invention will be explained in detail below based on the drawings, but the present invention is not limited to these Examples in any way.

第3図は、本発明の一実施例を示す固定化生体触媒の製
造装置の略本断面図である。PVA溶解槽・アルギン酸
ナトリウム溶解漕・生体触媒供給槽は、攪拌装置・温度
調節装置を配しており、原料の調製ができるようになっ
ている。混合槽も同様の攪拌装置と温度調節装置を備え
ている。滴下装置は、ノズル孔近傍に切り込みがはいっ
ており、孔の周囲に混合層が粘着しないような工夫がな
されている。ノズルの略示図は第4図および第5図に示
す。溶解槽および供給槽から混合層、混合槽から滴下ノ
ズルへはポンプにより送液する。共雑物がある場合には
、配管途中にフィルターを入れて除去することができる
。ノズルから吐出された混合液は、凝固液層へ滴下され
、ただちに球状に酸形される。凝固液層は多段式になっ
ており、凝固液の流れが槽全体で均一になるように工夫
されており、凝固液への滞留時間を一定にすることがで
きる。凝固液は塩化カルシウム水溶液で凝固液貯蔵槽か
らポンプで送られ、凝固槽のスリット吐出され、球状成
形物と共に流化する。網状ベルトコンベアで球状成形物
と凝固液が分離される。凝固液は凝固液回収槽により回
収され、凝固液貯蔵槽へ戻り再使用される。球状成形物
はシャワーにより水洗される。これを−20℃で20時
間凍結させ、室温で解凍させる。
FIG. 3 is a schematic sectional view of an apparatus for producing an immobilized biocatalyst showing an embodiment of the present invention. The PVA dissolution tank, sodium alginate dissolution tank, and biocatalyst supply tank are equipped with a stirring device and a temperature control device so that raw materials can be prepared. The mixing tank is also equipped with a similar stirring device and temperature control device. The dropping device has a notch near the nozzle hole, and is designed to prevent the mixed layer from sticking around the hole. A schematic representation of the nozzle is shown in FIGS. 4 and 5. The liquid is sent from the dissolution tank and the supply tank to the mixing layer, and from the mixing tank to the dropping nozzle using a pump. If there are contaminants, they can be removed by inserting a filter in the middle of the piping. The mixed liquid discharged from the nozzle is dropped onto the coagulating liquid layer and immediately converted into a spherical acid shape. The coagulating liquid layer is multi-stage, designed to ensure that the flow of the coagulating liquid is uniform throughout the tank, and the residence time in the coagulating liquid can be made constant. The coagulating liquid is an aqueous calcium chloride solution that is pumped from a coagulating liquid storage tank, discharged through a slit in the coagulating tank, and fluidized together with the spherical molded product. The spherical molded product and the coagulated liquid are separated by a mesh belt conveyor. The coagulating liquid is collected by the coagulating liquid recovery tank and returned to the coagulating liquid storage tank for reuse. The spherical molded product is washed with water using a shower. This is frozen at -20°C for 20 hours and thawed at room temperature.

上記の装置を用い、固定化生体触媒を製造した。An immobilized biocatalyst was produced using the above apparatus.

(抹)クラレ製のPVA(平均重合度1750、ケン化
度99.85モル%)をPVA溶解槽で溶解し、16%
PVA水溶液を作成した。アルギン酸ナトリウムは、ア
ルギン酸ナトリウム溶液槽で溶解し、4%アルギン酸ナ
トリウム水溶液を作成した。生体触媒として、(株)ク
ラレ岡山工場(岡山県岡山市海岸通り1丁目2番1号)
の排水処理槽より採取した濃縮活性汚泥(M L S 
S  HOOhg/ ff)を用いた。上記のPVA水
溶液・アルギン酸ナトリウム水溶液を混合槽で混合し、
温度を30℃に下げ、生体触媒を混合した。PVA水溶
水溶液ニアルギントナトリウム体触媒=2:2:Iの割
合で混合した。これをノズル(孔径lam、孔数500
)から毎分800cm’で吐出させた。凝固液は0.2
モル/12の塩化カルシウム水溶液(11)を用い循環
使用した。
(green) PVA manufactured by Kuraray (average polymerization degree 1750, saponification degree 99.85 mol%) was dissolved in a PVA dissolving tank, and 16%
A PVA aqueous solution was created. Sodium alginate was dissolved in a sodium alginate solution tank to create a 4% sodium alginate aqueous solution. As a biocatalyst, Kuraray Okayama Factory (1-2-1 Kaigandori, Okayama City, Okayama Prefecture)
Thickened activated sludge (MLS) collected from the wastewater treatment tank of
SHOOhg/ff) was used. Mix the above PVA aqueous solution and sodium alginate aqueous solution in a mixing tank,
The temperature was lowered to 30°C and the biocatalyst was mixed. The aqueous PVA solution and sodium nialginate catalyst were mixed at a ratio of 2:2:I. Use this as a nozzle (hole diameter lam, number of holes 500)
) at a rate of 800 cm' per minute. The coagulation liquid is 0.2
An aqueous solution of calcium chloride (11) with a concentration of mol/12 was used in circulation.

滴下物の凝固液への滞留時間を1分に制御した。The residence time of the dropped product in the coagulation liquid was controlled to 1 minute.

網状ベルトコンベアで脱液し、シャワーで水洗後、冷凍
庫で一20℃で20時間凍結させ、室温で解凍させた。
The liquid was removed using a mesh belt conveyor, washed with water in the shower, frozen in a freezer at -20°C for 20 hours, and thawed at room temperature.

このようにして、直径3同の均一な柔軟性に富んだ褐色
の球状ゲルが得られた。
In this way, a uniform, flexible brown spherical gel with a diameter of 3 mm was obtained.

旦ヨコ1生二」巳4 本発明の固定化生体触媒の製法および製造装置によれば
、活性の高い、球状ゲルを工業的規模で、大量、かつ容
易に製造することが可能となり、固定化生体触媒による
生体反応の実用化が促進される。
According to the method and apparatus for producing an immobilized biocatalyst of the present invention, it becomes possible to easily produce a highly active spherical gel in large quantities on an industrial scale, and The practical application of biological reactions using biocatalysts will be promoted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固定化生体触媒を製造する場合の各工程を示す
。 PVAの溶解工程(A) 少なくともtWのカチオンとの接触に よりゲル化する能力のある水溶液高分 子多1類の溶解工程(B) PVA水溶液、少なくとも1種のカチ オンとの接触によりゲル化する能力の ある水溶性高分子多糖類の水溶液、 よび生体触媒の混合工程(C) 4・・・滴下工程(D) 5・・・凝固工程(E) 6・・・脱液工程(F) お 8・・・PVA溶解装置(イ) 9・・・少なくとも1種のカチオンとの接触によりゲル
化する能力のある水溶性高分 子多糖類の溶解装置(α) lO・・・PVA水溶液、少なくとも1種のカチオンと
の接触によりゲル化する能力の ある水溶性高分子多糖類の水溶液、お よび生体触媒の混合装置(ハ) 11・・・滴下装置(ニ) 12・・・凝固装w10) 13・・・脱液装置(へ) 14・・・凍結装置(ト) 第3図は固定化生体触媒の製造装置の具体的な−例を示
す。 15・・・PVA溶解槽 16・・・アルギン酸ナトリウム溶解(a17・・・生
体触媒世給摺 18・・・、ポ ン プ 19 ・・・ 混  合  槽 20・・・滴下ノズル 21・・・多段流下式凝固槽 22・・・凝固波rj′蔵槽 23・・・網状ベルトコンベア 24・・・凝固液回収h1 25・・・水洗シャワー 26・・・受 諾 27・・・冷凍設備 28・・・バルブ 第4図および第5図は滴下ノズルの具体的な一例を示す
。第4図は第5図のA−A断面の断面図である。第5図
はノズル孔方向から見た図である。 29・・・ノズル孔 30・・・切り込み 1 切り込み角度
FIG. 1 shows each step in producing an immobilized biocatalyst. Dissolution step of PVA (A) Dissolution step of an aqueous polymeric polymer class 1 having the ability to gel when contacted with at least tW of cations (B) Dissolving step of PVA aqueous solution having the ability to gel when contacted with at least one cation. Mixing process of an aqueous solution of a certain water-soluble polymeric polysaccharide and a biocatalyst (C) 4...Dripping process (D) 5...Coagulation process (E) 6...Draining process (F) 8. ... PVA dissolving device (a) 9... Dissolving device for a water-soluble polymeric polysaccharide capable of gelling upon contact with at least one kind of cation (α) lO... PVA aqueous solution, at least one kind Mixing device for an aqueous solution of a water-soluble polymeric polysaccharide capable of gelling upon contact with cations, and a biocatalyst (c) 11...Dripping device (d) 12...Coagulation device w10) 13... Deliquor removal device (f) 14...Freezing device (f) Fig. 3 shows a specific example of an immobilized biocatalyst manufacturing device. 15...PVA dissolution tank 16...Sodium alginate dissolution (a17...Biocatalyst feeder 18..., pump 19...Mixing tank 20...Dripping nozzle 21...Multi-stage Downstream coagulation tank 22...Coagulation wave rj' storage tank 23...Mesh belt conveyor 24...Coagulation liquid collection h1 25...Wash shower 26...Acceptance 27...Freezing equipment 28...・Valve Figures 4 and 5 show a specific example of a dripping nozzle. Figure 4 is a cross-sectional view taken along line A-A in Figure 5. Figure 5 is a view seen from the direction of the nozzle hole. Yes. 29... Nozzle hole 30... Cut 1 Cut angle

Claims (6)

【特許請求の範囲】[Claims] (1)ポリビニルアルコールの溶解工程(A)、少なく
とも1種のカチオンとの接触によりゲル化する能力のあ
る水溶性高分子多糖類の溶解工程(B)、ポリビニルア
ルコール水溶液、少なくとも1種のカチオンとの接触に
よりゲル化する能力のある水溶性高分子多糖類の水溶液
および生体触媒の混合工程(C)、滴下工程(D)、凝
固工程(E)、脱液工程(F)、凍結および解凍工程(
G)からなることを特徴とする固定化生体触媒の製法。
(1) A step of dissolving polyvinyl alcohol (A), a step of dissolving a water-soluble polymeric polysaccharide capable of gelling upon contact with at least one cation (B), an aqueous polyvinyl alcohol solution, at least one cation and A mixing step (C) of an aqueous solution of a water-soluble polymeric polysaccharide capable of gelling upon contact with a biocatalyst, a dropping step (D), a coagulation step (E), a deliquification step (F), a freezing and thawing step (
G) A method for producing an immobilized biocatalyst.
(2)ポリビニルアルコールの溶解装置(イ)、少なく
とも1種のカチオンとの接触によりゲル化する能力のあ
る水溶性高分子多糖類の溶解装置(ロ)、ポリビニルア
ルコール水溶液、少なくとも1種のカチオンとの接触に
よりゲル化する能力のある水溶性高分子多糖類の水溶液
および生体触媒の混合装置(ハ)、滴下装置(ニ)、凝
固装置(ホ)、脱液装置(ヘ)、凍結装置(ト)からな
ることを特徴とする固定化生体触媒の製造装置。
(2) A device for dissolving polyvinyl alcohol (a), a device for dissolving a water-soluble polymeric polysaccharide capable of gelling upon contact with at least one cation (b), an aqueous solution of polyvinyl alcohol, an aqueous solution of polyvinyl alcohol, and an aqueous solution of at least one cation. A mixing device (c) for an aqueous solution of a water-soluble polymer polysaccharide and a biocatalyst that has the ability to gel by contact with the water, a dropping device (d), a coagulating device (e), a dehydrating device (f), a freezing device (t) ) An apparatus for producing an immobilized biocatalyst, comprising:
(3)滴下装置(ニ)がノズルである請求項2記載の製
造装置。
(3) The manufacturing apparatus according to claim 2, wherein the dropping device (d) is a nozzle.
(4)滴下装置(ニ)が切り込みを有するノズルである
請求項3記載の製造装置。
(4) The manufacturing apparatus according to claim 3, wherein the dropping device (d) is a nozzle having a notch.
(5)凝固装置(ホ)が凝固液槽である請求項2〜4の
いずれか1つの項に記載の製造装置。
(5) The manufacturing apparatus according to any one of claims 2 to 4, wherein the coagulation device (e) is a coagulation liquid tank.
(6)凝固装置(ホ)が多段式凝固液槽である請求項2
〜5のいずれか1つの項に記載の製造装置。
(6) Claim 2, wherein the coagulating device (e) is a multi-stage coagulating liquid tank.
6. The manufacturing apparatus according to any one of items 5 to 5.
JP26547889A 1989-10-11 1989-10-11 Method and apparatus for producing immobilized biocatalyst Expired - Lifetime JP2826137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26547889A JP2826137B2 (en) 1989-10-11 1989-10-11 Method and apparatus for producing immobilized biocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26547889A JP2826137B2 (en) 1989-10-11 1989-10-11 Method and apparatus for producing immobilized biocatalyst

Publications (2)

Publication Number Publication Date
JPH03127990A true JPH03127990A (en) 1991-05-31
JP2826137B2 JP2826137B2 (en) 1998-11-18

Family

ID=17417734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26547889A Expired - Lifetime JP2826137B2 (en) 1989-10-11 1989-10-11 Method and apparatus for producing immobilized biocatalyst

Country Status (1)

Country Link
JP (1) JP2826137B2 (en)

Also Published As

Publication number Publication date
JP2826137B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
US4110529A (en) Method of manufacturing spherical polymer particles from polymer solutions
CN103998499A (en) Porous water-containing gel molded article, method for producing same, and use of same
JPH0612993B2 (en) Method for producing spherical microbe-immobilized moldings
JPH0214362B2 (en)
JP3441352B2 (en) Polyvinyl alcohol-based hydrogel and method for producing the same
JPH08502937A (en) Improvements in plastic products
JPH03127990A (en) Production of immobilized biocatalyst and apparatus therefor
Bahir Electrochemical activation
JP2000237763A (en) Removing method of phosphoric acid contained in waste water
JP6949705B2 (en) A porous hydrogel molded product containing polyvinyl alcohol and a method for producing the same.
JP3466236B2 (en) Polyvinyl acetal gel molding
JP2507885B2 (en) Silk fibroin hydrogel
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
JPH09124731A (en) Acetalized polyvinyl alcohol hydrogel
JPH10204204A (en) Porous spherical particles and production thereof
JP3203026B2 (en) Biocatalyst immobilized gel
KR100918587B1 (en) Method for manufacturing porous biological film microbic carrier containing yellow ocher, and carrier produced thereby
JPH10130329A (en) Production of spherical water-containing gel
JP3308196B2 (en) Manufacturing method of phosphorus removal material
JP4524522B2 (en) Treatment method for protein-containing wastewater
JP3733921B2 (en) Dephosphorization material
JPS62186995A (en) Microorganism immobilized carrier for waste water treatment and its production
JPH05271425A (en) Production of pva gel molding
JP2769485B2 (en) Cellulose porous spherical particles
JP3065868B2 (en) Filter media using inorganic fibers and method for producing the same