JP4524522B2 - Treatment method for protein-containing wastewater - Google Patents

Treatment method for protein-containing wastewater Download PDF

Info

Publication number
JP4524522B2
JP4524522B2 JP2000347785A JP2000347785A JP4524522B2 JP 4524522 B2 JP4524522 B2 JP 4524522B2 JP 2000347785 A JP2000347785 A JP 2000347785A JP 2000347785 A JP2000347785 A JP 2000347785A JP 4524522 B2 JP4524522 B2 JP 4524522B2
Authority
JP
Japan
Prior art keywords
protein
containing wastewater
wastewater
water
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000347785A
Other languages
Japanese (ja)
Other versions
JP2002143862A (en
Inventor
元之 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000347785A priority Critical patent/JP4524522B2/en
Publication of JP2002143862A publication Critical patent/JP2002143862A/en
Application granted granted Critical
Publication of JP4524522B2 publication Critical patent/JP4524522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タンパク質含有廃水の処理方法に関する。さらに詳しくは、本発明は、タンパク質を多量に含む廃水、特に乳タンパク質を多量に含む廃水を、効率的に処理し、回収したタンパク質を飼料又は肥料として利用することができるタンパク質含有廃水の処理方法に関する。
【0002】
【従来の技術】
従来、牛乳などのタンパク質を含む廃水は、高濃度廃水であれば、乾燥して粉末化し、飼料又は肥料として回収するか、あるいは、直接噴霧燃焼などの方法によって焼却処分が行われていた。乾燥、粉末化しても、焼却処分しても、処理のためには水分を蒸発させる必要があり、そのためのエネルギーコストが膨大となり、必ずしも有効な処理方法とはいえなかった。基本的には、これらの廃水中に含まれるタンパク質は、回収して飼料、肥料として利用することが望ましく、コストをかけずに回収することができれば、産業上極めて有効と考えられる。
一方、比較的濃度の低い状態で廃水が排出される場合は、タンパク質を含む廃水も活性汚泥などの生物処理によって処理されている。しかし、タンパク質は有機物であり、この有機物の濃度を低減させるための曝気動力など処理コストが高く、最終産物として排出される余剰汚泥の処理、処分の問題が常につきまとっている。また、窒素やリンなどの栄養塩類を多く含むために、富栄養化現象を防ぐために硝化、脱窒や凝集沈殿などの高度の処理を、処理コストをかけて行う必要がある。
特開平8−57496号公報に、タンパク質を多量に含むために嫌気性処理が困難な廃水を、短時間でかつ容量の小さい処理槽で容易に処理することができる嫌気性水処理装置が提案されている。この水処理装置は、酸発酵菌を保持した酸発酵リアクタと、酸発酵リアクタで凝固したタンパク質を分離する固液分離装置と、固液分離装置で分離した凝固タンパク質を加水分解又は酵素により分解処理するタンパク質処理リアクタを備えている。タンパク質は、酸発酵によりpHが低下して凝集分離しやすくなるために、この凝集作用を利用して固液分離し、上澄み液は嫌気処理リアクタヘ送り、固形物はタンパク質処理リアクタにおいて、酸などの薬品や、酵素などによってアミノ酸にまで分解したのち、先の嫌気リアクタに送って処理する。このようなタンパク質分離工程を含まずに、直接嫌気処理する場合には、タンパク質の分解速度が遅いことから反応槽容量を大きくする必要があるが、この処理装置によれば装置の容量を大幅に縮小できるとされている。
しかしながら、この処理装置を用いては、飼料、肥料の有効成分を回収できないことは当然のことであるが、折角タンパク質を凝集させて固形物としながら、再度分解させてしまうことから、廃水中の窒素やリンの栄養塩類は再度液側に移り、最終的には嫌気性水処理装置の出口から排出されることとなり、富栄養化防止の観点からも望ましい処理装置とはいえない。
一方で、タンパク質含有廃水からタンパク質を固形分として分離し、固形分と分離液とを別途処理する場合にも、以下のような問題がある。すなわち、乳タンパク質は、pHを4〜5程度以下に下げることにより、等電点凝集によって凝集することが知られているが、pHを下げただけでは凝集物の固形分濃度が上がらず、含水率の高い難脱水性の凝集物しか得ることができず、固形物の処理、処分上問題がある上、分離後の上澄み液が多くとれない。
【0003】
【発明が解決しようとする課題】
本発明は、タンパク質を多量に含む廃水、特に乳タンパク質を多量に含む廃水からタンパク質を分離、回収して、廃水を効率的に処理するとともに、回収したタンパク質を飼料又は肥料として利用することができるタンパク質含有廃水の処理方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、タンパク質含有廃水にタンパク質凝固酵素を添加してタンパク質を凝固させ、凝固したタンパク質と上澄み液を分離することにより、凝固したタンパク質の脱水性を改善するとともに、凝固したタンパク質を飼料又は肥料として利用することができ、また、上澄み液は容易に生物処理し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)タンパク質含有廃水を酸発酵によってpH4〜5に調整後に、該廃水に、タンパク質凝固酵素を添加してタンパク質を凝固させたのち、凝固したタンパク質と液状物とに分離し、分離された液状物を生物処理することを特徴とするタンパク質含有廃水の処理方法、
(2)タンパク質含有廃水が乳タンパク質含有廃水であり、タンパク質凝固酵素がレンニンであることを特徴とする第1項記載のタンパク質含有廃水の処理方法、
(3)タンパク質含有廃水が、タンパク質を含有する廃水中のタンパク質を凝集し、スラリー状に分離して得られるタンパク質含有廃水であることを特徴とする第1項又は第2項記載のタンパク質含有廃水の処理方法、
(4)第1〜3項のいずれか記載のタンパク質含有廃水の処理方法において、タンパク質凝固酵素を添加した後、急速撹拌と緩速撹拌を行い、その後、静置した後、更に緩速撹拌することを特徴とするタンパク質含有廃水の処理方法、及び、
(5)凝固したタンパク質を飼料又は肥料として回収する第1〜4項のいずれか記載のタンパク質含有廃水の処理方法、
を提供するものである。
さらに、本発明の好ましい態様として、
)生物処理が、嫌気性処理と好気性処理の組み合わせである第1項記載のタンパク質含有廃水の処理方法、
を挙げることができる。
【0005】
【発明の実施の形態】
本発明のタンパク質含有廃水の処理方法においては、タンパク質含有廃水にタンパク質凝固酵素を添加してタンパク質を凝固させたのち、凝固したタンパク質と液状物とを分離し、分離された液状物を生物処理する。
本発明方法を適用し得るタンパク質含有廃水に特に制限はなく、例えば、廃棄乳、廃棄液卵、廃棄豆乳、廃棄擂り身、乳製品工場の洗浄水、水産練製品工場の洗浄水、屠殺場の洗浄水、馬れいしょでんぷんのデカンター排水などを挙げることができる。これらの中で、乳タンパク質を高濃度に含有する廃棄乳の処理に、特に好適に適用することができる。
本発明方法に用いるタンパク質凝固酵素は、対象とする廃水中に含有されるタンパク質に応じて適宜選択することができ、例えば、乳タンパク質であるカゼインを凝固させるレンニン、血液を凝固させるトロンビンなどを挙げることができる。タンパク質凝固酵素の添加量は、廃水中のタンパク質の種類や濃度、あるいは使用する酵素の種類によっても異なるが、乳タンパク質を5,000mg/L以上、例えば、10,000〜50,000mg/L程度の高濃度で含む廃水を対象として、レンニンを使用してタンパク質を凝固させる場合で、10〜100mg/L程度の添加量とする。酵素の添加量が10mg/L未満であると凝集効果が弱く、タンパク質を良好に凝固させることができない。添加量は100mg/Lを超えても特に問題はないが、過剰に添加しても凝集効果に大きな違いはなく、酵素が無駄になる。タンパク質凝固酵素の凝固作用は、pHと温度によって変化するので、タンパク質と酵素の組み合わせにおいて、適当な条件を選択することが好ましい。例えば、レンニンの乳タンパク質凝固作用は、pH5.1〜5.6、温度38〜44℃で最も強くなるとされている。レンニンを含む製剤は、凝乳酵素剤レンネットとして販売されている。
乳タンパク質含有廃水に、凝乳酵素剤を添加して固形物を形成させ、その中に乳タンパク質と乳脂肪を取り込んで低含水率の固形物として回収することができる。本発明方法により回収された固形物は、有害な無機物などを含まないので、家畜の飼料や肥料などとして有効利用することができる。また、分離された液状物には、タンパク質成分が少なく、生分解性の大きい糖、乳酸などが残るために、生物処理により容易に水質の良好な処理水を得ることができる。
【0006】
乳タンパク質含有廃水と凝乳酵素剤の反応は、25〜60℃で行うことが好ましく、30〜45℃で行うことがより好ましい。乳タンパク質含有廃水と凝乳酵素剤を、急速撹拌で数分間混合したのち、緩速撹拌を数分ないし数十分行い、温度を維持したまま30分〜数時間静置する。その後、凝固物を含む被処理水を緩速で撹拌し、せん断力により脱水を行って凝固物から水分を除去する。撹拌羽根の形状は、緩速撹拌でも被処理水の全体が動くように、高さ方向に面積を有する羽根であることが好ましい。撹拌には、撹拌羽根のほかに、撹拌棒を使用することもできる。撹拌中、適当な温度を保つことにより、凝固物の脱水が促進される。
乳タンパク質の凝固に際しては、凝固酵素の作用を補助するために、カルシウムイオン、マグネシウムイオンなどを添加することできる。カルシウムイオン、マグネシウムイオンなどを添加することにより、廃液の種類によらず安定した凝固効果を得ることができる。カルシウムイオン、マグネシウムイオンなどは、廃液中のカルシウムイオンやマグネシウムイオンの濃度が、数百ないし千mg/Lとなるよう添加することが好ましい。また、酸を添加するか、あるいは、酸発酵を多少起こさせることにより、pHを4〜5に下げると、凝固作用が増幅される。
本発明方法において、凝固したタンパク質と液状物の分離方法に特に制限はなく、例えば、スクリーンなどで水を切る状態で圧力をかけて液状物を分離することができ、遠心脱水機、ベルトプレス脱水機、スクリュープレス脱水機、フィルタープレス脱水機、真空脱水機、デカンター、多重円盤などを用いて脱水することができる。また、ロータリースクリーンなどの回転式のスクリーンも、脱水効果は多少低下するが、脱水装置として使用することができる。固形物の含水率は、この段階で50〜70重量%程度まで低下する。固形物を食塩水に浸漬するか、あるいは、固形物の表面に食塩をまぶすことにより、更に脱水を進めることができ、含水率を40〜50重量%程度まで低下させることができる。回収したタンパク質を利用する場合は、食塩を添加することにより、あるいは、60〜90℃で0.5〜1時間程度加温することにより、固形状タンパク質の保存期間を長期化することができる。
【0007】
本発明方法において、分離された液状物を生物処理する方法に特に制限はなく、例えば、活性汚泥法、生物膜法などの好気性処理、嫌気性消化法などの嫌気性処理などを挙げることができる。これらの処理法は、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。これらの中で、生物処理法として効果的な嫌気性処理を行ったのち、後処理として活性汚泥処理を行うことが好ましい。
本発明方法によれば、前段のタンパク質回収工程において、窒素及びりんの80〜90%が除去されているために、後段の生物処理における窒素及びりんの除去も容易となる。生物処理としては、嫌気性処理、好気性処理、嫌気性処理後の好気性処理などの一般的な処理方法を適用することができる。分離された液状物は、固形分が除去され、糖及び有機酸が主体の廃水であるため、溶解性有機物濃度がCODcrとして1,000〜30,000mg-O/L程度含む高濃度廃水を、10〜20kg−CODcr/m3/dayの高負荷で処理できる上向流嫌気性汚泥床(UASB、Upflow anaerobic sludge blanket)、膨張粒状汚泥床(EGSB、Expanded granular sludge bed)のような高負荷型の嫌気性処理装置で処理するのに適しており、必要に応じて嫌気性処理の後処理として好気性処理を行うことが好ましい。液状物のCODcr濃度が上記範囲を超えるような場合は、他の廃水や処理水などで希釈することが好ましく、CODcrが10,000mg-O/L以下になるまで希釈したような場合は、嫌気性処理を行わず、好気性処理のみで処理することもできる。廃水中のタンパク質の濃度が5,000mg/L未満であるようなタンパク質濃度の比較的低い総合排水などの場合は、タンパク質凝固酵素を全体に添加すると、添加量が膨大となり経済的ではない。そのために、低濃度のタンパク質を含有する廃水中のタンパク質を凝集し、スラリー状に分離してタンパク質を5,000mg/L以上、好ましくは10,000〜50,000mg/L程度含む高濃度のタンパク質含有廃水として処理することが好ましい。低濃度のタンパク質を凝集する方法に特に制限はなく、例えば、pH4〜6の酸性で等電点凝集などによってタンパク質をゲル状の状態とし、固液分離することができる。また、ポリ塩化アルミニウム、硫酸バンドなどの無機凝集剤、高分子凝集剤などを添加してタンパク質を凝集し、固液分離することもできる。
本発明方法の実施の態様に特に制限はなく、例えば、廃棄乳などの高濃度廃水で取り扱う量が少ない場合には、回分式反応装置を用いて一つの反応器内でタンパク質凝固反応を行わせることができるが、半回分式又は連続式によって処理することもできる。
本発明のタンパク質含有廃水の処理方法によれば、分離した固形物を高度に濃縮、減容して、飼料、肥料などとして有効に利用することができる。また、固液分離された液状物へのタンパク質の残留量が少ないので、液状物の処理が容易であり、良好な水質の処理水を得ることができる。
【0008】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例において、下記の方法により水質の測定を行った。
(1)CODcr
JIS K 0102 20.二クロム酸カリウムによる酸素消費量にしたがって測定する。また、溶解性のCOD(Sol−CODcr)は、0.45μmのメンブレンフィルターでろ過したろ液について分析を行った値である。
(2)BOD5
JIS K 0102 21.生物化学的酸素消費量にしたがって5日間測定する。
(3)懸濁物質
JIS K 0102 14.1 懸濁物質にしたがって測定する。
(4)全りん
JIS K 0102 46.3.1 ペルオキソ二硫酸カリウム分解法にしたがって測定する。
(5)全窒素
JIS K 0102 45.1 総和法にしたがって測定する。
(6)タンパク質含有量
Folin−Ciocalteuのフェノール試薬により測定する。
実施例1
CODcr182,000mg-O/L、タンパク質含有量35,000mg/Lの廃棄乳4.0Lを、約1時間乳酸発酵させてpHを4.5に低下させたのち、40℃に加温し、タンパク質凝固酵素剤[レンネット]100mgを添加した。温度を35〜40℃に保ちつつ、1分間急速に撹拌したのち、さらに撹拌速度1rpmで緩やかに5分間撹拌した。次に、撹拌機を停止し、40℃で1時間静置した。さらに、撹拌機を再度稼動させ、緩速撹拌を30分間間欠的に継続した。
撹拌を止めて、凝固したタンパク質を60メッシュのスクリーンを用いて水を切る状態で圧力をかけて脱水し、固形物を分離した。この時点で固形物の重量は685gで、含水率は約55重量%であった。さらに、この固形物を3重量%の濃度、温度70℃の食塩水に30分間浸漬した後、脱水したところ、重量は600g、含水率は48.5重量%まで低下した。以上の過程で、分離液として分離されたものを集めて上澄み液とした。上澄み液の液量は3.4Lであり、CODcrは59,000mg-O/Lであり、タンパク質含有量は6,280mg/Lであった。
上澄み液を水道水で5倍に希釈して、CODcr11,800mg-O/L、Sol−CODcr11,000mg-O/Lの希釈原水を調製した。この希釈原水のBOD5は8,500mg-O/Lであり、懸濁物質は37mg/Lであり、全りんは18.3mg/Lであり、全窒素は65mg/Lであった。
内部にpH電極を取り付けた容量500mLの三角フラスコからなる酸生成槽、内径50mm、高さ500mmの硬質塩化ビニル樹脂製カラムからなるUASBリアクタ、容量2Lの曝気槽及び容量500mLの沈澱槽を直列に接続し、30℃の恒温室内に設置して、希釈原水の嫌気処理と活性汚泥処理を行った。活性汚泥処理の沈殿槽から曝気槽への汚泥の返送量は、500mL/hとした。種グラニュールとして、ビール工場UASBの実装置から採取した汚泥と曝気槽汚泥を使用した。酸生成槽には、pH6.5になるように25重量%水酸化ナトリウム水溶液を注入した。UASBリアクタでの上昇流速が0.3m/hとなるよう、酸生成槽から600mL/hでUASBリアクタへ送り、UASBの処理水は500mL/hの流量で酸生成槽に返送した。希釈原水の通水量は、試験開始から5日間は500mL/day、それ以降は1,000mL/dayとした。
試験開始から15日後、水の入れ替わりが終わって定常状態に達したと判断し、UASB処理水と好気処理水の水質分析を行った。UASB処理水のCODcrは1,200mg-O/L、Sol−CODcrは450mg-O/L、BOD5は290mg-O/L、懸濁物質は350mg/L、全りんは28.5mg/L、全窒素は83mg/Lであった。好気処理水のCODcrは135mg-O/L、Sol−CODcrは52mg-O/L、BOD5は15mg-O/L、懸濁物質は18mg/L、全りんは9.3mg/L、全窒素は12.3mg/Lであった。
比較例1
実施例1と同じ廃棄乳4Lを約1時間乳酸発酵させてpHを4.5に低下させ、等電点凝集させたのち、さらにポリ塩化アルミニウム5,000mg/Lを添加して凝集させ、実施例1と同様にして、凝固したタンパク質を60メッシュのスクリーンを用いて水を切る状態で圧力をかけて脱水し、固形物を分離した。
固形物の量は1,860gであり、含水率は83.0重量%であった。上澄み液の液量は2.1Lであり、CODcrは62,000mg-O/Lであり、タンパク質含有量は8,120mg/Lであった。
実施例1及び比較例1のタンパク質の凝固分離の結果を第1表に、実施例1の上澄み液の生物処理の結果を第2表に示す。
【0009】
【表1】

Figure 0004524522
【0010】
【表2】
Figure 0004524522
【0011】
試験に用いた廃棄乳のCODcrは182,000mg-O/Lであり、通常の等電点凝集によっても、本発明方法によっても、いずれも凝固物が得られるが、第1表に見られるように、凝固物の凝縮度合い、すなわち固形物の含水率と、上澄み液として分離可能な液量に大きな違いがある。比較例1では、上澄み液として回収可能であった液量が2.1Lに過ぎず、固形物としては1,860gと多量の固形物となり、回収した固形物は含水率の高いゲル状のものであった。これに対して、実施例1では上澄み液が3.4Lと多く、固形物は逆に600gと極めて濃縮された状態で回収することができ、十分に減容化された。回収した固形物の含水率は48.5重量%と極めて低くまで脱水されていた。上澄み液のCODcr濃度は両者でそれほど大きな差異はなく、いずれも60,000mg-O/L程度であった。
実施例1で得られた上澄み液を5倍に希釈した希釈原水をUASB処理すると、第2表に見られるように、12kgCODcr/m3/dayの高負荷での処理にもかかわらず、CODcr除去率約90%、BOD5除去率約96%に達した。また、好気性処理を行うことにより、BOD5が15mg-O/L、懸濁物質18mg/Lの良好な水質の処理水を得ることができた。また、タンパク質を凝固処理によって除去しているために、好気処理水の全りん濃度、全窒素濃度がともに低くなっている。全窒素濃度が比較的低いことから、沈殿槽での脱窒素に起因する汚泥浮上も認められず、良好な処理が可能であった。
【0012】
【発明の効果】
本発明のタンパク質含有廃水の処理方法によれば、タンパク質を多量に含む廃水、特に乳タンパク質を多量に含む廃水を効率的に処理し、タンパク質を含水率の低い固形物として分離して飼料、肥料などとしての利用を可能とするとともに、上澄み液として分離される水分はタンパク質が除去されているために、生物処理によってCODcr、全りん、全窒素などの濃度の低い良好な水質の処理水を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating protein-containing wastewater. More specifically, the present invention relates to a method for treating protein-containing wastewater that can efficiently treat wastewater containing a large amount of protein, particularly wastewater containing a large amount of milk protein, and use the recovered protein as feed or fertilizer. About.
[0002]
[Prior art]
Conventionally, wastewater containing protein such as milk, if it is highly concentrated wastewater, is dried and powdered and collected as feed or fertilizer, or incinerated by a method such as direct spray combustion. Even if it is dried, pulverized or incinerated, it is necessary to evaporate the water for the treatment, and the energy cost for that is enormous, which is not necessarily an effective treatment method. Basically, it is desirable that the proteins contained in these wastewaters are recovered and used as feed and fertilizer, and if they can be recovered without cost, it is considered to be extremely effective industrially.
On the other hand, when wastewater is discharged in a relatively low concentration state, wastewater containing protein is also treated by biological treatment such as activated sludge. However, protein is an organic substance, and processing costs such as aeration power for reducing the concentration of the organic substance are high, and there are always problems of processing and disposal of surplus sludge discharged as a final product. Further, since it contains a large amount of nutrient salts such as nitrogen and phosphorus, it is necessary to perform high-level treatments such as nitrification, denitrification, and coagulation precipitation at a high processing cost in order to prevent the eutrophication phenomenon.
Japanese Patent Application Laid-Open No. 8-57496 proposes an anaerobic water treatment apparatus that can easily treat wastewater that is difficult to anaerobically treat due to containing a large amount of protein in a treatment tank having a small capacity in a short time. ing. This water treatment device includes an acid fermentation reactor that holds acid-fermenting bacteria, a solid-liquid separation device that separates the protein coagulated in the acid fermentation reactor, and a hydrolyzed or enzymatically decomposed coagulated protein separated in the solid-liquid separation device. A protein processing reactor. Since protein is easily pH-aggregated and separated by acid fermentation, the protein is separated into solid and liquid using this agglomeration action, the supernatant is sent to an anaerobic treatment reactor, After being decomposed into amino acids by chemicals or enzymes, it is sent to the previous anaerobic reactor for processing. When anaerobic treatment is directly performed without including such a protein separation step, it is necessary to increase the reaction tank capacity because the protein degradation rate is slow. However, according to this treatment apparatus, the capacity of the apparatus is greatly increased. It can be reduced.
However, with this treatment apparatus, it is natural that the active ingredients of feed and fertilizer cannot be recovered. Nitrogen and phosphorus nutrients move to the liquid side again and are finally discharged from the outlet of the anaerobic water treatment apparatus, which is not desirable from the viewpoint of preventing eutrophication.
On the other hand, when separating protein from solid waste containing protein as a solid content and separately processing the solid content and the separated liquid, there are the following problems. That is, milk protein is known to aggregate by isoelectric point aggregation by lowering the pH to about 4 to 5 or less, but simply lowering the pH does not increase the solid content concentration of the aggregate and Only a highly dehydrated agglomerate having a high rate can be obtained, and there are problems in processing and disposal of solid matter, and a large amount of supernatant liquid after separation cannot be obtained.
[0003]
[Problems to be solved by the invention]
The present invention separates and recovers protein from wastewater containing a large amount of protein, particularly wastewater containing a large amount of milk protein, and efficiently treats the wastewater, and the recovered protein can be used as feed or fertilizer. The object of the present invention is to provide a method for treating protein-containing wastewater.
[0004]
[Means for Solving the Problems]
As a result of earnest research to solve the above problems, the present inventor added a protein coagulation enzyme to protein-containing wastewater to coagulate the protein, and separated the coagulated protein and the supernatant liquid, thereby coagulating the protein In addition to improving the dehydrating property of the water, it was found that the coagulated protein can be used as feed or fertilizer, and the supernatant liquid can be easily biologically treated. Based on this finding, the present invention has been completed. .
That is, the present invention
(1) After adjusting the protein-containing wastewater to pH 4 to 5 by acid fermentation, the protein is coagulated by adding a protein coagulation enzyme to the wastewater , and then separated into a coagulated protein and a liquid material, and separated into liquid A method for treating protein-containing wastewater, characterized by biologically treating a product,
(2) The method for treating protein-containing wastewater according to item 1 , wherein the protein-containing wastewater is milk protein-containing wastewater, and the protein coagulation enzyme is rennin,
(3) a protein-containing wastewater, aggregate the proteins in the waste water containing the protein, the first term or protein containing waste water in the second term, wherein it is a protein-containing waste water obtained by separating the slurry Processing method,
(4) In the method for treating protein-containing wastewater according to any one of Items 1 to 3, after adding a protein coagulation enzyme, rapid stirring and slow stirring are performed, and after standing still, stirring is further performed slowly. A method for treating protein-containing wastewater, and
(5) The method for treating protein-containing wastewater according to any one of items 1 to 4, wherein the coagulated protein is recovered as feed or fertilizer.
Is to provide.
Furthermore, as a preferred embodiment of the present invention,
( 6 ) The method for treating protein-containing wastewater according to item 1, wherein the biological treatment is a combination of anaerobic treatment and aerobic treatment,
Can be mentioned.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the method for treating protein-containing wastewater according to the present invention, protein coagulation enzyme is added to the protein-containing wastewater to coagulate the protein, and then the coagulated protein and liquid are separated, and the separated liquid is biologically treated. .
There is no particular limitation on protein-containing wastewater to which the method of the present invention can be applied. For example, waste milk, waste liquid egg, waste soy milk, waste surimi, dairy factory wash water, fishery product factory wash water, slaughterhouse Examples include washing water and decanter drainage of horse potato starch. Among these, it can be particularly suitably applied to the treatment of waste milk containing milk protein at a high concentration.
The protein coagulation enzyme used in the method of the present invention can be appropriately selected according to the protein contained in the target wastewater. Examples thereof include rennin that coagulates casein, which is a milk protein, and thrombin that coagulates blood. be able to. The amount of protein coagulation enzyme added varies depending on the type and concentration of protein in the wastewater or the type of enzyme used, but milk protein is 5,000 mg / L or more, for example, about 10,000 to 50,000 mg / L. In the case of coagulating proteins using rennin for wastewater containing a high concentration of 10 to 100 mg / L, the addition amount is about 10 to 100 mg / L. When the amount of the enzyme added is less than 10 mg / L, the aggregation effect is weak and the protein cannot be coagulated well. Even if the amount added exceeds 100 mg / L, there is no particular problem, but even if added in excess, there is no significant difference in the aggregation effect, and the enzyme is wasted. Since the coagulation action of the protein coagulation enzyme varies depending on pH and temperature, it is preferable to select appropriate conditions for the combination of protein and enzyme. For example, the milk protein coagulation action of rennin is said to be strongest at pH 5.1-5.6 and temperature 38-44 ° C. A preparation containing rennin is sold as a curdling enzyme agent rennet.
A milk-clotting enzyme agent is added to the milk protein-containing wastewater to form a solid, into which milk protein and milk fat can be taken and recovered as a solid with a low water content. Since the solid matter recovered by the method of the present invention does not contain harmful inorganic substances, it can be effectively used as livestock feed or fertilizer. In addition, since the separated liquid material has few protein components and highly biodegradable sugar, lactic acid, etc. remain, treated water with good water quality can be easily obtained by biological treatment.
[0006]
The reaction between the milk protein-containing wastewater and the milk coagulation enzyme is preferably performed at 25 to 60 ° C, more preferably 30 to 45 ° C. After mixing the milk protein-containing wastewater and the milk coagulation enzyme agent with rapid stirring for several minutes, slow stirring is performed for several minutes to several tens of minutes, and the mixture is allowed to stand for 30 minutes to several hours while maintaining the temperature. Thereafter, the water to be treated containing the solidified product is stirred at a slow speed, and dehydrated by a shearing force to remove moisture from the solidified product. The shape of the stirring blade is preferably a blade having an area in the height direction so that the entire water to be treated moves even with slow stirring. In addition to the stirring blade, a stirring rod can be used for stirring. By maintaining an appropriate temperature during stirring, dehydration of the coagulated product is promoted.
When milk protein is coagulated, calcium ions, magnesium ions and the like can be added to assist the action of the coagulation enzyme. By adding calcium ions, magnesium ions, etc., a stable coagulation effect can be obtained regardless of the type of waste liquid. Calcium ions, magnesium ions and the like are preferably added so that the concentration of calcium ions and magnesium ions in the waste liquid is several hundred to 1,000 mg / L. Further, when pH is lowered to 4 to 5 by adding acid or causing acid fermentation to some extent, the coagulation action is amplified.
In the method of the present invention, there is no particular limitation on the method for separating the coagulated protein and the liquid material. For example, the liquid material can be separated by applying pressure in a state where water is removed with a screen or the like. It can be dehydrated using a machine, a screw press dehydrator, a filter press dehydrator, a vacuum dehydrator, a decanter, a multiple disk, or the like. A rotary screen such as a rotary screen can also be used as a dehydrating device, although the dehydrating effect is somewhat reduced. The water content of the solid is reduced to about 50 to 70% by weight at this stage. Dehydration can be further promoted by immersing the solid in a saline solution or coating the surface of the solid with a salt, and the water content can be reduced to about 40 to 50% by weight. When the recovered protein is used, the storage period of the solid protein can be prolonged by adding sodium chloride or heating at 60 to 90 ° C. for about 0.5 to 1 hour.
[0007]
In the method of the present invention, the method for biologically treating the separated liquid is not particularly limited, and examples thereof include an aerobic treatment such as an activated sludge method and a biofilm method, and an anaerobic treatment such as an anaerobic digestion method. it can. These treatment methods can be used singly or in combination of two or more. Among these, it is preferable to perform an activated sludge treatment as a post-treatment after performing an anaerobic treatment effective as a biological treatment method.
According to the method of the present invention, since 80 to 90% of nitrogen and phosphorus are removed in the former protein recovery step, removal of nitrogen and phosphorus in the latter biological treatment is facilitated. As the biological treatment, general treatment methods such as anaerobic treatment, aerobic treatment, and aerobic treatment after anaerobic treatment can be applied. Since the separated liquid is a wastewater mainly composed of sugar and organic acid, since the separated liquid is a high-concentration wastewater containing a soluble organic matter concentration of about 1,000 to 30,000 mg-O / L as CODcr, High load type such as upward flow anaerobic sludge bed (UASB, Upflow anaerobic sludge bed), expanded granular sludge bed (EGSB, Expanded granular sludge bed) that can be processed with high load of 10-20 kg-CODcr / m 3 / day It is suitable to process with an anaerobic processing apparatus, and it is preferable to perform an aerobic process as a post-process of an anaerobic process as needed. If the CODcr concentration of the liquid exceeds the above range, it is preferable to dilute with other waste water or treated water. If the CODcr is diluted to 10,000 mg-O / L or less, it is anaerobic. It is also possible to perform only the aerobic process without performing the sex process. In the case of general wastewater with a relatively low protein concentration such that the protein concentration in the wastewater is less than 5,000 mg / L, adding the protein coagulation enzyme to the whole is enormous and the amount is not economical. For this purpose, the protein in the wastewater containing a low concentration of protein is agglomerated and separated into a slurry to obtain a high concentration of protein containing 5,000 mg / L or more, preferably about 10,000 to 50,000 mg / L. It is preferable to treat as a contained wastewater. There is no particular limitation on the method for aggregating the low-concentration protein. For example, the protein can be in a gel state by isoelectric focusing at an acidic pH of 4 to 6, and solid-liquid separation can be performed. In addition, an inorganic flocculant such as polyaluminum chloride and a sulfuric acid band, a polymer flocculant, and the like can be added to agglutinate proteins for solid-liquid separation.
The embodiment of the method of the present invention is not particularly limited. For example, when the amount handled with high-concentration waste water such as waste milk is small, the protein coagulation reaction is performed in one reactor using a batch reactor. However, it can also be processed in a semi-batch or continuous manner.
According to the method for treating protein-containing wastewater of the present invention, the separated solid can be highly concentrated and reduced in volume, and can be effectively used as feed, fertilizer and the like. In addition, since the amount of protein remaining in the liquid material that has been subjected to solid-liquid separation is small, it is easy to treat the liquid material, and it is possible to obtain treated water with good water quality.
[0008]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, water quality was measured by the following method.
(1) CODcr
JIS K 0102 20. Measure according to oxygen consumption by potassium dichromate. Soluble COD (Sol-CODcr) is a value obtained by analyzing a filtrate filtered through a 0.45 μm membrane filter.
(2) BOD5
JIS K 0102 21. Measure for 5 days according to biochemical oxygen consumption.
(3) Suspended material Measured according to JIS K 0102 14.1 Suspended material.
(4) Total phosphorus Measured according to JIS K 0102 46.3.1, potassium peroxodisulfate decomposition method.
(5) Total nitrogen Measured according to JIS K 0102 45.1 summation method.
(6) Protein content Measured with a phenol reagent of Folin-Ciocalteu.
Example 1
After 4.0L of waste milk having a CODcr of 182,000 mg-O / L and a protein content of 35,000 mg / L is subjected to lactic acid fermentation for about 1 hour to lower the pH to 4.5, the protein is heated to 40 ° C. 100 mg of a clotting enzyme agent [rennet] was added. The mixture was rapidly stirred for 1 minute while maintaining the temperature at 35 to 40 ° C., and further gently stirred at a stirring speed of 1 rpm for 5 minutes. Next, the stirrer was stopped and allowed to stand at 40 ° C. for 1 hour. Furthermore, the stirrer was operated again, and the slow stirring was intermittently continued for 30 minutes.
Stirring was stopped, and the coagulated protein was dehydrated by applying pressure while draining water using a 60 mesh screen to separate solids. At this point, the weight of the solid was 685 g and the water content was about 55% by weight. Further, this solid was immersed in a saline solution having a concentration of 3% by weight and a temperature of 70 ° C. for 30 minutes and then dehydrated. As a result, the weight decreased to 600 g and the water content decreased to 48.5% by weight. In the above process, the separated liquid was collected and used as a supernatant. The liquid volume of the supernatant was 3.4 L, CODcr was 59,000 mg-O / L, and the protein content was 6,280 mg / L.
The supernatant was diluted 5-fold with tap water to prepare diluted raw water of CODcr11,800 mg-O / L and Sol-CODcr11,000 mg-O / L. The diluted raw water had a BOD5 of 8,500 mg-O / L, a suspended substance of 37 mg / L, a total phosphorus of 18.3 mg / L, and a total nitrogen of 65 mg / L.
An acid production tank consisting of a 500 mL Erlenmeyer flask with a pH electrode inside, a UASB reactor consisting of a hard vinyl chloride resin column with an inner diameter of 50 mm and a height of 500 mm, a 2 L aeration tank and a 500 mL precipitation tank in series It connected and installed in a 30 degreeC thermostat, and the anaerobic process and the activated sludge process of the dilution raw water were performed. The amount of sludge returned from the activated sludge settling tank to the aeration tank was 500 mL / h. As seed granules, sludge and aeration tank sludge collected from the actual equipment of the beer factory UASB were used. A 25 wt% aqueous sodium hydroxide solution was poured into the acid generation tank so that the pH was 6.5. The acid generation tank was sent to the UASB reactor at 600 mL / h so that the ascending flow rate in the UASB reactor was 0.3 m / h, and the UASB treated water was returned to the acid generation tank at a flow rate of 500 mL / h. The flow rate of the diluted raw water was 500 mL / day for 5 days from the start of the test, and 1,000 mL / day thereafter.
After 15 days from the start of the test, it was determined that the replacement of water was over and the steady state was reached, and water quality analysis of UASB treated water and aerobic treated water was performed. CODcr of UASB treated water is 1,200 mg-O / L, Sol-CODcr is 450 mg-O / L, BOD5 is 290 mg-O / L, suspended matter is 350 mg / L, total phosphorus is 28.5 mg / L, total Nitrogen was 83 mg / L. CODcr of aerobic treated water is 135 mg-O / L, Sol-CODcr is 52 mg-O / L, BOD5 is 15 mg-O / L, suspended matter is 18 mg / L, total phosphorus is 9.3 mg / L, total nitrogen Was 12.3 mg / L.
Comparative Example 1
4 L of the same waste milk as in Example 1 was fermented with lactic acid for about 1 hour to lower the pH to 4.5, and after isoelectric point aggregation, 5,000 mg / L of polyaluminum chloride was further added to cause aggregation. In the same manner as in Example 1, the solidified protein was dehydrated by applying pressure while draining water using a 60-mesh screen, and the solid matter was separated.
The amount of the solid was 1,860 g, and the water content was 83.0% by weight. The liquid volume of the supernatant was 2.1 L, CODcr was 62,000 mg-O / L, and the protein content was 8,120 mg / L.
The results of coagulation and separation of the proteins of Example 1 and Comparative Example 1 are shown in Table 1, and the results of biological treatment of the supernatant of Example 1 are shown in Table 2.
[0009]
[Table 1]
Figure 0004524522
[0010]
[Table 2]
Figure 0004524522
[0011]
The CODcr of the waste milk used in the test is 182,000 mg-O / L, and a coagulated product can be obtained by both normal isoelectric point aggregation and the method of the present invention, as shown in Table 1. However, there is a large difference between the degree of condensation of the solidified product, that is, the water content of the solid material, and the amount of liquid that can be separated as the supernatant. In Comparative Example 1, the amount of liquid that could be recovered as a supernatant was only 2.1 L, and the solid was a large amount of 1,860 g, and the recovered solid was a gel with a high water content. Met. On the other hand, in Example 1, the amount of the supernatant liquid was as large as 3.4 L. On the contrary, the solid matter could be recovered in a very concentrated state of 600 g, and the volume was sufficiently reduced. The recovered solid was dehydrated to a very low water content of 48.5% by weight. The CODcr concentration of the supernatant was not so different between the two, and both were about 60,000 mg-O / L.
When the diluted raw water prepared by diluting the supernatant obtained in Example 1 to 5-fold UASB process, as seen in Table 2, despite treatment with high load 12kgCODcr / m 3 / day, CODcr removal The rate reached about 90% and the BOD5 removal rate reached about 96%. Further, by performing aerobic treatment, it was possible to obtain treated water having a good water quality with a BOD5 of 15 mg-O / L and a suspended substance of 18 mg / L. In addition, since the protein is removed by coagulation, both the total phosphorus concentration and the total nitrogen concentration in the aerobic treated water are low. Since the total nitrogen concentration was relatively low, sludge levitation due to denitrification in the sedimentation tank was not observed, and good treatment was possible.
[0012]
【The invention's effect】
According to the method for treating protein-containing wastewater of the present invention, wastewater containing a large amount of protein, particularly wastewater containing a large amount of milk protein, is efficiently treated, and the protein is separated as a solid having a low water content to provide feed and fertilizer. In addition, since the protein separated from the water separated as the supernatant liquid is obtained, treated water with a low quality such as CODcr, total phosphorus and total nitrogen is obtained by biological treatment. be able to.

Claims (5)

タンパク質含有廃水を酸発酵によってpH4〜5に調整後に、該廃水に、タンパク質凝固酵素を添加してタンパク質を凝固させたのち、凝固したタンパク質と液状物とに分離し、分離された液状物を生物処理することを特徴とするタンパク質含有廃水の処理方法。 After adjusting the protein-containing wastewater to pH 4-5 by acid fermentation, the protein coagulation enzyme is added to the wastewater to coagulate the protein, and then the coagulated protein and liquid are separated. A method for treating protein-containing wastewater, characterized by comprising: タンパク質含有廃水が乳タンパク質含有廃水であり、タンパク質凝固酵素がレンニンであることを特徴とする請求項1記載のタンパク質含有廃水の処理方法。The method for treating protein-containing wastewater according to claim 1, wherein the protein-containing wastewater is milk protein-containing wastewater, and the protein coagulation enzyme is rennin. タンパク質含有廃水が、タンパク質を含有する廃水中のタンパク質を凝集し、スラリー状に分離して得られるタンパク質含有廃水であることを特徴とする請求項1又は2記載のタンパク質含有廃水の処理方法。The method for treating protein-containing wastewater according to claim 1 or 2 , wherein the protein-containing wastewater is protein-containing wastewater obtained by agglomerating proteins in protein-containing wastewater and separating them into a slurry. 請求項1〜3のいずれか記載のタンパク質含有廃水の処理方法において、タンパク質凝固酵素を添加した後、急速撹拌と緩速撹拌を行い、その後、静置した後、更に緩速撹拌することを特徴とするタンパク質含有廃水の処理方法。The protein-containing wastewater treatment method according to any one of claims 1 to 3, wherein the protein coagulase is added, and then rapid stirring and slow stirring are performed. A method for treating protein-containing wastewater. 凝固したタンパク質を飼料又は肥料として回収する請求項1〜4のいずれか記載のタンパク質含有廃水の処理方法。The method for treating protein-containing wastewater according to any one of claims 1 to 4, wherein the coagulated protein is recovered as feed or fertilizer.
JP2000347785A 2000-11-15 2000-11-15 Treatment method for protein-containing wastewater Expired - Fee Related JP4524522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347785A JP4524522B2 (en) 2000-11-15 2000-11-15 Treatment method for protein-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347785A JP4524522B2 (en) 2000-11-15 2000-11-15 Treatment method for protein-containing wastewater

Publications (2)

Publication Number Publication Date
JP2002143862A JP2002143862A (en) 2002-05-21
JP4524522B2 true JP4524522B2 (en) 2010-08-18

Family

ID=18821463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347785A Expired - Fee Related JP4524522B2 (en) 2000-11-15 2000-11-15 Treatment method for protein-containing wastewater

Country Status (1)

Country Link
JP (1) JP4524522B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103796B2 (en) * 2006-06-09 2012-12-19 栗田工業株式会社 Biological treatment accelerator for wastewater and biological treatment method for wastewater using the same
JP5829800B2 (en) * 2010-08-30 2015-12-09 渡辺 昌規 Boiled noodle wastewater purification device
CN103570177B (en) * 2013-11-08 2014-12-03 上海市食品研究所 Purification treatment process for saliferous pickling wastewater in food industry
CN115072942B (en) * 2022-07-25 2023-01-17 威海蓝创环保设备有限公司 Combined treatment process for aquatic product processing wastewater and domestic sewage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211453A (en) * 1988-02-18 1989-08-24 Snow Brand Milk Prod Co Ltd Production of water-soluble milkprotein
JPH0393689A (en) * 1989-09-05 1991-04-18 Snow Brand Milk Prod Co Ltd Treatment of recovered product and device therefor
JPH04218333A (en) * 1990-07-06 1992-08-07 Snow Brand Milk Prod Co Ltd Preparation of cheese curd
JPH0857496A (en) * 1994-08-19 1996-03-05 Toshiba Corp Anaerobic water treatment device
JPH1147790A (en) * 1997-08-01 1999-02-23 Hayashibara Biochem Lab Inc Treatment of waste water and aggregate obtained by using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833907Y2 (en) * 1981-06-19 1983-07-29 辰郎 林 Remaining milk collection equipment for dairy plants
JPS62166840A (en) * 1986-01-16 1987-07-23 Kiyuubitsuku Eng:Kk Method for separating solid component of animal milk
JPH0576280A (en) * 1991-09-17 1993-03-30 Oyama Nyugyo Nogyo Kyodo Kumiai Preparation of milk curd

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211453A (en) * 1988-02-18 1989-08-24 Snow Brand Milk Prod Co Ltd Production of water-soluble milkprotein
JPH0393689A (en) * 1989-09-05 1991-04-18 Snow Brand Milk Prod Co Ltd Treatment of recovered product and device therefor
JPH04218333A (en) * 1990-07-06 1992-08-07 Snow Brand Milk Prod Co Ltd Preparation of cheese curd
JPH0857496A (en) * 1994-08-19 1996-03-05 Toshiba Corp Anaerobic water treatment device
JPH1147790A (en) * 1997-08-01 1999-02-23 Hayashibara Biochem Lab Inc Treatment of waste water and aggregate obtained by using the same

Also Published As

Publication number Publication date
JP2002143862A (en) 2002-05-21

Similar Documents

Publication Publication Date Title
Hjorth et al. Solid–liquid separation of animal slurry in theory and practice
Mokhtar et al. Study on the effectiveness of banana peel coagulant in turbidity reduction of synthetic wastewater
KR20200005890A (en) Method for manufacturing liquefied fertilizer using butchery blood
US2328361A (en) Method of conditioning sludge
Barford et al. Anaerobic digestion of high‐strength cheese whey utilizing semicontinuous digesters and chemical flocculant addition
EP1907327A2 (en) Biowaste treatment
JP4524522B2 (en) Treatment method for protein-containing wastewater
EP0048723B1 (en) Treatment of activated or humus sludge
JP4172294B2 (en) Organic sludge treatment method and treatment system
JP6996866B2 (en) Parlor wastewater treatment method and its wastewater treatment equipment
RU2628437C1 (en) Method of utilizing liquid fraction of manure drains from pig-breeding farms
JP5028746B2 (en) Method and apparatus for producing liquid manure from starch production wastewater.
CN115072942B (en) Combined treatment process for aquatic product processing wastewater and domestic sewage
JP5158623B2 (en) Wastewater treatment method in potato starch production process
JP2001129310A (en) Flocculant and sludge treatment method
JP4488794B2 (en) Method and system for treating fermentation residual liquid and other anaerobic organic compound-containing liquid
JPH1147790A (en) Treatment of waste water and aggregate obtained by using the same
Zahrim Current progress on removal of recalcitrance coloured particles from anaerobically treated effluent using coagulation–flocculation
JP5963656B2 (en) Sludge treatment apparatus and phosphorus production method
JP2008229600A (en) Waste treatment method in potato starch production process
CN113526479A (en) Method for extracting phosphorus from phosphorus-containing wastewater
JP3547113B2 (en) How to treat waste milk
JPH05192132A (en) Reaction method for immobilized microorganism
US20210355004A1 (en) Method for dewatering or removing solids, including corn solids, via flocculation from an alkaline aqueous solution, including nejayote, generated in the process of nixtamalization of corn by introducing a source of carbonate to the aqueous solution, followed by adding an anionic and then a cationic flocculent to the aqueous solution.
JP2005262055A (en) Method and apparatus for treating animal organic matter-containing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees