JPH05192132A - Reaction method for immobilized microorganism - Google Patents

Reaction method for immobilized microorganism

Info

Publication number
JPH05192132A
JPH05192132A JP4073622A JP7362292A JPH05192132A JP H05192132 A JPH05192132 A JP H05192132A JP 4073622 A JP4073622 A JP 4073622A JP 7362292 A JP7362292 A JP 7362292A JP H05192132 A JPH05192132 A JP H05192132A
Authority
JP
Japan
Prior art keywords
microorganisms
sludge
immobilized
treatment
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4073622A
Other languages
Japanese (ja)
Other versions
JPH0673451B2 (en
Inventor
Kazunori Nakamura
和憲 中村
Norio Futai
則夫 風袋
Eiichi Mikami
栄一 三上
Tomoo Suzuki
智雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7362292A priority Critical patent/JPH0673451B2/en
Publication of JPH05192132A publication Critical patent/JPH05192132A/en
Publication of JPH0673451B2 publication Critical patent/JPH0673451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To accomplish treatment with immobilized microorganisms economically in high efficiency by contact with a reactive substrate of such immobilized microorganisms obtained by dehydrating at a specified temperature microorganisms either cultured or collected from the natural world followed by drying. CONSTITUTION:Microorganisms selected from bacteria representing aerobic microorganism treatment sludge such as activated sludge (e.g. Aerobacter), acidic bacteria representing anaerobic bacteria treatment sludge such as for methane fermentation, and methanogen (methane bacteria), are dehydrated at <=70 deg.C and dried in a solid form to obtain immobilized microbial cells with a water content of <=85wt.%. Thence, the microbial cells are cut or ground to uniformize granular size into immobilized microorganisms 1-5mm in granular diameter. A reactor is then packed with the microorganisms at a specified packing rate followed by introducing a reactive substrate such as synthetic effluent into the reactor to effect reaction while feeding air to treat the effluent, thus giving desired treated water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は固定化微生物を用いた生
物反応方法に関するものである。本発明を、例えば水処
理技術に応用すると、水処理操作が簡単になると共に菌
体密度を著しく高めることができ、この結果、高効率水
処理が可能となる。
TECHNICAL FIELD The present invention relates to a biological reaction method using immobilized microorganisms. When the present invention is applied to a water treatment technique, for example, the water treatment operation can be simplified and the cell density can be remarkably increased, resulting in highly efficient water treatment.

【従来の技術】これまで、生物反応法に用いられる固定
化微生物は、微生物あるいは微生物からなる汚泥を砂、
ゼオライト、アンスラサイト等の粒子担体の表面に吸
着、固定化する方法や、ポリアクリルアミド、ポリビニ
ルアルコール、寒天、ガラギーナン等のゲルにより菌体
を包括固定化する方法等により調製されていた。
2. Description of the Related Art Immobilized microorganisms used in biological reaction methods have hitherto been microorganisms or sludge composed of microorganisms,
It was prepared by a method of adsorbing and immobilizing it on the surface of a particle carrier such as zeolite or anthracite, or a method of entrapping and immobilizing bacterial cells with a gel such as polyacrylamide, polyvinyl alcohol, agar, and galagenan.

【発明が解決しようとする課題】しかしながら、前者の
吸着、固定化する方法は、微生物あるいは微生物からな
る汚泥の吸着量の制御が困難であり、また担体そのもの
の体積によりリアクターの有効容積を減じてしまうた
め、固定化微生物が基質に対し効率的に反応することが
困難であった。また後者のゲル包括法は、固定化の処理
操作が煩雑でゲル剤の価格が高く水処理などの分野で
は、実規模で採用されている例はない。そこで、本発明
者らは、経済的且つ高効率な生物反応方法を開発するこ
とを目的として水処理技術をベースにバイオリアクター
の処理速度を従来法に比較して飛躍的に高める微生物の
高濃度固定化法について研究を進めた結果、培養もしく
は自然界より採取された微生物を70℃以下の温度で脱
水し、固定形状のまま乾燥処理して水分含有率を85%
以下に調製し、細胞間隙の水分を実質的に排除したとこ
ろ、菌体同士が固着結合し且つ固着された菌体は反応液
と接触し水分を吸収して膨潤しても、膨潤後の固着形態
は崩れることなく、しかも活性も維持されることを見出
し、本発明を完成した。
However, in the former method of adsorption and immobilization, it is difficult to control the adsorption amount of microorganisms or sludge composed of microorganisms, and the effective volume of the reactor is reduced by the volume of the carrier itself. Therefore, it is difficult for the immobilized microorganisms to efficiently react with the substrate. In the latter gel encapsulation method, the treatment procedure for immobilization is complicated, the cost of the gel agent is high, and there is no example adopted on a real scale in the field of water treatment. Therefore, the present inventors have aimed to develop an economical and highly efficient biological reaction method, and based on water treatment technology, have a high concentration of microorganisms which dramatically increases the treatment rate of a bioreactor as compared with the conventional method. As a result of research on the immobilization method, microorganisms collected from culture or the natural world were dehydrated at a temperature of 70 ° C or lower, and dried in a fixed shape to have a moisture content of 85%.
When the water was prepared in the following manner and the water in the intercellular spaces was substantially removed, the cells were fixedly bound to each other, and the fixed cells contacted the reaction solution and absorbed water, causing swelling, but fixing after swelling. The present invention has been completed by finding that the morphology is maintained and the activity is maintained.

【課題を解決するための手段】以下、本発明をより具体
的に詳述する。本発明において固定化可能な微生物は培
養もしくは自然界より採取された微生物が用いられ、何
ら特定化された微生物を必要としない。また、純粋に分
離された微生物である必要もなく、混合微生物、活性汚
泥、メタン発酵汚泥等が例示され、具体的には次のよう
な微生物が挙げられる。 活性汚泥等好気微生物処理汚泥を構成する 細菌類:アクロモバクター、アエロバクター、アルカリ
ゲネス、バシラス、プレビバクテリューム、コリネバク
テリューム、コマモナス、フラボバクテリューム、ミク
ロコッカス、シュードモナス、スピリラム、ズーグレ
ア、アルスロバクター、ニトロソモナス、スタフィロコ
ッカス、ノカルディア、スファエロティルス、エシェリ
ッヒア、アゾトバクター等。 菌類:ペニシリューム、セファロスポリューム、クラド
スポリューム、フサリューム、トリコデルマ、カンジ
ダ、ロドトルラ、サッカロミセス等。 メタン発酵等嫌気微生物処理汚泥を構成する 細菌類: (酸生成菌)コリネバクテリューム、ラクトバシラス、
アクチノミセス、ビヒドバクテリューム、ラミバクテリ
ューム、ユウバクテリューム、クロストリディーム、バ
クテロイデス、ビブリオ、スピリラム、ペプトコッカ
ス、フソバクテリューム、スファエロフォラス、ベロネ
ア等。 (メタン生成菌)メタノバクテリューム、メタノザルシ
ナ、メタノスピリラム、メタノスリックス、メタノコッ
カス 固定化処理は、通常70℃以下の温度で脱水し、固形形
状のまま乾燥処理することによりおこなわれるが、温度
処理は乾燥を促進させるためのものであって目的とする
微生物の温度耐性に応じて決定される。例えば耐熱性に
優れたメタン酸化細菌では高い処理温度でも活性の維持
が可能であるが、この場合においても約70℃以下であ
ることが望ましい。脱水、乾燥、粒子化は適宜おこなわ
れ、例えば沈降濃縮微生物あるいは汚泥をフィルタープ
レス等で脱水した後、固形形状のまま所定の温度で乾燥
し、その後粉砕することにより粒子状の固定化物を得る
ことができる。また、脱水物を適度に固形形状のまま半
乾燥させた後、カッター等により裁断し粒子化した後固
定化強度を増加させるために更に乾燥することができ
る。固定化強度を高める上では、処理された菌体の水分
含量は細胞間隙の水分がなくなるまで十分に乾燥させる
ことが望ましいが、水分含量が85%以下になるように
乾燥し、細胞間隙の水分を減少させ、菌体同士が、固着
固定化するまで乾燥する。菌体同士の固着固定は、微生
物の水分含量を固形形状のまま85%以下程度に調製す
ることにより、微生物が生育中に菌体外に産生した多種
多様な物質、特に多糖、蛋白、糖蛋白などの高分子物質
が脱水、乾燥されると共に変性され、細胞間の結合強度
が増加することによるものと考えられる。このように、
微生物の菌体外生成物が一種のバインダーとなることに
より菌体同士が固着固定化された後、固定化菌体を裁断
もしくは粉砕することより粒子サイズを整える。粒子サ
イズは反応の条件により任意に選択できるが、粒径が極
端に大きくなると拡散抵抗により反応速度は低下する。
従って、通常膨潤後の粒径を1mm〜5mm程度とする
ことが望ましい。このように、いったん固定化された菌
体は反応液と接触し膨潤しても十分な強度を有し、一般
的な通気、攪拌の手段を伴っても微細化することなく反
応に供することが可能である。従って、反応に際して
は、従来の包括的固定化菌体と全く同様に使用できる。
例えば嫌気的な処理法ではカラム等に充填し、反応液を
上向流で流すリアクターとして使用が可能である。ま
た、好気的な処理法では、反応槽上部に沈澱部を設けた
処理槽に本発明による固定化微生物を添加し、通気流動
化させる方法、あるいは通気部と充填部を別々に設け、
反応液を循環させ処理する方法などに使用することが可
能である。また、菌体濃度も包括固定化菌体に比べ菌体
同士の固着固定化であることから、数倍高い菌体濃度の
固定化菌体を調製できる。以下に、本発明に使用する固
定化微生物の調製方法の一例及びその固定化微生物の活
性についての実験例を示す。
The present invention will be described in more detail below. In the present invention, a microorganism that can be immobilized is a microorganism that has been collected from culture or nature and does not require any specialized microorganism. Moreover, it is not necessary that the microorganisms are purely separated, and examples thereof include mixed microorganisms, activated sludge, methane fermentation sludge, and the like. Specific examples include the following microorganisms. Bacteria that compose aerobic microbial-treated sludge such as activated sludge: Achromobacter, Aerobacter, Alcaligenes, Bacillus, Previva bacterium, Corynebacterium, Comamonas, Flavobacterium, Micrococcus, Pseudomonas, Spirillam, Zugrea, Arsulo Bactor, Nitrosomonas, Staphylococcus, Nocardia, Sphaerotils, Escherichia, Azotobacter, etc. Fungi: Penicillium, Cephalosporum, Cladosporium, Fusarium, Trichoderma, Candida, Rhodotorula, Saccharomyces, etc. Bacteria that compose sludge treated with anaerobic microorganisms such as methane fermentation: (Acid-producing bacteria) Corynebacterium, Lactobacillus,
Actinomyces, bihidobacteria, lamybacteria, eubacteria, clostridia, bacteroides, vibrio, spirillum, peptococcus, fusobacterium, sphaerophorus, veronea etc. (Methane-producing bacterium) Methanobacterium, Methanosarcina, methanospirillum, methanoslix, methanococcus Immobilization treatment is usually performed by dehydration at a temperature of 70 ° C or lower, and drying treatment in a solid form. It is for promoting drying and is determined according to the temperature tolerance of the target microorganism. For example, the activity of methane-oxidizing bacteria having excellent heat resistance can be maintained even at a high treatment temperature, but in this case as well, it is desirable that the temperature is about 70 ° C or lower. Dehydration, drying, and particle formation are appropriately performed. For example, after dehydrating sedimentation concentrated microorganisms or sludge with a filter press or the like, the solid form is dried at a predetermined temperature and then pulverized to obtain a particulate immobilized product. You can In addition, the dehydrated product can be semi-dried in an appropriately solid form, then cut by a cutter or the like to be granulated, and then further dried to increase the immobilization strength. In order to increase the immobilization strength, it is desirable that the water content of the treated cells be sufficiently dried until the water content in the cell spaces is exhausted, but the water content in the cell spaces should be 85% or less. And the cells are dried until they are fixed and immobilized. For the fixation and fixation of microbial cells, a wide variety of substances produced outside the microbial cells during the growth of the microorganisms, particularly polysaccharides, proteins, glycoproteins, are prepared by adjusting the water content of the microorganisms to about 85% or less in the solid form. It is considered that this is because the polymer substance such as is dehydrated and dried, and is denatured, and the bond strength between cells is increased. in this way,
The extracellular product of the microorganism serves as a kind of binder to fix and immobilize the cells, and then the immobilized cells are cut or pulverized to adjust the particle size. The particle size can be arbitrarily selected depending on the reaction conditions, but when the particle size becomes extremely large, the reaction rate decreases due to diffusion resistance.
Therefore, it is usually desirable that the particle size after swelling is about 1 mm to 5 mm. In this way, once immobilized, the bacterial cells have sufficient strength even if they contact the reaction solution and swell, and can be subjected to the reaction without being micronized even with general aeration and stirring means. It is possible. Therefore, in the reaction, it can be used in exactly the same manner as conventional comprehensively immobilized cells.
For example, in an anaerobic treatment method, it can be used as a reactor which is packed in a column or the like and flows the reaction solution in an upward flow. Further, in the aerobic treatment method, a method of adding the immobilized microorganisms of the present invention to a treatment tank having a precipitation portion in the upper portion of the reaction tank and aerating and fluidizing it, or providing a ventilation portion and a filling portion separately,
It can be used for a method of circulating and treating a reaction solution. Further, since the bacterial cell concentration is fixed and immobilized between the bacterial cells as compared with the entrapped immobilized bacterial cells, it is possible to prepare an immobilized bacterial cell having a bacterial cell concentration several times higher. Hereinafter, an example of a method for preparing the immobilized microorganism used in the present invention and an experimental example for the activity of the immobilized microorganism will be shown.

【実験例1】 −固定化微生物の調整方法− 本発明によれば、培養もしくは自然界より採取された微
生物のいずれにおいても固定化の対象物とすることが可
能であるが、ここではその例として、固定化対象物とし
て活性汚泥、及びメタン発酵汚泥を用いた場合の固定化
微生物の調製方法について述べる。活性汚泥は、グルコ
ース1g/l、ポリペプトン0.5g/l、KHPO
0.088g/lからなるpH7の合成排水(BOD
濃度約10,000mg/l)を用い、BOD負荷0.
5kg/m・dayで回分方により培養したものを使
用した。汚泥濃度1,000mg/lの汚泥混合液51
を濾紙で脱水した後、脱水汚泥の厚みを約5mmに濾紙
上に塗り広げ25℃、50℃、100℃で風力乾燥し固
定化強度試験に使用した。メタン発酵汚泥は、グルコー
ス35g/l、コーンスチープリカー35g/l、K
HPO 3g/l、KHPO2g/l、(N
CO・HO 5g/l、NaCO
g/l、FeCl・6HO 1g/lからなる合成
排水(有機物濃度50,000mg/l)を用い、有機
物負荷0.5kg/m・dayで回分法により培養し
たものを使用した。汚泥濃度10,000mg/lの汚
泥混合液51を遠心分離し濾紙で脱水した後、脱水汚泥
の厚みを約5mmに濾紙上に塗り広げ25℃、40℃、
70℃、100℃で風力乾燥し固定化強度試験に使用し
た。25℃乾燥汚泥について、水分含量と膨潤後の固定
化強度との関係を検討した。この場合、水分含量50%
以上のものではカッターにより0.5mm〜2mm程度
に裁断し、水道水で膨潤させて、また、水分含量10%
及び5%のものの測定は、水分含量50%程度の汚泥を
カッターで0.1mm〜1mmに裁断した後、更に所定
の水分含量となるまで乾燥し、その後水道水で膨潤させ
て試験に供した。なお、汚泥の裁断、粉砕は半乾燥状態
で行ってから乾燥しても、乾燥した後行ってもいずれで
も良い。表1、表2に示すように、水分含量が85%よ
り多い汚泥では脱水により固定化の効果は現れなかった
が、水分含量85%以下にすることにより固定化の効果
が現れるようになり、50%以下では、極めて安定な固
定化物が得られた。次に固定化強度に及ぼす乾燥処理時
の温度の影響について検討した。活性汚泥の場合は25
℃、50℃、100℃で、メタン発酵汚泥の場合は25
℃、40℃、70℃、100℃で、それぞれ水分含量6
%以下に乾燥した後水道水で膨潤させた。いずれの汚泥
も通気攪拌に対し十分な固定化強度を有していることか
ら乾燥処理時の温度は固定化の強度に対してはほとんど
影響しないことがわかる。
[Experimental Example 1] -Method for preparing immobilized microorganisms-According to the present invention, it is possible to immobilize any of microorganisms cultured or collected from the natural world. The method for preparing immobilized microorganisms when activated sludge and methane fermentation sludge are used as the immobilized objects is described. Activated sludge is glucose 1 g / l, polypeptone 0.5 g / l, KH 2 PO
4 Synthetic wastewater with pH 7 consisting of 0.088 g / l (BOD
A concentration of about 10,000 mg / l) and a BOD load of 0.
What was cultured by the batch method at 5 kg / m 2 · day was used. Sludge mixed solution 51 with sludge concentration of 1,000 mg / l
Was dehydrated with a filter paper, and then the dehydrated sludge was spread on the filter paper to a thickness of about 5 mm and air-dried at 25 ° C., 50 ° C. and 100 ° C. and used for the immobilization strength test. Methane fermentation sludge is glucose 35g / l, corn steep liquor 35g / l, K 2
HPO 4 3 g / l, KH 2 PO 4 2 g / l, (N
H 4) 2 CO 2 · H 2 O 5g / l, Na 2 CO 3 3
Synthetic wastewater (organic matter concentration of 50,000 mg / l) consisting of g / l and FeCl 3 .6H 2 O 1 g / l was used, and the one that was cultured by the batch method at an organic matter load of 0.5 kg / m 2 · day was used. After the sludge mixed solution 51 having a sludge concentration of 10,000 mg / l was centrifuged and dehydrated with filter paper, the dehydrated sludge was spread on the filter paper to a thickness of about 5 mm, 25 ° C, 40 ° C,
It was air-dried at 70 ° C and 100 ° C and used for the immobilization strength test. The relationship between the water content and the immobilization strength after swelling was examined for 25 ° C dried sludge. In this case, the water content is 50%
In the above case, it is cut into about 0.5 mm to 2 mm with a cutter, swollen with tap water, and has a water content of 10%.
For the measurement of 5% and 5%, after sludge having a water content of about 50% was cut into 0.1 mm to 1 mm by a cutter, it was further dried to a predetermined water content, and then swollen with tap water and subjected to the test. .. The sludge may be cut or pulverized in a semi-dried state and then dried, or after dried. As shown in Tables 1 and 2, the effect of immobilization did not appear due to dehydration in sludge having a water content of more than 85%, but the effect of immobilization came to appear when the water content was 85% or less, When it was 50% or less, an extremely stable immobilized product was obtained. Next, the influence of the temperature during the drying treatment on the immobilization strength was examined. 25 for activated sludge
25 ℃ for methane fermentation sludge at ℃, 50 ℃, 100 ℃
Water content of 6 ℃ at 40 ℃, 70 ℃, 100 ℃
After drying to less than 10%, it was swollen with tap water. Since all of the sludges have sufficient immobilization strength against aeration and agitation, it can be seen that the temperature during the drying treatment hardly affects the immobilization strength.

【表1】 [Table 1]

【表2】 [Table 2]

【実験例2】 −固定化微生物の活性度− 実施例1により調製された固定化微生物のうち、活性汚
泥については、25℃、50℃、100℃で、また、メ
タン発酵汚泥については、25℃、40℃、70℃、1
00℃でそれぞれ十分に乾燥した汚泥を膨潤後の粒子系
で2mm以下になるように裁断、粉砕し、膨潤させた
後、それぞれ汚泥の培養に用いた合成排水の処理活性に
ついて検討した。表3に示したように、100℃で乾燥
した活性汚泥は完全に活性を失っているが、25℃で乾
燥した汚泥は、乾燥後の水分含量がわずか6%にまで低
下しているにもかかわらず、膨潤後にもとの活性の50
%程度の活性を保持している。本乾燥固定化汚泥の膨潤
後のみかけの汚泥濃度は150,000mg/lともと
の活性汚泥の濃度(10,000mg/l)の15倍を
示すことから反応容積当たりの最大処理活性は7倍以上
となる。また50℃で乾燥処理した場合には活性の低下
が大きくもとの汚泥の20%程度となってしまうが、そ
れでも汚泥濃度を高くとれることから最大処理活性は通
常の汚泥の3倍以上となる。次に表4にはメタン発酵汚
泥の結果について示した。25℃で乾燥した場合、活性
汚泥と同じ程度の55%の活性を維持しており、膨潤後
の汚泥濃度も160,000mg/lと高いことから、
もとのメタン発酵汚泥(濃度10,000mg/l)に
比較し、反応槽容積当たりの最大処理活性は8倍以上に
なる。メタン発酵汚泥では70℃の乾燥においてもわず
かに活性が残っているが活性汚泥と同様100℃の乾燥
では活性を失う。以上の結果から乾燥処理温度は少なく
とも70℃以下で行う必要があり、好ましくは、25℃
程度の比較的低い温度で行ったほうが良い。しかし、0
℃以下で凍結乾燥することは膨潤後の微生物濃度を低下
させることからあまり得策でない。
[Experimental Example 2] -Activity of immobilized microorganisms-Of the immobilized microorganisms prepared in Example 1, activated sludge was 25 ° C, 50 ° C, and 100 ° C, and methane-fermented sludge was 25 ° C. ℃, 40 ℃, 70 ℃, 1
After sludge sufficiently dried at 00 ° C. was cut and swelled so as to have a particle size after swelling of 2 mm or less and swelled, the treatment activity of the synthetic wastewater used for sludge culture was examined. As shown in Table 3, the activated sludge dried at 100 ° C. completely lost its activity, but the sludge dried at 25 ° C. had a moisture content of only 6% after drying. Regardless of the original activity of 50 after swelling
It retains about% activity. The apparent sludge concentration after swelling of the dried and immobilized sludge was 150,000 mg / l, which was 15 times the original activated sludge concentration (10,000 mg / l), so the maximum treatment activity per reaction volume was 7 times. That is all. Also, when dried at 50 ° C, the activity is greatly reduced to about 20% of the original sludge, but the maximum treatment activity is 3 times or more that of normal sludge because the sludge concentration can still be high. .. Next, Table 4 shows the results of the methane fermentation sludge. When it is dried at 25 ° C, it maintains the same level of 55% activity as activated sludge, and the sludge concentration after swelling is as high as 160,000 mg / l.
Compared to the original methane fermentation sludge (concentration 10,000 mg / l), the maximum treatment activity per reactor volume is 8 times or more. The methane-fermented sludge remains slightly active even after drying at 70 ° C, but loses its activity when dried at 100 ° C, like activated sludge. From the above results, it is necessary to perform the drying treatment at a temperature of at least 70 ° C or less, preferably 25 ° C.
It is better to carry out at a relatively low temperature. But 0
Freeze-drying at or below ℃ is not a good idea because it reduces the concentration of microorganisms after swelling.

【表3】 [Table 3]

【表4】 以下に、実施例を用いて本発明を詳細に説明する。[Table 4] Hereinafter, the present invention will be described in detail with reference to examples.

【実施例】実験例1により調製された固定化活性汚泥
(25℃乾燥、水分含量6%、調整後の粒径0.5〜2
mm)を、図1に示す容量100mlの反応器に充填率
30%、反応器当たりの汚泥濃度50,000mg/l
となるよう添加し、温度25℃で実験例1に示した活性
汚泥用合成排水の処理試験を行った。処理試験は、はじ
めに1日に1回通気(通気量5vvm)を止め、固定化
汚泥を沈降させた後、上清(処理水)50mlを抜き取
り、新たに合成排水50mlを添加するFill an
d Draw法とした。その後Fill and Dr
awの回数を1日に1回から2回、3回と増やし、処理
の経過を観察した。添加されたBODは処理開始後2〜
3日でほぼ10分以下で90%以上除去されるようにな
った。その後、Fill and Drawの1日の当
たりの回数を増加させ、負荷を増加させたが、1日当り
10回、BOD容積負荷5kg/m・dayにおいて
も安定した処理結果が得られた。この値は標準的な活性
汚泥のBOD容積負荷0.5kg/m・dayの10
倍程度となる。このような処理試験は約3カ月間にわた
って行われたが固定化汚泥の形態は崩れずに使用するこ
とできた。汚泥あるいは微生物のPVAゲル包括固定に
おいては、固定化汚泥の最大濃度が約50,000mg
/lと本法の1/3程度と低く安定したBOD負荷範囲
も2〜3kg/m・day程度と考えられる。次に実
験例1により調製された固定化メタン発酵汚泥(25℃
乾燥、水分含量5%、膨潤後の粒系0.5〜2mm)
を、図2に示す容量100mlの反応器に充填率40
%、反応器当たりの汚泥濃度64,000mg/lとな
るよう添加し、温度35℃で実験例1に示したメタン発
酵汚泥用合成排水の5倍希釈排水(有機物濃度10,0
00mg/l、TOC濃度約4,000mg/l)の処
理試験を行った。処理試験は反応器下部より排水を供給
し、反応器上部より処理水を流出させる上向流処理方式
で行った。なお、流れのチャンネリングを防止するため
約10cm/minの上向流速となるように反応槽内液
を循環させた。これにより充填した固定化汚泥床は充填
比の40%から80%に膨張し、良好な上向流攪拌状態
を得ることできた。はじめに有機物負荷を1kg/m
・dayに設定し、処理経過を観察しながら徐々に負荷
を増加させたところ有機物負荷20kg/m・day
においてもTOC除去率は80%程度を示した。これ
は、通常のメタン発酵の処理速度2〜3kg/m・d
ayに比較し1桁高い速度であるとともに、現在最も処
理速度が高いといわれている上向流式嫌気汚泥床(UA
SB)法と同等の速度を示した。UASBはその安定範
囲が狭いこと等から考え本法は極めて有効な処理方法と
いえる。
[Examples] Immobilized activated sludge prepared in Experimental Example 1 (dried at 25 ° C., water content 6%, particle size after adjustment 0.5 to 2)
mm) in a reactor having a capacity of 100 ml shown in FIG. 1, a filling rate of 30%, and a sludge concentration of 50,000 mg / l per reactor.
Then, a treatment test of the synthetic wastewater for activated sludge shown in Experimental Example 1 was conducted at a temperature of 25 ° C. In the treatment test, first aeration was stopped once a day (aeration volume 5 vvm), the immobilized sludge was allowed to settle, 50 ml of the supernatant (treated water) was withdrawn, and 50 ml of synthetic wastewater was newly added.
d Draw method. After that, Fill and Dr
The number of aws was increased from once to twice, three times a day, and the progress of the treatment was observed. The added BOD is 2 to
It took about 10 minutes or less to remove 90% or more in 3 days. Thereafter, the number of times of Fill and Draw was increased per day to increase the load, but stable treatment results were obtained even at a BOD volume load of 5 kg / m 2 · day 10 times per day. This value is 10 for a standard activated sludge BOD volume load of 0.5 kg / m 2 · day.
It will be about double. Such a treatment test was conducted for about 3 months, but the form of the immobilized sludge could be used without breaking. In the PVA gel entrapping fixation of sludge or microorganisms, the maximum concentration of immobilized sludge is about 50,000 mg.
It is considered that the stable and stable BOD load range is as low as about 1/3 of the present method and about 2 to 3 kg / m 2 · day. Next, the immobilized methane fermentation sludge (25 ° C.) prepared in Experimental Example 1 was used.
(Drying, water content 5%, swelling granules 0.5-2 mm)
In a 100 ml capacity reactor shown in FIG.
%, The sludge concentration per reactor was 64,000 mg / l, and the temperature was 35 ° C., the methane fermentation sludge synthetic wastewater 5 times diluted wastewater (organic matter concentration 10, 0
A treatment test was carried out at a concentration of 00 mg / l and a TOC concentration of about 4,000 mg / l). The treatment test was performed by an upflow treatment method in which waste water was supplied from the lower part of the reactor and treated water was discharged from the upper part of the reactor. The liquid in the reaction vessel was circulated at an upward flow rate of about 10 cm / min in order to prevent flow channeling. As a result, the packed fixed sludge bed expanded from 40% to 80% of the packing ratio, and a good upflow stirring state could be obtained. First, load organic matter at 1 kg / m 2
・ When set to day and gradually increasing the load while observing the process progress, the organic load was 20 kg / m 2 · day.
The TOC removal rate was about 80%. This is a normal methane fermentation processing rate of 2-3 kg / m 2 · d
It has a speed that is an order of magnitude higher than that of ay and has the highest treatment speed at present. Upflow anaerobic sludge bed (UA
It showed the same speed as the SB) method. Considering that UASB has a narrow stable range, etc., this method can be said to be an extremely effective processing method.

【発明の効果】本発明により経済的且つ高効率な生物反
応法を提供され、例えば水処理に適用した場合、従来法
の包括固定化法に比べ菌体濃度が数倍高い固定化菌体が
得られ高いBOD負荷での処理が可能である。
INDUSTRIAL APPLICABILITY The present invention provides an economical and highly efficient biological reaction method, and when it is applied to, for example, water treatment, an immobilized bacterial cell having a bacterial cell concentration several times higher than that of the conventional comprehensive immobilization method is obtained. The obtained BOD can be processed at a high load.

【図面の簡単な説明】[Brief description of drawings]

図1は活性汚泥処理反応器、図2はメタン発酵処理用反
応器を示す。
FIG. 1 shows an activated sludge treatment reactor, and FIG. 2 shows a methane fermentation treatment reactor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 智雄 茨城県つくば市東1丁目1番3号 工業技 術院微生物工業技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomoo Suzuki, 1-3-1, Higashi 1-3, Tsukuba, Ibaraki Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 培養もしくは自然界より採取された微生
物を約70℃以下の温度で脱水し、固形形状のまま乾燥
し、水分含有率を85%以下に調製して得られた固定化
微生物を反応基質に接触させることを特徴とする生物反
応法。
1. An immobilized microorganism obtained by dehydrating a microorganism collected from culture or the natural world at a temperature of about 70 ° C. or lower, drying it in a solid form and adjusting the water content to 85% or less. A biological reaction method comprising contacting with a substrate.
JP7362292A 1992-02-12 1992-02-12 Immobilized microorganism reaction method Expired - Lifetime JPH0673451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7362292A JPH0673451B2 (en) 1992-02-12 1992-02-12 Immobilized microorganism reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7362292A JPH0673451B2 (en) 1992-02-12 1992-02-12 Immobilized microorganism reaction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62158461A Division JPS642569A (en) 1987-06-25 1987-06-25 Immobilized microorganism and reaction process thereof

Publications (2)

Publication Number Publication Date
JPH05192132A true JPH05192132A (en) 1993-08-03
JPH0673451B2 JPH0673451B2 (en) 1994-09-21

Family

ID=13523607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7362292A Expired - Lifetime JPH0673451B2 (en) 1992-02-12 1992-02-12 Immobilized microorganism reaction method

Country Status (1)

Country Link
JP (1) JPH0673451B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020011268A (en) * 2000-08-01 2002-02-08 이태환 Activation bacteria, water treating method of methane bacterium used multi-layer structure and activation bacteria cultivating method
WO2002018563A1 (en) * 2000-08-31 2002-03-07 Council Of Scientific And Industrial Research Method for the preparation of stable and reusable biosensing granules
US7252981B1 (en) 2000-08-31 2007-08-07 Council Of Scientific And Industrial Research Method for the preparation of stable and reusable biosensing granules
JP6490774B1 (en) * 2017-10-16 2019-03-27 日鉄住金環境株式会社 Method of treating organic wastewater and method of producing immobilized microorganism preparation
CN111003813A (en) * 2018-10-29 2020-04-14 江南大学 Method for determining optimum storage temperature of sulfur autotrophic denitrifying bacteria biofilm

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020011268A (en) * 2000-08-01 2002-02-08 이태환 Activation bacteria, water treating method of methane bacterium used multi-layer structure and activation bacteria cultivating method
WO2002018563A1 (en) * 2000-08-31 2002-03-07 Council Of Scientific And Industrial Research Method for the preparation of stable and reusable biosensing granules
DE10085484B4 (en) * 2000-08-31 2006-04-27 Council Of Scientific & Industrial Research Process for the preparation of stable and reusable bio-sensitive granules
US7252981B1 (en) 2000-08-31 2007-08-07 Council Of Scientific And Industrial Research Method for the preparation of stable and reusable biosensing granules
JP6490774B1 (en) * 2017-10-16 2019-03-27 日鉄住金環境株式会社 Method of treating organic wastewater and method of producing immobilized microorganism preparation
JP2019072662A (en) * 2017-10-16 2019-05-16 日鉄住金環境株式会社 Method of treating organic wastewater and method of producing immobilized microorganism preparation
CN111003813A (en) * 2018-10-29 2020-04-14 江南大学 Method for determining optimum storage temperature of sulfur autotrophic denitrifying bacteria biofilm
CN111003813B (en) * 2018-10-29 2021-05-28 江南大学 Method for determining optimum storage temperature of sulfur autotrophic denitrifying bacteria biofilm

Also Published As

Publication number Publication date
JPH0673451B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
Wu et al. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes
US4267049A (en) Biological sludge-energy recycling method
Hansen et al. Improving thermophilic anaerobic digestion of swine manure
US4342650A (en) Organic sludge-energy recycling method
Sun et al. Enhanced Aerobic Sludge Granulation by Seeding Concentrated Activated Sludge with Ca‐Alginate Gel
JPH05192132A (en) Reaction method for immobilized microorganism
JP2001523539A (en) Preparation method of microorganism culture for wastewater treatment
JP4172294B2 (en) Organic sludge treatment method and treatment system
JPH05111694A (en) Treatment of organic waste water
JP2002320949A (en) Dry methane fermentation process of organic waste
JPH012569A (en) immobilized microorganisms
JP2511331B2 (en) Method for treating wastewater containing methanol
JPH0739895A (en) Treating method and device for waste liquid containing organic solid content
JPH0448436B2 (en)
JPH0470079B2 (en)
Keluskar et al. Application of a rotating biological contactor and moving bed biofilm reactor hybrid in bioremediating surimi processing wastewater
JP4164906B2 (en) Organic sludge treatment equipment
JPS6018565A (en) Preparation of erosion
JPH0249709B2 (en)
JP4524522B2 (en) Treatment method for protein-containing wastewater
JPH0223237B2 (en)
JPH1190478A (en) Treatment of organic waste water by humic pellets
JPS62168592A (en) Waste water treatment unit
JPS62258798A (en) Biological treatment of water containing trace organic material
JPH0788498A (en) Method for removing and recovering phosphorus in phosphorus containing aqueous solution with microorganism

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term