JPH03126826A - Production of formed body of silicide-type intermetallic compound - Google Patents
Production of formed body of silicide-type intermetallic compoundInfo
- Publication number
- JPH03126826A JPH03126826A JP1265474A JP26547489A JPH03126826A JP H03126826 A JPH03126826 A JP H03126826A JP 1265474 A JP1265474 A JP 1265474A JP 26547489 A JP26547489 A JP 26547489A JP H03126826 A JPH03126826 A JP H03126826A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- silicide
- intermetallic compound
- vessel
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000765 intermetallic Inorganic materials 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000000843 powder Substances 0.000 claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000005275 alloying Methods 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 239000010935 stainless steel Substances 0.000 claims abstract description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 5
- 150000002739 metals Chemical class 0.000 claims abstract description 4
- 229910021332 silicide Inorganic materials 0.000 claims description 23
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 23
- 229910001209 Low-carbon steel Inorganic materials 0.000 claims description 7
- 239000000470 constituent Substances 0.000 claims description 7
- 238000005551 mechanical alloying Methods 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 238000001192 hot extrusion Methods 0.000 abstract description 11
- 229910052759 nickel Inorganic materials 0.000 abstract description 8
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- 238000007789 sealing Methods 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000001125 extrusion Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 238000007872 degassing Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 235000012438 extruded product Nutrition 0.000 description 2
- 229910017384 Fe3Si Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、シリサイド系金属間化合物成形体の製造方法
、特に一般に成形加工の困難なシリサイド系金属間化合
物から戒る管状体あるいは棒状体などの成形体の製造方
法に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a silicide-based intermetallic compound molded body, and in particular to a method for manufacturing a silicide-based intermetallic compound molded body, such as a tubular body or a rod-shaped body, which is generally difficult to mold. The present invention relates to a method for producing a molded article.
(従来の技術)
従来より、金属間化合物は優れた特性を有することが知
られている0例えば、TiMは優れた高温強度を有し、
N1tSiは優れた耐食性を有することが広く知られて
いが、常温および高温での展延性に乏しいので、従来の
加工技術では成形することが困難であるという問題点が
あった。特に、シリサイド系金属間化合物、つまり、N
t:+Si、 Pe5Siは熱間変形能が非常に悪く、
溶製材では、熱間押出し成形すると、細かく砕けたり、
大きなりランクが発生し良好な成形体を得ることが困難
であった。(Prior Art) It has been known that intermetallic compounds have excellent properties. For example, TiM has excellent high temperature strength,
Although N1tSi is widely known to have excellent corrosion resistance, it has poor malleability at room and high temperatures, making it difficult to mold using conventional processing techniques. In particular, silicide-based intermetallic compounds, that is, N
t:+Si, Pe5Si has very poor hot deformability;
When ingot lumber is hot extruded, it may break into small pieces or
It was difficult to obtain a good molded product due to the occurrence of a large rank.
これを解決する手段として、たとえば「塑性と加工J
vol、23、Na260 (1982−9)には側圧
付加押出し加工法が提案されている。これはTi −3
7wt%AQ合金部材を側圧を付加しながら押出し加工
するなどの特別な押出し成形法により難加工材の成形を
実現しようとする試みであるが、まだ十分に実用化され
るには至っていない。As a means to solve this problem, for example, "Plasticity and Processing J.
Vol. 23, Na260 (1982-9) proposes a lateral pressure extrusion processing method. This is Ti-3
This is an attempt to mold a difficult-to-process material using a special extrusion method, such as extruding a 7wt% AQ alloy member while applying lateral pressure, but it has not yet been fully put into practical use.
また、他の手段として、特開昭63−247321号公
報には粉末冶金法によるTi−AQ系金金属間化合物成
形方法も提案されている。Furthermore, as another means, Japanese Patent Application Laid-open No. 63-247321 proposes a method for forming a Ti-AQ gold intermetallic compound using a powder metallurgy method.
(発明が解決しようとする課題)
しかし、シリサイド系金属間化合物自体の成形方法につ
いて報告がなされていない、従来は成形の対象とは考え
られていなかったのである。(Problems to be Solved by the Invention) However, there has been no report on the method for forming the silicide-based intermetallic compound itself, and it has not been considered to be an object of forming in the past.
前述のようにシリサイド系金属間化合物は、優れた機能
および特性を有し熱電材料としての使用が期待されてい
る他に、構造用材料としても優れた特性、たとえば超耐
食性を有していることが知られており、実用化が期待さ
れているが、溶製材では一般に成形加工が困難であり構
造用材料として広く実用化されるに至っていないのが現
状である。As mentioned above, silicide-based intermetallic compounds have excellent functions and properties, and are expected to be used as thermoelectric materials.In addition, they also have excellent properties as structural materials, such as super corrosion resistance. is known and is expected to be put to practical use.However, it is generally difficult to mold ingots, so it has not yet been widely put into practical use as a structural material.
ここに、本発明の一般的な目的は、シリサイド系金属間
化合物の簡便な成形方法を提供することである。A general object of the present invention is to provide a simple method for forming a silicide-based intermetallic compound.
また、本発明のより具体的目的は、上記の従来技術より
もさらに容易に、シリサイド系金属間化合物から少なく
とも一部が構成された管・棒状体、およびシリサイド系
金属間化合物を少なくとも一部に含む管・棒状体の製造
方法を提供することである。Further, a more specific object of the present invention is to provide a pipe/rod-like body at least partially composed of a silicide-based intermetallic compound, and a pipe/rod-shaped body that is at least partially composed of a silicide-based intermetallic compound, more easily than the above-mentioned prior art. It is an object of the present invention to provide a method for manufacturing a tube/rod-shaped body containing the present invention.
(課題を解決するための手段)
上記目的を達成するため、本発明者等は、さらに容易に
金属間化合物成形体を製造する方法について研究を行っ
た結果、溶製材では成形が困難であるが、難加工材でも
金属粉末を使用すると成形できるものが多くあることに
着想し、まずそもそもそのようなことで化合物形成が可
能であるのか、またそれが可能としてもそれによって所
望形状への成形が可能であるのか、それらの点について
検討を重ねた。その結果、シリサイド系金属間化合物の
場合、該金属間化合物の各構成元素粉末を予め均一に混
合し、これを合金化反応温度以上に加熱後、熱間押出し
成形することにより、成形性の良好な金属間化合物成形
体あるいは金属間化合物を含む成形体が得られることを
見い出し、本発明を完成するに至った。(Means for Solving the Problem) In order to achieve the above object, the present inventors conducted research on a method for manufacturing an intermetallic compound molded product more easily, and found that although molding is difficult with ingot material, , got the idea that there are many difficult-to-process materials that can be molded using metal powder, and first of all, whether it is possible to form a compound by such a method in the first place, and even if it is possible, it is difficult to mold it into the desired shape. We have repeatedly considered these points to see if it is possible. As a result, in the case of silicide-based intermetallic compounds, good formability can be achieved by uniformly mixing the constituent element powders of the intermetallic compound in advance, heating this to a temperature higher than the alloying reaction temperature, and then hot extrusion molding. The present inventors have discovered that an intermetallic compound molded article or a molded article containing an intermetallic compound can be obtained, and have completed the present invention.
ここに、本発明は、Siとシリサイド系金属間化合物を
構成する金属元素粉末とSi粉末とを混合し、得られた
粉末混合体を加工性の良好な金属容器内に充填し、充填
終了後、真空脱気してから該金属容器を封口し、前述の
両金属の合金化反応温度以上の温度にて、前記金属容器
を熱間押出しして所定形状に成形することを特徴とする
シリサイド系金属間化合物成形体の製造方法である。Here, the present invention mixes a metal element powder constituting Si and a silicide-based intermetallic compound with Si powder, fills the obtained powder mixture into a metal container with good workability, and after filling is completed. , a silicide system characterized in that the metal container is sealed after vacuum degassing, and the metal container is hot extruded and formed into a predetermined shape at a temperature higher than the alloying reaction temperature of both metals. This is a method for producing an intermetallic compound molded body.
なお、前記Si粉末と金属間化合物の構成金属元素粉末
とを混合するに際しては、無酸化雰囲気中で機械的合金
化法により均一化混合時間をコントロールし、前記両金
属の合金化反応温度を調整するようにしてもよい、なお
、かかる機械的合金化法は充填率の改善にも効果がある
。In addition, when mixing the Si powder and the constituent metal element powder of the intermetallic compound, the uniform mixing time is controlled by a mechanical alloying method in a non-oxidizing atmosphere, and the alloying reaction temperature of the two metals is adjusted. Note that such a mechanical alloying method is also effective in improving the filling rate.
(作用)
本発明の構成について添付図面を参照しながら詳細に説
明する。(Operation) The configuration of the present invention will be described in detail with reference to the accompanying drawings.
第1図は、本発明によって棒状体を成形する場合の粉末
充填操作の略式説明図である。FIG. 1 is a schematic explanatory diagram of a powder filling operation when molding a rod-shaped body according to the present invention.
例えばXiとSi1あるいはFeとSIというように目
的金属粉末を所定割合で混合して得た粉末混合体lは加
工性の良好な金属容器2内に充填され、ついで好ましく
は加熱しながら容器内部を真空に引き、一定の真空度が
達成されたならば、脱気口3を封止する。このようにし
て準備された粉末混合体を次いで所定温度に加熱後、押
出成形用ビレットとして押し出し加工するのである。For example, a powder mixture l obtained by mixing target metal powders such as Xi and Si1 or Fe and SI in a predetermined ratio is filled into a metal container 2 with good workability, and then the inside of the container is preferably heated. After evacuating and achieving a certain degree of vacuum, the deaeration port 3 is sealed. The powder mixture thus prepared is then heated to a predetermined temperature and then extruded into a billet for extrusion molding.
第2図は、管状体を形成する場合を示すもので、粉末混
合体4を二重円筒体をI威する金属容器5の環状空間内
に充填する。この場合も第1図のそれと同様に容器内を
減圧してから脱気口6を封止し、押出成形用のビレット
を構成する。FIG. 2 shows the case of forming a tubular body, in which the powder mixture 4 is filled into the annular space of a metal container 5 containing a double cylindrical body. In this case as well, the inside of the container is depressurized and the deaeration port 6 is sealed, as in the case of FIG. 1, to form a billet for extrusion molding.
このようにして準備された押出威形用ビレットは次いで
慣用の押出l成形により所定形状の管、棒状体に成形さ
れる。The extrusion-forming billet thus prepared is then formed into a tube or rod-like body of a predetermined shape by conventional extrusion molding.
以下、本発明における加工工程を順を追って説明する。Hereinafter, the processing steps in the present invention will be explained in order.
Siとシリサイド系金属間化合物を形成する構成金属元
素としては、これまで知られているものは、Niおよび
Feまたはこれらの組合せである。したがって、これら
とsi!5)末とを適宜割合、例えば旧zSi系では8
〜16i+t%Si : 92〜84wt%Niの割合
で配合し、混合する。The constituent metal elements that form a silicide-based intermetallic compound with Si are Ni and Fe, or a combination thereof. Therefore, these and si! 5) Appropriate proportion of the end and end, for example, 8 for old zSi system
~16i+t%Si: Blend and mix at a ratio of 92 to 84wt%Ni.
本発明で使用するSi粉末と金属間化合物の構成元素粉
末との各粒径は150μ以下が望ましい。これは合金化
反応温度を下げるためと均一な組成にするためである。The particle size of the Si powder and the constituent element powder of the intermetallic compound used in the present invention is preferably 150 μm or less. This is to lower the alloying reaction temperature and to make the composition uniform.
このようにして用意された金属粉末は加工性の良好な金
属容器内に充填される。The metal powder thus prepared is filled into a metal container with good workability.
ここで、加工性の良好な金属容器とは、軟鋼、低炭素鋼
、ステンレス鋼およびNi基合金C例:A11oy62
5)のように熱間押出し温度において展延性の良好な金
属または熱間押出し温度において展延性が良好、かつ、
熱間変形抵抗の大きい金属で容器の肉厚は1〜4111
1が望ましい。これは、熱間押出し成形時、ダイスとマ
ンドレルとの接触は金属容器で起こり、この金属容器の
熱間展延性が押出し成形体の成形性に影響を及ぼすため
である。Here, metal containers with good workability include mild steel, low carbon steel, stainless steel, and Ni-based alloy C example: A11oy62
5) A metal with good malleability at hot extrusion temperature or a metal with good malleability at hot extrusion temperature, and
The wall thickness of the container is 1 to 4111 mm, which is a metal with high hot deformation resistance.
1 is desirable. This is because during hot extrusion molding, contact between the die and the mandrel occurs in the metal container, and the hot malleability of the metal container affects the formability of the extruded product.
前記金属容器内への粉末充填時の充填粉末の相対密度は
40%以上とするのが好ましい。充填粉末相対密度が4
0%未満の時には熱間押出し成形体に座屈が発生し良好
な成形体が得られない場合があるからである。It is preferable that the relative density of the packed powder at the time of filling the powder into the metal container is 40% or more. Filled powder relative density is 4
This is because if it is less than 0%, buckling may occur in the hot extrusion molded product and a good molded product may not be obtained.
各金属間化合物構成元素の粉末の混合は単に均一に配合
するだけでもよいが、場合によっては予めこの配合の段
階で眉間距離を小さくすることにより、金属間化合物形
成を起こし易くしておいてもよい、これはいわゆる機械
的合金化法と言われものである。The powders of the constituent elements of each intermetallic compound may be simply blended uniformly, but in some cases, the distance between the eyebrows may be reduced in advance at this blending stage to facilitate the formation of intermetallic compounds. Yes, this is what is called a mechanical alloying method.
このような機械的合金化法は、ボールミル、バイブロボ
ット、アトライタ等を使用して金属Si粉末と金属間化
合物の構成金属元素粉末とを粉砕、所定割合で均一に混
合し粉末表面拡散を起こさせ、粉末充填密度を高めると
ともに合金化反応温度を低下させ、熱間押出し前の加熱
温度以下とすることができる利点がある。なお、この機
械的合金化処理は、混合粉末表面の酸化および窒化を防
止するため、I Xl0−’msHg以上の真空度の真
空中またはAr、 He等の不活性雰囲気中で行い耐食
性能、展延性の低下を防止するようにしてもよい。Such a mechanical alloying method uses a ball mill, a vibratory robot, an attritor, etc. to crush the metallic Si powder and the constituent metal element powder of the intermetallic compound, mix them uniformly in a predetermined ratio, and cause the powder surface diffusion. This has the advantage of increasing the powder packing density and lowering the alloying reaction temperature, which is lower than the heating temperature before hot extrusion. In order to prevent oxidation and nitridation of the surface of the mixed powder, this mechanical alloying treatment is performed in a vacuum with a vacuum level of I It may also be possible to prevent a decrease in ductility.
なお、シリサイド系金属間化合物の場合、各元素の合金
化反応開始温度は、Ni、Si系ではは\′940’C
,Fe5Si系でばはV105Q”cであるが、これは
上述の機械的合金化を行うことにより、それぞれ合金化
反応開始温度を数理から数百度低くすることができる。In the case of silicide-based intermetallic compounds, the alloying reaction initiation temperature of each element is \'940'C for Ni and Si-based compounds.
, Fe5Si type is V105Q''c, and by performing the above-mentioned mechanical alloying, the alloying reaction start temperature can be mathematically lowered by several hundred degrees.
粉末混合体を充填してから金属容器は押し出し成形に先
立って真空脱気されるが、そのための真空脱気処理条件
としては常温から500 ’Cまでの温度に加熱し、1
×10〜’mmHg以上の真空度で10分以上保持する
ことが望ましい、これは粉末表面の吸着ガスおよび吸着
水を効率よく除去するためであり、これにより製品の品
質の向上が図れる。なお、封口は真空状態で行い充填粉
末内の空孔中への空気混入はさける必要がある。熱間押
出し前の加熱温度は合金化反応温度以上固相線温度以下
にする。After filling the powder mixture, the metal container is vacuum degassed prior to extrusion molding.
It is desirable to hold the powder at a vacuum level of 10 to 10 mmHg or more for 10 minutes or more, in order to efficiently remove adsorbed gas and water on the powder surface, thereby improving the quality of the product. In addition, it is necessary to perform the sealing in a vacuum state to avoid air intrusion into the pores in the filling powder. The heating temperature before hot extrusion is set to be above the alloying reaction temperature and below the solidus temperature.
これは熱間押出し成形過程までに元素量拡散を起こさせ
るとともに粉末微細結晶粒化による組成流動を利用して
良好な押出し成形体を得るためと、固相線温度以上にす
ると大きな偏析が発生し成形性が極端に低下するからそ
れを避けるためである。This is done in order to cause the element content to diffuse before the hot extrusion process and to obtain a good extruded product by utilizing the compositional flow caused by the fine graining of the powder, and also because large segregation occurs when the temperature exceeds the solidus temperature. This is to avoid an extreme drop in moldability.
熱間押出し温度は加熱温度と同等あるいはそれより10
0℃低い温度の間が望ましい。これは、温度低下が大き
いと熱間変形抵抗が著しく増大し、押出し成形が困Wf
tためと、真密度に近い密度が得られないためである。The hot extrusion temperature is equal to or 10% higher than the heating temperature.
A temperature lower than 0°C is desirable. This is because when the temperature drop is large, the hot deformation resistance increases significantly, making extrusion molding difficult.
This is because a density close to the true density cannot be obtained.
熱間押出しは慣用の手段によって行えばよく、その場合
、押出し比に関しては常温延性を確保するために4以上
が望ましい。また、Ni、Si系の場合、加熱温度は1
100°C以下が好ましい。また成形温度は!000℃
以上が好ましい。Hot extrusion may be carried out by conventional means, and in that case, the extrusion ratio is preferably 4 or more in order to ensure cold ductility. In addition, in the case of Ni and Si systems, the heating temperature is 1
The temperature is preferably 100°C or less. Also, what is the molding temperature? 000℃
The above is preferable.
(実施例) 本発明を実施例により具体的に説明する。(Example) The present invention will be specifically explained with reference to Examples.
実施例1
粒径74JJI未溝のSi粉末13wt%と粒径4〜7
μのN1FA末87wt%とを、Arガス雰囲気のボー
ルミルにて0=18hr混合し、得られた粉末混合体l
を第1図に示した3II11厚の5US304ステンレ
ス鋼製容器2に脱気口3より相対密度40〜52%に充
填後、脱気口から真空引きを行い、400℃X1hr加
熱しなから1×10−〜−〇gで脱気後、封口する。こ
の5US304鋼製容器を900−1150’Cに加熱
後、直ちにユジーン式熱間押出し機により850〜11
00℃で押出し成形を行い、体積割合で80%を占める
シリサイド系金属間化合物を含む棒状体を作成した。得
られた棒状体の成形性を評価した。Example 1 Particle size 74 JJI ungrooved Si powder 13 wt% and particle size 4 to 7
The powder mixture l obtained by mixing 87 wt% of N1FA powder of μ in a ball mill in an Ar gas atmosphere for 0 = 18 hr.
After filling the container 2 made of 5US304 stainless steel with a thickness of 3II11 shown in Fig. 1 through the degassing port 3 to a relative density of 40 to 52%, the degassing port was evacuated and heated at 400°C for 1 hr. After degassing with 10-~-〇g, seal it. After heating this 5US304 steel container to 900-1150'C, it was immediately heated to 850-1100C using a Eugene hot extruder.
Extrusion molding was performed at 00° C. to create a rod-shaped body containing a silicide-based intermetallic compound accounting for 80% by volume. The moldability of the obtained rod-shaped body was evaluated.
その結果を成形条件とともに試料Nal〜4として第1
表に示す、同表には従来例として溶製材の製造例も試料
N[L7として示す。The results are summarized as sample Nal~4 along with the molding conditions.
In the same table, an example of production of ingot material is also shown as sample N[L7 as a conventional example.
実施例2
それぞれ粒径10μ未満および74μ未満のSt粉末1
1−(%と粒径4〜7μおよび74メ澗未満のNi1I
)末89−1%とを、Arガス雰囲気のアトライクにて
0〜30mtn混合し、得られた粉末混合体4を第2図
に示した21111厚の5S34軟鋼製容H5に脱気口
6より充填後、脱気口6から真空引きを行い、300″
CXIhr加熱しなからIXIP”mdgで脱気後、封
口した。Example 2 St powder 1 with particle size less than 10μ and less than 74μ, respectively
1-(% and Ni1I with particle size 4-7μ and less than 74mm)
) and 89-1% powder were mixed for 0 to 30 mtn in an Ar gas atmosphere attrike, and the obtained powder mixture 4 was poured into a 5S34 mild steel volume H5 with a thickness of 21111 as shown in Fig. 2 through a degassing port 6. After filling, vacuum is drawn from the degassing port 6 to 300"
After heating with CXIhr, it was degassed with IXIP"mdg and then sealed.
この5S34軟鋼製容器を1100°Cに加熱後、直ち
にユジーン式熱間押出し機により1050“Cで押出し
製管を行い、体積割合で60%を占めるシリサイド系金
属間化合物を含む管状体を作成し、このときの成形性を
評価した。その結果を製造条件とともに第1表に試料阻
5.6として示す。After heating this 5S34 mild steel container to 1100°C, it was immediately extruded at 1050°C using a Eugene hot extruder to create a tubular body containing a silicide-based intermetallic compound that accounted for 60% by volume. The moldability at this time was evaluated.The results are shown in Table 1 as sample weight 5.6 along with the manufacturing conditions.
実施例3
粒径53p未満のS+粉末14.4wt%と粒径149
μのFe粉末85.6wt%とを、Arガス雰囲気のボ
ールミルにて18hr混合し、得られた粉末混合体4を
第2図に示した2開厚の5534軟綱製容器5に脱気口
6より充填後、脱気口6から真空引きを行い、400
’CX1hr加熱しながらI X 10− ’mmt1
gで脱気後、封口した。この5S34軟鋼製容器を11
50“Cに加熱後、直ちにユジーン式熱間押出し機によ
り1100°Cで押出し製管を行い、体積割合で95%
を占めるFe3Siを含むシリサイド系金属間化合物の
管状体を作成し、この時の成形性を評価した。その結果
を製造条件とともに第2表に試料Nα1として示す。同
表には従来例として溶製材の製造例を試料狙2として示
す。Example 3 14.4 wt% S+ powder with particle size less than 53p and particle size 149
85.6 wt% of Fe powder is mixed with 85.6 wt% of Fe powder in an Ar gas atmosphere for 18 hours, and the obtained powder mixture 4 is placed in a 5534 soft steel container 5 with 2 openings shown in Fig. 2 with a degassing port. After filling from No. 6, vacuum is drawn from degassing port No. 6, and 400
'CX1hr while heating I X 10-'mmt1
After degassing with g, the container was sealed. This 5S34 mild steel container is 11
After heating to 50"C, extrusion tube production is immediately performed at 1100°C using a Eugene hot extruder, and the volume ratio is 95%.
A tubular body of a silicide-based intermetallic compound containing Fe3Si was prepared, and its formability was evaluated. The results are shown in Table 2 as sample Nα1 along with the manufacturing conditions. In the same table, an example of production of ingot lumber is shown as sample 2 as a conventional example.
第2表
(発明の効果)
本発明は以上説明したようにfl戊されているから、従
来成形が極めて困難であったシリサイド系金属間化合物
の成形加工性の良好な管状体および棒状体の製造が可能
となり、産業上極めて有益である。Table 2 (Effects of the Invention) As explained above, since the present invention is fl-shaped, it is possible to manufacture tubular bodies and rod-shaped bodies with good moldability of silicide-based intermetallic compounds, which were extremely difficult to mold in the past. This makes it possible to achieve this, which is extremely useful industrially.
第1図および第2図は、本発明に用いるシリサイド系金
属間化合物粉末ビレットの成形性の様子を説明する略式
縦断面図である。
1 : NiとSiの粉末混合体
2ニステンレス鋼製容器
3:脱気孔
4 : NiとSiの粉末混合体又はPaとStの粉末
混合体
5:軟鋼製容器
6:脱気孔
出願天 住友金属工業株式会社FIGS. 1 and 2 are schematic longitudinal cross-sectional views illustrating the formability of the silicide-based intermetallic compound powder billet used in the present invention. 1: Ni and Si powder mixture 2 Stainless steel container 3: Deaeration hole 4: Ni and Si powder mixture or Pa and St powder mixture 5: Mild steel container 6: Deaeration hole Application location Sumitomo Metal Industries, Ltd. Co., Ltd.
Claims (4)
元素粉末とSi粉末とを混合し、得られた粉末混合体を
加工性の良好な金属容器内に充填し、充填終了後、真空
脱気してから該金属容器を封口し、前述の両金属の合金
化反応温度以上の温度にて、前記金属容器を熱間押出し
して所定形状に成形することを特徴とするシリサイド系
金属間化合物成形体の製造方法。(1) Mix Si powder with metal element powder constituting Si and silicide-based intermetallic compounds, fill the resulting powder mixture into a metal container with good workability, and after filling, vacuum degas After that, the metal container is sealed, and the metal container is hot-extruded to form a predetermined shape at a temperature higher than the alloying reaction temperature of both metals. How the body is manufactured.
とを混合する際に、無酸化雰囲気中で機械的合金化法に
より均一化混合し、前記合金化反応温度を調整する請求
項1記載のシリサイド系金属間化合物成形体の製造方法
。(2) When mixing the Si powder and the constituent metal element powder of the intermetallic compound, the mixture is homogenized by a mechanical alloying method in a non-oxidizing atmosphere, and the alloying reaction temperature is adjusted. A method for producing a silicide-based intermetallic compound molded body.
以上とする請求項1またに2記載のシリサイド系金属間
化合物成形体の製造方法。(3) The relative density of the powder packed into the metal container is 40%.
The method for producing a silicide-based intermetallic compound molded body according to claim 1 or 2, wherein the method is as follows.
はNi基合金からなる請求項1、2または3記載のシリ
サイド系金属間化合物成形体の製造方法。(4) The method for producing a silicide-based intermetallic compound molded body according to claim 1, 2 or 3, wherein the metal container is made of low carbon steel, stainless steel or Ni-based alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1265474A JPH03126826A (en) | 1989-10-12 | 1989-10-12 | Production of formed body of silicide-type intermetallic compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1265474A JPH03126826A (en) | 1989-10-12 | 1989-10-12 | Production of formed body of silicide-type intermetallic compound |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03126826A true JPH03126826A (en) | 1991-05-30 |
Family
ID=17417674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1265474A Pending JPH03126826A (en) | 1989-10-12 | 1989-10-12 | Production of formed body of silicide-type intermetallic compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03126826A (en) |
-
1989
- 1989-10-12 JP JP1265474A patent/JPH03126826A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5561829A (en) | Method of producing structural metal matrix composite products from a blend of powders | |
EP1405927B1 (en) | Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom | |
US4050143A (en) | Method of producing dense metal tubes or the like | |
US2809891A (en) | Method of making articles from aluminous metal powder | |
US3954458A (en) | Degassing powder metallurgical products | |
US5445787A (en) | Method of extruding refractory metals and alloys and an extruded product made thereby | |
US4365996A (en) | Method of producing a memory alloy | |
US6332907B1 (en) | Alloy for producing metal foamed bodies using a powder with nucleating additives | |
JPH0130898B2 (en) | ||
WO2004085689A1 (en) | Magnesium alloy of high strength and high toughness and method for production thereof | |
US4143208A (en) | Method of producing tubes or the like and capsule for carrying out the method as well as blanks and tubes according to the method | |
US3296695A (en) | Production of plural-phase alloys | |
US5445790A (en) | Process for densifying powder metallurgical product | |
JPH03126826A (en) | Production of formed body of silicide-type intermetallic compound | |
JPH0466607A (en) | Production of highly corrosion resistant ni-base alloy tube | |
JP2004156092A (en) | Porous metal having excellent energy absorbability, and production method therefor | |
JPS5834103A (en) | Production of niti alloy | |
JPS62224602A (en) | Production of sintered aluminum alloy forging | |
JP2000256766A (en) | HOT WORKING METHOD FOR CuNiFe ALLOY | |
JPH0456095B2 (en) | ||
US5860313A (en) | Method of manufacturing press-formed product | |
Swiostek et al. | Hydrostatic extrusion at 100° C and its effect on the grain size and mechanical properties of magnesium alloys | |
JPH032335A (en) | Manufacture of titanium powder or titanium alloy powder sintered product | |
JPH0938750A (en) | Porous die material having excellent heat exchangeability | |
JPH0368723A (en) | Manufacture of aluminide hollow material |