JPH03123808A - Device for detecting defect of surface - Google Patents

Device for detecting defect of surface

Info

Publication number
JPH03123808A
JPH03123808A JP26231789A JP26231789A JPH03123808A JP H03123808 A JPH03123808 A JP H03123808A JP 26231789 A JP26231789 A JP 26231789A JP 26231789 A JP26231789 A JP 26231789A JP H03123808 A JPH03123808 A JP H03123808A
Authority
JP
Japan
Prior art keywords
image
workpiece
identification
binary
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26231789A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ishii
宏幸 石井
Takeshi Kunimi
国見 武
Takeshi Shinya
辰谷 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP26231789A priority Critical patent/JPH03123808A/en
Publication of JPH03123808A publication Critical patent/JPH03123808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To remove the ring part of a work and the ruggedness of a textured surface as a noise from an image for identification by illuminating the surface of the work from different directions and performing image processing by the logical operation of the change of binary signal to a picture element output before and after changing an irradiating position concerning a non-plane part where there is the difference of height. CONSTITUTION:A video output from a CCD camera 3 is converted to a binary image in a pre-processing part 6. The binary image whose picture element output exceeds a fixed value, for example, is displayed as a white image and the binary image whose picture element output does not satisfy the fixed value is displayed as a black image. At the stage of the conversion of binarization, both of a part which is along the side of the work on an illumination side and a fine projecting part on the surface of the work other than a defective part in right and left illuminated images are displayed as a white pattern in a black texture. Meanwhile, since the part other than the defective part is removed as the noise by the logical operation by a CPU 7, only defective part nearly remains as the white pattern in the image after the conversion. The area of the white pattern is measured by an identification part 8 and compared with a reference value. Then, the propriety is finally decided based on whether the measured value exceeds the reference value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、金属蒸着後のリードフレームの表面のよう
に微細な凹凸を有するいわゆる梨地面の中に存在する不
良部の検査に用いる表面不良検出装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is a method for inspecting a defective part that exists in a so-called matte surface that has minute irregularities, such as the surface of a lead frame after metal vapor deposition. This invention relates to a detection device.

〔従来の技術〕[Conventional technology]

ワーク表面の欠陥検出装置としては、例えば、東芝レビ
ュー(1989,44巻5号、P426〜)に示される
ように、ワークの上部及び下部がら被検出面に同時に照
明を当て、CCDカメラでその面の輝度を計測して不良
部を見つけ出すものがある。
For example, as shown in Toshiba Review (1989, Vol. 44, No. 5, P426~), a workpiece surface defect detection device illuminates the upper and lower surfaces of the workpiece at the same time and detects the surface using a CCD camera. There is a method that detects defective parts by measuring the brightness of the light.

また、欠陥の無い標準画像と実際のワーク画像を比較し
て欠陥部の画像を抽出する検出装置もある。
There is also a detection device that extracts an image of a defective part by comparing a standard image with no defects and an actual workpiece image.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した如き従来の装置は、正常な梨地面の中に存在す
る梨地とは異なる平面状の欠陥、例えばこすり傷やひっ
かき傷や付着異物の検出には利用できない。
The conventional device as described above cannot be used to detect planar defects different from the satin surface existing in a normal satin surface, such as abrasions, scratches, and adhering foreign matter.

何故なら、輝度の急変部を不良と見なす前者の装置では
、梨地面の凸部と欠陥部とが共に白斑として写るため両
者の正確な自動識別が望めない。
This is because with the former device, which considers sudden changes in brightness as defective, both convex parts and defective parts of the satin surface appear as white spots, and accurate automatic identification of the two cannot be expected.

差画像の有無から不良を検出する後者の装置についても
同様のことが云える。即ち、梨地面の検査では、その面
に不良個所が無くても、微細凹凸の不規則性に起因した
白斑が処理後の画像中に残留し、このため差画像中の白
斑が表面不良によるものなのかどうかの識別ができない
The same can be said of the latter device that detects defects based on the presence or absence of difference images. In other words, when inspecting a satin surface, even if there are no defective areas on the surface, white spots due to irregularities in minute asperities remain in the image after processing, and therefore white spots in the difference image are caused by surface defects. It is not possible to determine whether

また、リードフレームのパターン自体の境界も、欠陥部
と自動的に識別する必要があるため、境界の像も同様に
除去し、純粋に欠陥部のみの画像を残さなければならな
い。
Furthermore, since the boundaries of the lead frame pattern itself need to be automatically identified as defective parts, images of the boundaries must be removed in the same way, leaving an image of only the defective parts.

二のような事情から金属蒸着後のリードフレーム等の表
面検査は顕微鏡を用いた目視検査に頬っているが、これ
では作業の効率化が望めない。
Due to the second reason, surface inspection of lead frames and the like after metal deposition is done by visual inspection using a microscope, but this method does not improve work efficiency.

この発明の目的は、上記の課題の有効な解決策となる表
面不良検出装置を提供することである。
An object of the present invention is to provide a surface defect detection device that is an effective solution to the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の表面不良検出装置は、ワークの梨地状凹凸を
有する表面に存在する平面状の不良部を検出するための
装置であって、 ワークの表面を写す画像入力装置と、入力画像を二値画
像に変換する前処理部と、ワークの周辺に配置する複数
の光源と、複数の二値画像を取込んでこれを識別用の画
像に変換する演算処理部と、変換画像の識別部とを有し
ている。この装置は、複数の光源が排他的に点灯してワ
ーク表面を斜め上方の異方角位置から照らす。また、演
算処理部が各光源の点灯時に得られる二値画像を論理演
算して照射方向の変動により二値信号が変化した画素に
ついてはこれをノイズとして識別用画像から消去する。
The surface defect detection device of the present invention is a device for detecting a planar defect existing on the surface of a workpiece having satin-like unevenness. A preprocessing unit that converts the image into an image, a plurality of light sources placed around the workpiece, an arithmetic processing unit that takes in a plurality of binary images and converts it into an image for identification, and a conversion image identification unit. have. In this device, a plurality of light sources are turned on exclusively to illuminate the work surface from diagonally upward and diagonal positions. Further, the arithmetic processing section performs a logical operation on the binary image obtained when each light source is turned on, and deletes pixels whose binary signals have changed due to fluctuations in the irradiation direction from the identification image as noise.

即ち、ノイズと判断した画素は背景と同色にして不良部
のみを抽出した画像を作る。そして、識別部が変換後の
残留画像の面積を計測し、その値が基準値を上回ればワ
ーク表面に異常育りと判定する。
That is, pixels determined to be noise are made the same color as the background to create an image in which only defective parts are extracted. Then, the identification unit measures the area of the residual image after conversion, and if the value exceeds a reference value, it is determined that there is abnormal growth on the workpiece surface.

〔作用〕[Effect]

ワーク表面を異方向から照らすと、高低差のある非平面
部については照射位置変更前後の画素出力に二値信号の
変化を伴う変化が起こるので、論理演算による画像処理
を行って、ワークの輪部及び梨地面の凹凸をノイズとし
て識別用画像中から除去することができる。
When the work surface is illuminated from different directions, the pixel output before and after changing the irradiation position will change with a change in the binary signal for non-flat areas with height differences. It is possible to remove the unevenness of the part and the satin surface from the identification image as noise.

その原理を判り易く解説したのが第3図乃至第5図であ
る。
Figures 3 to 5 explain the principle in an easy-to-understand manner.

先ず、ワークの輪郭であるが、斜め上方がらの照明の効
果により、第3図Ca)の左照明画像では、ワークのパ
ターン20の左側の斜面部22は明るく輝くが他の部分
は暗(観測される。しがし、同図(blの右照明画像で
は高輝度部はワーク右側の斜面部に移る。このように高
さ方向に段差のある部分は照明方向を変えることにより
、影の位置が変わってくる。
First, regarding the contour of the workpiece, due to the effect of diagonally upward illumination, in the left illumination image of Fig. 3 Ca), the slope part 22 on the left side of the workpiece pattern 20 shines brightly, but the other parts are dark (observable). However, in the right illumination image in the same figure (bl), the high brightness area moves to the sloped area on the right side of the workpiece.In this way, the position of the shadow can be adjusted by changing the illumination direction for areas with steps in the height direction. will change.

第4図に示す21中の凸部24の照明画像についても第
3図と同じ事が言えるが、第5図に示す平面不良部25
については、左照明、右照明時とも25の面は明るく映
り不変である。
The same thing can be said about the illumination image of the convex portion 24 in 21 shown in FIG. 4 as shown in FIG.
, the surface 25 appears bright and unchanged in both left and right illumination.

従って、今、明るい部分の2値化後の信号を1、暗い部
分を0と考えると、第3図及び第4図では(a)と(b
)の論理積により全画像が0となり処理後の画像(C)
から凹凸部が除去される。それに対し第5図では(a)
と(b)の論理積をとると不良部は1、他は0となり不
良部を抽出できる。この原理から梨地状凹凸のある部分
に存在する平面状の不良部のみを抽出することが可能で
ある。
Therefore, if we consider that the signal after binarization of the bright part is 1 and the dark part is 0, in Figs. 3 and 4, (a) and (b)
), the entire image becomes 0, and the image after processing (C)
The uneven portion is removed from the surface. On the other hand, in Figure 5 (a)
When the AND of (b) is taken, the defective part becomes 1 and the others become 0, allowing the defective part to be extracted. Based on this principle, it is possible to extract only planar defects existing in areas with satin-like unevenness.

論理和による場合も、上の信号1、Oの関係を逆にOl
lに定めれば不良部の論理和はI、他のそれは全てOと
なり、不良部の抽出が行える。
Also in the case of logical sum, the relationship between the above signals 1 and O is reversed and Ol
If it is set to l, the logical sum of the defective part becomes I, and all others become O, and the defective part can be extracted.

この発明の装置のアルゴリズムは、このように、梨地面
中の平面状不良部のみを抽出し、その面積を基準値と比
較して良否の判定を下すので、梨地面の高精度検査が可
能になる。
In this way, the algorithm of the device of this invention extracts only the planar defective part in the pear-shaped surface and compares its area with the reference value to determine whether it is good or bad, making it possible to perform high-precision inspection of the pear-shaped surface. Become.

〔実施例〕〔Example〕

第1図及び第2にこの発明の装置の一実施例を示す。 FIGS. 1 and 2 show an embodiment of the apparatus of the present invention.

第1図の20は被検査ワーク、例えばアルミ蒸着後のリ
ードフレームである。2はワークの上面に対面させた顕
微鏡、3は2に接続したカメラ、4.5はカメラの視野
中心の左右に180°位置を変えて配置した照明用のラ
イトである。なお、図のカメラ3は固体撮像デバイスに
CCDエリアセンサ3aを用いたCCDカメラである。
Reference numeral 20 in FIG. 1 is a workpiece to be inspected, for example, a lead frame after aluminum vapor deposition. 2 is a microscope facing the top surface of the workpiece, 3 is a camera connected to 2, and 4.5 is an illumination light placed 180° to the left and right of the center of the camera's field of view. Note that the camera 3 in the figure is a CCD camera using a CCD area sensor 3a as a solid-state imaging device.

第2図はこの発明の検出装置1の全体をブロック図で表
わしたものである。同図から判るように、CCDカメラ
3からの映像出力は前処理部6で二値画像に変換される
。その二値画像は、画素出力が一定値を越えたもの(高
輝度部を捕えた画素)は例えば、白画素、一定値に満た
ないもの(低輝度部を捕えた画素)は黒画素として表示
される。また、左照明画像、右照明画像とも二値変換の
段階では不良部以外にもワークの照明側の辺に沿った部
分とワーク表面上の微細凸部が共に黒地中に自模様で表
われているが、左右の照明画像に二値信号の変化がある
部分、即ち、不良部以外の部分については、この後、C
PU?が論理演算してノイズとして除去するので、変換
後の画像中にはは一′不良部のみが自模様で残る。この
残された自模様の面積を識別部8で計測し、基準値と比
較して基準値を越したかどうかで最終的に良否の判定を
下す。
FIG. 2 is a block diagram showing the entire detection device 1 of the present invention. As can be seen from the figure, the video output from the CCD camera 3 is converted into a binary image by the preprocessing section 6. In the binary image, those whose pixel output exceeds a certain value (pixels that capture high-brightness areas) are displayed as white pixels, and those whose pixel output is less than a certain value (pixels that capture low-brightness areas) are displayed as black pixels. be done. In addition, in both the left and right illumination images, in addition to the defective parts, the parts along the side of the workpiece on the illumination side and minute convexities on the workpiece surface appear as self-patterns in the black background. However, for parts where there is a change in the binary signal in the left and right illumination images, that is, parts other than defective parts, we will use C after this.
PU? is removed as noise by a logical operation, so only the 1' defective part remains as a self-pattern in the converted image. The area of the remaining self-pattern is measured by the identification section 8, and compared with a reference value, and a final judgment is made as to whether it is good or bad based on whether it exceeds the reference value.

なお、ライトはワークを中心とした円をN等分する角位
に配置するのが望ましい。また、その設置数は、ライト
固定の場合には少な(とも2個設けるが、旋回機構を設
けてワークの周囲を周回させながら移動途中の定点でワ
ークを照らす構造にすればライトは1個でもよい。後者
の方式は機構的には複雑になるが、照射方向の変更が可
能であり、照射位置も制限無く増加させ得る。
Note that it is desirable that the lights be placed at angles that divide a circle centered on the work into N equal parts. In addition, if the lights are fixed, the number of lights to be installed is small (two lights are installed in each case, but if the structure is such that the workpiece is illuminated at a fixed point while moving around the workpiece with a rotating mechanism, only one light is required). Good. Although the latter method is mechanically more complex, the irradiation direction can be changed and the irradiation position can be increased without limit.

このほか、顕微鏡は、数ミクロフル十数ミクロンと極め
て微細なリードフレーム表面の梨地状凹凸の場合、相当
の倍率で拡大しないとノイズとして処理し難いために設
けたが、ワークの種類によっては、これを省くことがで
きる。
In addition, the microscope was installed because it is difficult to treat as noise when there are extremely fine unevenness on the lead frame surface, ranging from several microns to tens of microns, unless it is magnified at a considerable magnification. can be omitted.

〔効果] 以上述べたように、この発明の検出装置では、ワークの
輪郭部の段差や表面の凹凸によって生じる画像がノイズ
として最終的に得られる識別用画像中から除去されるの
で、従来の装置では検出不能であった梨地面中の平面状
不良部を高精度に自動検出することが可能であり、IC
IJ−ドフレーム等の表面検査の効率化、信鯨性向上等
に貢献することができる。
[Effects] As described above, in the detection device of the present invention, images caused by steps on the outline of the workpiece or unevenness on the surface are removed as noise from the final identification image. It is possible to automatically detect flat defects in the satin surface with high accuracy, which could not be detected with IC.
It can contribute to improving the efficiency of surface inspection of IJ-do frames, etc., and improving reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の装置の一例の概要を示す斜視図、
第2図は同上のブロック図、第3図(a)、0))、(
C)、第4図(a)、ら)、(C)、第5図(a)、0
))、(C)は検出原理の説明図であって、(a)の(
1)は照射方向、(n)は画像、(III)は光の反射
状態を示している。また、(ハ)の(1)は照射方向、
(II)は画像を示し、(C)は処理後の画像である。 1・・・・・・検出装置、   2・・・・・・顕微鏡
、3・・・・・・CCDカメラ、  4.5・・・・・
・ライト、6・・・・・・前処理部、   7・・・・
・・CPU、8・・・・・・識別部。 同 代理人 鎌 田 文 第3図 22 ■ ■ ■ (C) −ゆ照明光 一一一一一度射光 ■ ■ ■ (C) 第5図 (b) (C)
FIG. 1 is a perspective view showing an outline of an example of the device of the present invention;
Figure 2 is the same block diagram as above, Figure 3 (a), 0)), (
C), Figure 4 (a), et al.), (C), Figure 5 (a), 0
)), (C) are explanatory diagrams of the detection principle, and (a) (
1) shows the irradiation direction, (n) shows the image, and (III) shows the state of light reflection. Also, (c) (1) is the irradiation direction,
(II) shows the image, and (C) shows the image after processing. 1...Detection device, 2...Microscope, 3...CCD camera, 4.5...
・Light, 6...Pre-processing section, 7...
...CPU, 8...Identification unit. Same Agent Aya Kamata Figure 3 22 ■ ■ ■ (C) -Yu Illumination Light 11111 Light ■ ■ ■ (C) Figure 5 (b) (C)

Claims (3)

【特許請求の範囲】[Claims] (1)ワークの梨地状凹凸を有する正常な表面に存在す
る平面状の外観不良部を検出するための装置であって、 ワークの表面を写す画像入力装置と、入力画像を二値画
像に変換する前処理部と、ワークの周辺に配置する複数
の光源と、複数の二値画像を取込んでこれを識別用の画
像に変換する演算処理部と、変換画像の識別部とを有し
、 上記光源が排他的に点灯してワーク表面を斜め上方の異
方角位置から照らし、 上記演算処理部が各光源の点灯時に得られる二値画像を
論理演算して照射方向の変動により二値信号が変化した
画素についてはこれをノイズとして識別用画像から消去
し、上記識別部で、変換後の残留画像の面積を計測して
その値が基準値を上回ればワーク表面に異常有りと判定
するようにしてある表面不良検出装置。
(1) A device for detecting a planar appearance defect existing on the normal surface of a workpiece with satin-like unevenness, which includes an image input device that captures the surface of the workpiece, and converts the input image into a binary image. a plurality of light sources disposed around the workpiece, an arithmetic processing section that captures a plurality of binary images and converts them into images for identification, and a converted image identification section, The above-mentioned light sources are turned on exclusively to illuminate the work surface from diagonally upward anisotropic positions, and the above-mentioned processing section performs logical operations on the binary images obtained when each light source is turned on, and generates a binary signal by changing the irradiation direction. The changed pixels are deleted from the identification image as noise, and the identification section measures the area of the residual image after conversion, and if the value exceeds a reference value, it is determined that there is an abnormality on the workpiece surface. Surface defect detection device.
(2)上記複数の光源に代えてワークの周りを周回する
1つの光源を用い、その光源の位置を変えてワーク表面
を異方角から照射するようにしてある請求項(1)記載
の表面不良検出装置。
(2) The surface defect according to claim (1), wherein a single light source orbiting around the workpiece is used instead of the plurality of light sources, and the position of the light source is changed to illuminate the workpiece surface from anisotropic angles. Detection device.
(3)画像入力部に顕微鏡を備えている請求項の(1)
又は(2)記載の表面不良検出装置。
(3) Claim (1) in which the image input section is equipped with a microscope.
Or the surface defect detection device described in (2).
JP26231789A 1989-10-06 1989-10-06 Device for detecting defect of surface Pending JPH03123808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26231789A JPH03123808A (en) 1989-10-06 1989-10-06 Device for detecting defect of surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26231789A JPH03123808A (en) 1989-10-06 1989-10-06 Device for detecting defect of surface

Publications (1)

Publication Number Publication Date
JPH03123808A true JPH03123808A (en) 1991-05-27

Family

ID=17374094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26231789A Pending JPH03123808A (en) 1989-10-06 1989-10-06 Device for detecting defect of surface

Country Status (1)

Country Link
JP (1) JPH03123808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289947A (en) 2002-04-01 2003-10-14 Hideo Tomiyama Method and apparatus of manufacturing rotable toothbrush
WO2016035381A1 (en) * 2014-09-05 2016-03-10 株式会社Screenホールディングス Inspection device and inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289947A (en) 2002-04-01 2003-10-14 Hideo Tomiyama Method and apparatus of manufacturing rotable toothbrush
WO2016035381A1 (en) * 2014-09-05 2016-03-10 株式会社Screenホールディングス Inspection device and inspection method
JP2016057075A (en) * 2014-09-05 2016-04-21 株式会社Screenホールディングス Inspection device and inspection method
EP3190401A4 (en) * 2014-09-05 2018-05-09 SCREEN Holdings Co., Ltd. Inspection device and inspection method
US10705029B2 (en) 2014-09-05 2020-07-07 SCREEN Holdings Co., Ltd. Inspection apparatus and inspection method

Similar Documents

Publication Publication Date Title
US4876457A (en) Method and apparatus for differentiating a planar textured surface from a surrounding background
EP1277042B1 (en) Directional lighting and method to distinguish three dimensional information
JP4216485B2 (en) Pattern inspection method and apparatus
JP4184511B2 (en) Method and apparatus for defect inspection of metal sample surface
JPH03123808A (en) Device for detecting defect of surface
JPH04240557A (en) Method for detecting flaw
JP2973663B2 (en) Bottle mouth appearance inspection method
JP3032616B2 (en) Appearance inspection method and device
JP2002195958A (en) Surface inspecting method
JPH10132754A (en) Device for inspecting appearance of lead frame
JPH043820B2 (en)
JP2000292307A (en) Appearance inspection device for light transmission body
JP2658405B2 (en) Method for manufacturing semiconductor device
JPH05142161A (en) Method and device for inspecting appearance, method and device for inspecting magnetic head, and magnetic head manufacturing facility
JPH11352073A (en) Foreign matter inspection method and apparatus thereof
JP2638121B2 (en) Surface defect inspection equipment
JP3609136B2 (en) Semiconductor device inspection method and apparatus
JPH01250806A (en) Method and device for measuring width
JP3682249B2 (en) Glass bottle thread inspection device
JP2000055824A (en) Device for inspecting flaw in flat plate with hole
JP2517385Y2 (en) Resin chip inspection device for semiconductor devices
JP2756738B2 (en) Apparatus for visual inspection of semiconductor devices
JP3757471B2 (en) Wire bonding inspection method
JPH0429021B2 (en)
JPH03221849A (en) Method for detecting defect