JP3609136B2 - Semiconductor device inspection method and apparatus - Google Patents

Semiconductor device inspection method and apparatus Download PDF

Info

Publication number
JP3609136B2
JP3609136B2 JP02804795A JP2804795A JP3609136B2 JP 3609136 B2 JP3609136 B2 JP 3609136B2 JP 02804795 A JP02804795 A JP 02804795A JP 2804795 A JP2804795 A JP 2804795A JP 3609136 B2 JP3609136 B2 JP 3609136B2
Authority
JP
Japan
Prior art keywords
semiconductor device
inspection
image
deformation
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02804795A
Other languages
Japanese (ja)
Other versions
JPH08219740A (en
Inventor
聖己 藤井
晋一 矢鍋
雅俊 藤本
善郎 西元
有一郎 後藤
英二 高橋
証 山口
克己 安田
万希志 中山
Original Assignee
ジェネシス・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジェネシス・テクノロジー株式会社 filed Critical ジェネシス・テクノロジー株式会社
Priority to JP02804795A priority Critical patent/JP3609136B2/en
Publication of JPH08219740A publication Critical patent/JPH08219740A/en
Application granted granted Critical
Publication of JP3609136B2 publication Critical patent/JP3609136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Image Analysis (AREA)

Description

【0001】
【産業上の利用分野】
本発明は,LSI等の半導体装置に形成されたリード等の有害な変形を検査する半導体装置の検査方法及び装置に関する。
【0002】
【従来の技術】
LSI等の半導体装置に形成されたリード等の水平及び垂直方向の変形は,半導体装置を回路基板に実装する際の支障となるため,その変形が厳重に検査される。半導体装置のリード等の水平方向及び垂直方向の変形を画像認識技術を用いて検査するためには,半導体装置を上面と側面とから撮像する必要がある。側面からの撮像ではフラットパッケージのような場合では四方からそれぞれ撮像する必要があるため,カメラ台数あるいは撮像回数が増し,検査時間の増加や検査設備規模が増大する問題があった。そこで,上記のような検査の無駄を解消させるべく,1方向からの1回の撮像で検査対象物の水平及び垂直方向の変形を検査する検査装置が特開平5−340733号及び特開平2−133883号公報に開示されている。
上記第1の従来技術は,図4に側面図(a),平面図(b)として示すように,四方にミラー35が設置された検査台32上に検査対象とする半導体装置31を載置し,光源36により照明してカメラ33で撮像すると,図5に示すような撮像画像が得られるよう構成されている。この構成により,撮像画像中には半導体装置31の平面像Fに加え,ミラー35に写った側面像Sが同時に捉えられ,1枚の画像からリード34の水平及び垂直方向の変形を検出することができる。
又,上記第2の従来技術は,半導体装置のリード等の検査に用いられるものではなく,主として回路基板の凹凸欠陥を検出することを目的としている。図6に示すように,回路基板38の検査面に対して斜め方向から光源39により照明して,検査面の上方に配設したカメラ40により検査面を撮像する。この撮像画像の上記光源39による照明方向に平行な濃度分布を図7(a)に示すように測定したとき,図7(b)に示すような濃度変化が得られるので,正常部の濃度より明るい方の閾値Sbを越える部分の最大値と,暗い方の閾値Sdより小さい部分の最小値とを求め,これら最大値,最小値が濃度分布上で隣接している場合に,最大値と最小値との差から検査面上の凹凸欠陥41が認識される。
【0003】
【発明が解決しようとする課題】
しかしながら,上記第1の従来技術によるリードの垂直方向の変形は,その有無は検出できるが,変形の度合いやその位置を精度よく検出することが困難である問題点があった。又,四方にミラーが配設されているため,これが半導体装置を検査位置に搬送する障害となり,特にTAB(Tape Automated Bonding)形式に構成された半導体装置に適用することが困難である。
又,上記第2の従来技術を半導体装置のリード等の変形検査に適用した場合,凹凸などの画像の急激な濃淡変化を伴う欠陥の検出は可能であるが,リードの垂直方向の緩やかな曲がりは画像の急激な濃淡変化を伴わず検出は困難であり,半導体のリード等の変形検査に適用できない問題点があった。
本発明の目的とするところは,斜向照明により照明された半導体装置を上方から撮像して,水平面からの勾配に近似的に比例した濃淡画像を画像処理することにより,半導体装置のリード等の変形を検出する半導体装置の検査方法及びその装置を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために本発明が採用する方法は,照明された半導体装置をその上方からのカメラにより撮像し,撮像された濃淡画像から上記半導体装置やこれに形成されたリード等の変形度を判定する半導体装置の検査方法において,上記リード等の形成方向の斜め上方から半導体装置を照明し,上記カメラにより撮像された濃淡画像を上記照明方向に微分処理することによってリード等の曲率を求め,該曲率と所定の基準値とを比較することにより上記半導体装置の合否を判定することを特徴とする半導体装置の検査方法である。
上記目的を達成するために本発明が採用する手段は,照明された半導体装置をその上方からカメラにより撮像し,撮像された濃淡画像から上記半導体装置やこれに形成されたリード等の変形度を判定する半導体装置の検査装置において,上記リード等の形成方向の斜め上方から半導体装置を照明する斜向照明手段と,上記斜向照明手段による照明方向と同一方向で上記濃淡画像を微分処理する画像処理手段と,上記微分処理によって求めたリード等の曲率と所定の基準値とを比較する比較手段と,上記比較結果に基づき,上記半導体装置の合否を判定する合否判定手段とを具備してなることを特徴とする半導体装置の検査装置として構成されている。
また,上記斜向照明の光源を2個具備し,該2個の斜向照明の方向が直交する上記半導体装置の検査装置として構成されている。
【0005】
【作用】
完全拡散面でなく一定の反射率と反射指向性とを有する検査面に斜め上方向から照明された半導体装置を上方から撮像すると,得られた濃淡画像は照明方向を検査面に投影した方向に沿って検査面の水平方向からの勾配に近似的に比例した濃淡を示す。この濃淡画像を上記照明方向を検査面に投影した方向に沿って微分処理すると,濃淡の変化は検査面の照明方向を検査面に投影した方向に沿った曲率に近似的に比例する。従って,この曲率を変形検査の合否判定の基準値と比較することによって半導体装置のリード等の垂直方向の変形検査を垂直方向からの撮像画像から行うことができる。水平方向の変形は上記濃淡画像上から検出できるので,半導体装置の上方から撮像した1枚の画像からリード等の水平及び垂直方向の変形を同時に検出することができる。
上記検査方法を適用した検査装置は,検査対象とする半導体装置を載置する所定位置の上方にカメラを配設し,半導体装置を斜向照明手段により斜め上方から照明して上記カメラにより撮像する。カメラにより撮像された濃淡画像は,照明方向を検査面に投影した方向に沿って検査面の水平方向からの勾配に近似的に比例した濃淡を示すので,これを画像処理手段により微分処理することによって,濃淡変化部分,即ち変形部分の曲率が検出できる。求められた曲率を変形度判定手段に入力して変形検査の合否判定の基準値と比較することによって,半導体装置のリード等の垂直方向の変形検査を垂直方向からの撮像画像から行うことができる。水平方向の変形は上記濃淡画像上から検出できるので,半導体装置を検査位置に載置してカメラにより1回の撮像を行うことにより,リード等の水平及び垂直方向の変形を同時に検出することができる。
【0006】
【実施例】
以下,添付図面を参照して,本発明を具体化した実施例につき説明し,本発明の理解に供する。尚,以下の実施例は本発明を具体化した一例であって,本発明の技術的範囲を限定するものではない。
ここに,図1は本発明の第1実施例に係る半導体装置の検査装置の構成を示す模式図,図2は半導体装置の平面図(a)と側面図(b),図3は第2実施例に係る検査装置における照明方法を示す模式図である。
図1において,第1実施例に係る半導体装置の検査装置1は,TAB形式に形成された半導体装置の外観検査装置として構成されている。検査装置1は,テープ12上に装着された半導体装置であるデバイス2を検査位置に載置する検査台3と,該検査台3の上方に配設されたCCDカメラ4と,検査台3上のデバイス2を斜め上方向から照明する光源5と,上記CCDカメラ4により撮像された画像を処理して外観状態の合否判定を行う画像処理装置6とを具備して構成されている。
【0007】
上記構成において,デバイス2,2…が装着されたテープ12を順次移動させて検査台3の所定位置に検査対象とするデバイス2を載置し,光源5からの平行光でデバイス2を照明した状態をCCDカメラ4により撮像する。上記光源5による照明方向は,図2に示すようにデバイス2に形成されたリード2aの形成方向(x方向)に一致し,その上方から斜め方向に照射される。又,CCDカメラ4による撮像方向も,その水平走査線方向が上記x方向に一致するように設定する。
上記デバイス2の水平面は,斜め方向から照明され,垂直方向から撮像されるので,上記CCDカメラ4により撮像された濃淡画像は,水平面からの勾配に近似的に比例する濃淡を示す。この濃淡画像はA/D変換器7により8ビット(256階調)のデジタル画像に変換された後,画像メモリ8に格納される。このデジタル画像は微分器(画像処理手段)9に入力され,水平走査線毎に画素(i,j)の濃淡値B(i,j)に対して下式(1)が演算され,微分画像D(i,j)が求められる。
D(i,j)=B(i+1,j)−B(i,j)…(1)
上記のように濃淡画像をx方向に沿って微分することにより,濃淡値の変化はデバイス2の水平面がx方向から傾斜する曲率に近似した変化となる。この微分画像D(i,j)は比較器(比較手段)10に送られ,予め設定された閾値εと比較され,検査面の曲率が一定値以上の箇所が検出され判定器(合否判定手段)11に送られる。判定器11ではリード2a個々あるいはデバイス2全体の合否判定を行い,それを表示する。
【0008】
上記構成では,リード2aのx方向に沿った変形のみを検出しているが,リード2aの捩じれなどのようなx方向に直交する方向の変形も検出すると共に,フラットパッケージのように四方にリード等が形成されている半導体装置の検査を行う場合の構成を第2実施例構成として次に説明する。
図3に示すように,x方向の第1の光源5aに加え,x方向に直交するy方向の第2の光源5bを配設し,第1の光源5aにより照明したときと,第2の光源5bにより照明したときとのデバイス13をCCDカメラ4で撮像し,2枚の濃淡画像を求めて,その両画像について上記第1実施例と同様の画像処理を行うことにより,リード13aのx方向及びy方向の変形を検査することができる。又,この構成により,四方にリード等が形成されたフラットパッケージ形式の半導体装置13の検査を各形成方向のリード13aについて,それぞれx方向及びy方向の変形を検出することができる。
上記各構成では,リード2a,13aの垂直方向の変形の検出についてのみ説明しているが,水平面内での変形は濃淡画像から,リード2a,13aの所定方向からの曲がりを検出することにより容易に検査することができる。又,リード2a,13aだけでなく,パッケージ部分の平坦度あるいはマーク等の印字を濃淡画像又は微分画像から検出することができる。
又,上記第1実施例構成においては,x方向とCCDカメラ4の水平走査線の方向とを一致させているが,必ずしも一致させる必要はなく,微分処理の煩雑さを問題としなければ任意の方向に設定することもできる。
【0009】
【発明の効果】
以上の説明の通り本発明によれば,完全拡散面でなく一定の反射率と反射指向性とを有する検査面に斜め上方向から照明された半導体装置を上方から撮像すると,得られた濃淡画像は照明方向を検査面に投影した方向に沿って検査面の水平方向からの勾配に近似的に比例した濃淡を示す。この濃淡画像を上記照明方向を検査面に投影した方向に沿って微分処理すると,濃淡の変化は検査面の照明方向を検査面に投影した方向に沿った曲率に近似的に比例する。従って,この曲率を変形検査の合否判定の基準値と比較することによって半導体装置のリード等の垂直方向の変形検査を垂直方向からの撮像画像から行うことができる。水平方向の変形は上記濃淡画像上から検出できるので,半導体装置の上方から撮像した1枚の画像からリード等の水平及び垂直方向の変形を同時に検出することができる。
上記検査方法を適用した検査装置は,検査対象とする半導体装置を載置する所定位置の上方にカメラを配設し,半導体装置を斜向照明手段により斜め上方から照明して上記カメラにより撮像する。カメラにより撮像された濃淡画像は,照明方向を検査面に投影した方向に沿って検査面の水平方向からの勾配に近似的に比例した濃淡を示すので,これを画像処理手段により微分処理することによって,濃淡変化部分,即ち変形部分の曲率が検出できる。求められた曲率を変形度判定手段に入力して変形検査の合否判定の基準値と比較することによって,半導体装置のリード等の垂直方向の変形検査を垂直方向からの撮像画像から行うことができる。水平方向の変形は上記濃淡画像上から検出できるので,半導体装置を検査位置に載置してカメラにより1回の撮像を行うことにより,リード等の水平及び垂直方向の変形を同時に検出することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る半導体装置の検査装置の構成を示す模式図。
【図2】実施例に係る半導体装置の側面図。
【図3】第2実施例に係る半導体装置の照明方法を示す模式図。
【図4】従来例に係る検査装置の構成を示す側面図(a)と平面図(b)。
【図5】同上構成による撮像画像の図。
【図6】従来例に係る検査装置の構成を示す模式図。
【図7】同上構成による検査方向とその濃淡変化グラフ。
【符号の説明】
1…検査装置
2,13…デバイス(半導体装置)
4…CCDカメラ
5…光源
6…画像処理装置
9…微分器(画像処理手段)
10…比較器(変形度判定手段)
[0001]
[Industrial application fields]
The present invention relates to a semiconductor device inspection method and apparatus for inspecting harmful deformations such as leads formed in a semiconductor device such as an LSI.
[0002]
[Prior art]
Since horizontal and vertical deformations of leads and the like formed in a semiconductor device such as an LSI hinder the mounting of the semiconductor device on a circuit board, the deformation is strictly inspected. In order to inspect the horizontal and vertical deformations of the leads and the like of the semiconductor device using the image recognition technique, it is necessary to image the semiconductor device from the upper surface and the side surface. In the case of imaging from the side, in the case of a flat package, it is necessary to take images from four sides, so there are problems that the number of cameras or the number of imaging increases, the inspection time increases, and the inspection equipment scale increases. Therefore, in order to eliminate the waste of inspection as described above, an inspection apparatus that inspects horizontal and vertical deformations of an inspection object by one imaging from one direction is disclosed in Japanese Patent Laid-Open Nos. 5-340733 and 2- This is disclosed in Japanese Patent No. 133883.
In the first prior art, as shown in a side view (a) and a plan view (b) in FIG. 4, a semiconductor device 31 to be inspected is placed on an inspection table 32 in which mirrors 35 are installed in all directions. If the camera 33 illuminates with the light source 36 and captures an image, a captured image as shown in FIG. 5 is obtained. With this configuration, in addition to the planar image F of the semiconductor device 31 in the captured image, the side image S reflected on the mirror 35 is simultaneously captured, and the horizontal and vertical deformation of the lead 34 is detected from one image. Can do.
The second prior art is not used for inspecting the lead of a semiconductor device and the like, and mainly aims to detect an uneven defect of a circuit board. As shown in FIG. 6, the inspection surface of the circuit board 38 is illuminated by a light source 39 from an oblique direction, and the inspection surface is imaged by a camera 40 disposed above the inspection surface. When the density distribution of the captured image parallel to the illumination direction by the light source 39 is measured as shown in FIG. 7A, a density change as shown in FIG. 7B is obtained. The maximum value of the portion exceeding the bright threshold value Sb and the minimum value of the portion smaller than the dark threshold value Sd are obtained, and the maximum value and the minimum value are found when these maximum values and minimum values are adjacent on the density distribution. The uneven defect 41 on the inspection surface is recognized from the difference from the value.
[0003]
[Problems to be solved by the invention]
However, although the presence or absence of the vertical deformation of the lead according to the first prior art can be detected, there is a problem that it is difficult to accurately detect the degree and position of the deformation. In addition, since the mirrors are arranged in the four directions, this becomes an obstacle for transporting the semiconductor device to the inspection position, and it is difficult to apply to a semiconductor device configured in a TAB (Tape Automated Bonding) format.
In addition, when the second prior art is applied to deformation inspection of a lead of a semiconductor device, it is possible to detect a defect accompanying an image with a sharp gradation change, such as unevenness, but a gentle bending in the vertical direction of the lead. However, it is difficult to detect without rapid change in image density, and it cannot be applied to deformation inspection of semiconductor leads.
An object of the present invention is to image a semiconductor device illuminated by oblique illumination from above and perform image processing on a grayscale image that is approximately proportional to the gradient from the horizontal plane. An object of the present invention is to provide a semiconductor device inspection method and apparatus for detecting deformation.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the method employed by the present invention is to image an illuminated semiconductor device with a camera from above, and from the obtained gray image, the degree of deformation of the semiconductor device and leads formed on the semiconductor device In the method for inspecting a semiconductor device, the curvature of the lead or the like is obtained by illuminating the semiconductor device from obliquely above the formation direction of the lead or the like and differentiating the grayscale image captured by the camera in the illumination direction. A semiconductor device inspection method comprising: determining whether the semiconductor device is acceptable or not by comparing the curvature with a predetermined reference value .
In order to achieve the above object, the means employed by the present invention is to take an image of an illuminated semiconductor device with a camera from above, and determine the degree of deformation of the semiconductor device and leads formed on the image from the taken gray image. In an inspection apparatus for a semiconductor device to be determined, an oblique illumination means for illuminating the semiconductor device from obliquely above in the formation direction of the leads and the like, and an image for differentiating the grayscale image in the same direction as the illumination direction by the oblique illumination means Processing means, comparison means for comparing the curvature of the lead or the like obtained by the differentiation process with a predetermined reference value, and pass / fail judgment means for judging pass / fail of the semiconductor device based on the comparison result. The semiconductor device inspection apparatus is characterized by the above.
Further, the semiconductor device inspection apparatus includes two light sources for the oblique illumination, and the directions of the two oblique illuminations are orthogonal to each other.
[0005]
[Action]
When a semiconductor device that is illuminated from an obliquely upward direction on an inspection surface that has a certain reflectivity and reflection directivity rather than a completely diffusing surface is imaged from above, the resulting grayscale image is in the direction projected on the inspection surface. A light and shade that is approximately proportional to the gradient from the horizontal direction of the inspection surface is shown. When the grayscale image is differentiated along the direction in which the illumination direction is projected onto the inspection surface, the change in light and shade is approximately proportional to the curvature along the direction in which the illumination direction of the inspection surface is projected onto the inspection surface. Therefore, by comparing this curvature with the reference value for pass / fail determination of the deformation inspection, the deformation inspection in the vertical direction such as the lead of the semiconductor device can be performed from the captured image from the vertical direction. Since the deformation in the horizontal direction can be detected from the grayscale image, the horizontal and vertical deformations of the lead and the like can be detected simultaneously from one image taken from above the semiconductor device.
In the inspection apparatus to which the inspection method is applied, a camera is disposed above a predetermined position on which a semiconductor device to be inspected is placed, and the semiconductor device is illuminated obliquely from above with oblique illumination means and imaged with the camera. . The grayscale image captured by the camera shows a grayscale that is approximately proportional to the gradient from the horizontal direction of the inspection surface along the direction in which the illumination direction is projected onto the inspection surface. Thus, the curvature of the shade change portion, that is, the deformation portion can be detected. By inputting the obtained curvature to the degree-of-deformation determination means and comparing it with a reference value for pass / fail determination of the deformation inspection, it is possible to perform a deformation inspection in the vertical direction such as a lead of the semiconductor device from a captured image from the vertical direction. . Since the deformation in the horizontal direction can be detected from the grayscale image, the horizontal and vertical deformations of the lead and the like can be detected simultaneously by placing the semiconductor device at the inspection position and taking one image with the camera. it can.
[0006]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiments are examples embodying the present invention, and do not limit the technical scope of the present invention.
FIG. 1 is a schematic diagram showing the configuration of the semiconductor device inspection apparatus according to the first embodiment of the present invention, FIG. 2 is a plan view (a) and a side view (b) of the semiconductor device, and FIG. It is a schematic diagram which shows the illumination method in the inspection apparatus which concerns on an Example.
In FIG. 1, a semiconductor device inspection apparatus 1 according to the first embodiment is configured as a semiconductor device appearance inspection apparatus formed in a TAB format. The inspection apparatus 1 includes an inspection table 3 on which a device 2, which is a semiconductor device mounted on a tape 12, is placed at an inspection position, a CCD camera 4 disposed above the inspection table 3, and an inspection table 3. And a light source 5 that illuminates the device 2 from above, and an image processing device 6 that processes an image picked up by the CCD camera 4 and determines whether the appearance is acceptable.
[0007]
In the above configuration, the tape 12 on which the devices 2, 2... Are sequentially moved, the device 2 to be inspected is placed at a predetermined position on the inspection table 3, and the device 2 is illuminated with parallel light from the light source 5. The state is imaged by the CCD camera 4. The illumination direction by the light source 5 coincides with the formation direction (x direction) of the lead 2a formed on the device 2 as shown in FIG. Further, the imaging direction by the CCD camera 4 is also set so that the horizontal scanning line direction coincides with the x direction.
Since the horizontal plane of the device 2 is illuminated from an oblique direction and is imaged from the vertical direction, the grayscale image captured by the CCD camera 4 shows a grayscale that is approximately proportional to the gradient from the horizontal plane. The grayscale image is converted into an 8-bit (256 gradation) digital image by the A / D converter 7 and then stored in the image memory 8. This digital image is input to a differentiator (image processing means) 9, and the following expression (1) is calculated for the gray value B (i, j) of the pixel (i, j) for each horizontal scanning line, and the differential image is obtained. D (i, j) is determined.
D (i, j) = B (i + 1, j) -B (i, j) (1)
By differentiating the grayscale image along the x direction as described above, the change in the grayscale value is a change that approximates the curvature with which the horizontal plane of the device 2 is inclined from the x direction. This differential image D (i, j) is sent to a comparator ( comparing means ) 10 and compared with a preset threshold value ε to detect a portion where the curvature of the inspection surface is equal to or greater than a certain value and determiner ( pass / fail determination means). ) 11. The determination unit 11 performs pass / fail determination of each lead 2a or the entire device 2 and displays it.
[0008]
In the above configuration, only the deformation of the lead 2a along the x direction is detected. However, the deformation in the direction perpendicular to the x direction such as torsion of the lead 2a is also detected, and the lead 2a is deformed in four directions like a flat package. Next, a configuration in the case of inspecting a semiconductor device on which a semiconductor device or the like is formed will be described as a configuration of a second embodiment.
As shown in FIG. 3, in addition to the first light source 5a in the x direction, a second light source 5b in the y direction perpendicular to the x direction is disposed, and when the second light source 5a is illuminated, The device 13 when illuminated by the light source 5b is imaged by the CCD camera 4, two gray images are obtained, and image processing similar to that in the first embodiment is performed on both images, whereby x of the lead 13a is obtained. The deformation in the direction and y direction can be inspected. Also, with this configuration, it is possible to detect the deformation in the x direction and the y direction of the lead 13a in each forming direction in the inspection of the flat package type semiconductor device 13 in which leads and the like are formed on four sides.
In each of the above-described configurations, only detection of the deformation in the vertical direction of the leads 2a and 13a has been described. However, deformation in the horizontal plane can be easily performed by detecting the bending of the leads 2a and 13a from a predetermined direction from a grayscale image. Can be inspected. Further, not only the leads 2a and 13a but also the printing of the flatness of the package portion or the mark or the like can be detected from the grayscale image or the differential image.
In the configuration of the first embodiment, the x direction and the direction of the horizontal scanning line of the CCD camera 4 are made to coincide with each other. However, it is not always necessary to make them coincide with each other. You can also set the direction.
[0009]
【The invention's effect】
As described above, according to the present invention, when a semiconductor device illuminated from an obliquely upward direction on an inspection surface having a certain reflectance and reflection directivity rather than a complete diffusion surface is imaged from above, a gray-scale image obtained is obtained. Indicates shades approximately proportional to the gradient from the horizontal direction of the inspection surface along the direction in which the illumination direction is projected onto the inspection surface. When the grayscale image is differentiated along the direction in which the illumination direction is projected onto the inspection surface, the change in light and shade is approximately proportional to the curvature along the direction in which the illumination direction of the inspection surface is projected onto the inspection surface. Therefore, by comparing this curvature with the reference value for pass / fail determination of the deformation inspection, the deformation inspection in the vertical direction such as the lead of the semiconductor device can be performed from the captured image from the vertical direction. Since the deformation in the horizontal direction can be detected from the grayscale image, the horizontal and vertical deformations of the lead and the like can be detected simultaneously from one image taken from above the semiconductor device.
In the inspection apparatus to which the inspection method is applied, a camera is disposed above a predetermined position on which a semiconductor device to be inspected is placed, and the semiconductor device is illuminated obliquely from above with oblique illumination means and imaged with the camera. . The grayscale image captured by the camera shows a grayscale that is approximately proportional to the gradient from the horizontal direction of the inspection surface along the direction in which the illumination direction is projected onto the inspection surface. Thus, the curvature of the shade change portion, that is, the deformation portion can be detected. By inputting the obtained curvature to the degree-of-deformation determination means and comparing it with a reference value for pass / fail determination of the deformation inspection, it is possible to perform a deformation inspection in the vertical direction such as a lead of the semiconductor device from a captured image from the vertical direction. . Since the deformation in the horizontal direction can be detected from the grayscale image, the horizontal and vertical deformations of the lead and the like can be detected simultaneously by placing the semiconductor device at the inspection position and taking one image with the camera. it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a semiconductor device inspection apparatus according to a first embodiment of the present invention.
FIG. 2 is a side view of the semiconductor device according to the example.
FIG. 3 is a schematic view showing a method for illuminating a semiconductor device according to a second embodiment.
4A and 4B are a side view and a plan view showing a configuration of an inspection apparatus according to a conventional example.
FIG. 5 is a diagram of a captured image having the same configuration as above.
FIG. 6 is a schematic diagram showing a configuration of an inspection apparatus according to a conventional example.
FIG. 7 is an inspection direction and a shading change graph according to the same configuration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inspection apparatus 2, 13 ... Device (semiconductor device)
4 ... CCD camera 5 ... Light source 6 ... Image processing device 9 ... Differentiator (image processing means)
10: Comparator (deformation degree judging means)

Claims (3)

照明された半導体装置をその上方からカメラにより撮像し,撮像された濃淡画像から上記半導体装置やこれに形成されたリード等の変形度を判定する半導体装置の検査方法において,
上記リード等の形成方向の斜め上方から半導体装置を照明し,上記カメラにより撮像された濃淡画像を上記照明方向に微分処理することによってリード等の曲率を求め,該曲率と所定の基準値とを比較することにより上記半導体装置の合否を判定することを特徴とする半導体装置の検査方法。
In an inspection method for a semiconductor device in which an illuminated semiconductor device is imaged by a camera from above and the degree of deformation of the semiconductor device or leads formed on the semiconductor device is determined from the captured grayscale image.
The semiconductor device is illuminated obliquely from above in the formation direction of the lead, etc., and the curvature of the lead is obtained by differentiating the grayscale image captured by the camera in the illumination direction, and the curvature and a predetermined reference value are obtained. A method for inspecting a semiconductor device, comprising: determining whether the semiconductor device is acceptable by comparing the results .
照明された半導体装置をその上方からカメラにより撮像し,撮像された濃淡画像から上記半導体装置やこれに形成されたリード等の変形度を判定する半導体装置の検査装置において,
上記リード等の形成方向の斜め上方から半導体装置を照明する斜向照明手段と,
上記斜向照明手段による照明方向と同一方向で上記濃淡画像を微分処理する画像処理手段と,
上記微分処理によって求めたリード等の曲率と所定の基準値とを比較する比較手段と,
上記比較結果に基づき,上記半導体装置の合否を判定する合否判定手段とを具備してなることを特徴とする半導体装置の検査装置。
In an inspection apparatus for a semiconductor device, the illuminated semiconductor device is imaged by a camera from above, and the degree of deformation of the semiconductor device or leads formed on the semiconductor device is determined from the captured grayscale image.
Oblique illumination means for illuminating the semiconductor device from obliquely above the formation direction of the leads,
Image processing means for differentiating the grayscale image in the same direction as the illumination direction by the oblique illumination means;
A comparison means for comparing the curvature of the lead or the like obtained by the differentiation process with a predetermined reference value;
An inspection apparatus for a semiconductor device, comprising: pass / fail determination means for determining whether the semiconductor device is acceptable based on the comparison result .
上記斜向照明の光源を2個具備し,該2個の斜向照明の方向が直交する請求項2に記載の半導体装置の検査装置。The inspection apparatus for a semiconductor device according to claim 2, comprising two oblique illumination light sources, and the two oblique illumination directions are orthogonal to each other.
JP02804795A 1995-02-16 1995-02-16 Semiconductor device inspection method and apparatus Expired - Fee Related JP3609136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02804795A JP3609136B2 (en) 1995-02-16 1995-02-16 Semiconductor device inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02804795A JP3609136B2 (en) 1995-02-16 1995-02-16 Semiconductor device inspection method and apparatus

Publications (2)

Publication Number Publication Date
JPH08219740A JPH08219740A (en) 1996-08-30
JP3609136B2 true JP3609136B2 (en) 2005-01-12

Family

ID=12237844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02804795A Expired - Fee Related JP3609136B2 (en) 1995-02-16 1995-02-16 Semiconductor device inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP3609136B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107830814B (en) * 2017-10-16 2020-09-11 北京科技大学 Photometry-based method for measuring surface deformation
CN110954552A (en) * 2018-09-27 2020-04-03 联合汽车电子有限公司 Jumper wire detection device, jumper wire detection system and jumper wire detection method

Also Published As

Publication number Publication date
JPH08219740A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP4150390B2 (en) Appearance inspection method and appearance inspection apparatus
JP5174540B2 (en) Wood defect detection device
JP2003139523A (en) Surface defect detecting method and surface defect detecting device
EP1277042B1 (en) Directional lighting and method to distinguish three dimensional information
JP2001209798A (en) Method and device for inspecting outward appearance
JP3688520B2 (en) Surface inspection apparatus and surface inspection method
JP4108829B2 (en) Thickness defect inspection apparatus and inspection method thereof
JP3609136B2 (en) Semiconductor device inspection method and apparatus
CN111175227A (en) Apparatus for inspecting glass substrate
JP3585225B2 (en) Defect inspection method using color illumination
JP2006177852A (en) Surface inspection device and its method
JPH04194701A (en) Picture image inputting method and apparatus and appearance inspecting instrument
JP3454162B2 (en) Inspection system for flat plate with holes
JPH08304295A (en) Method and apparatus for detecting surface defect
JPH05215694A (en) Method and apparatus for inspecting defect of circuit pattern
JPH0629705B2 (en) Plate inspection method
JPH11101750A (en) Detection of foreign matter
JP2021089215A (en) Surface property detection method and surface property detector
JP2596158B2 (en) Component recognition device
JP3366211B2 (en) Mirror object imaging method
JPH09218935A (en) Appearance inspection method by image
JP2818347B2 (en) Appearance inspection device
JP2701872B2 (en) Surface inspection system
JPH06104352A (en) Semiconductor device and its direction inspecting device
JPH03221849A (en) Method for detecting defect

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees