JPH03123805A - Interatomic force microscope - Google Patents

Interatomic force microscope

Info

Publication number
JPH03123805A
JPH03123805A JP26206189A JP26206189A JPH03123805A JP H03123805 A JPH03123805 A JP H03123805A JP 26206189 A JP26206189 A JP 26206189A JP 26206189 A JP26206189 A JP 26206189A JP H03123805 A JPH03123805 A JP H03123805A
Authority
JP
Japan
Prior art keywords
cantilever
light
sample
reference mirror
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26206189A
Other languages
Japanese (ja)
Inventor
Masahiko Kato
正彦 加藤
Takao Okada
孝夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP26206189A priority Critical patent/JPH03123805A/en
Priority to US07/592,239 priority patent/US5206702A/en
Priority to EP90119243A priority patent/EP0422548B1/en
Priority to DE69019913T priority patent/DE69019913T2/en
Publication of JPH03123805A publication Critical patent/JPH03123805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain the accurate image of the surface of a sample and to improve stability to an external noise such as vibration, etc., by utilizing the interference of light so that the displacement of a cantilever may be detected and arranging a reference mirror surface which is a standard in the same vibration system as the sample. CONSTITUTION:A luminous flux L emitted from a light source 12 is converted into circularly polarized light by a 1/4 wavelength plate 14 and made incident on a polarizing beam splitter 16. Then, it is separated to a reference luminous flux Lr and a test luminous flux Lt on the beam splitting surface of the splitter 16 so that the reference mirror surfaces 20 and 30 may be irradiated with one of them and the reflection surface of the cantilever 44 may be irradiated with the other. The reference surfaces 20 and 30 and the reflection surface are positioned on the same plane and, desirably, the reference mirror surfaces 20 and 30 are made to closely contact with the cantilever 44. The two luminous fluxes Lr and Lt reflected by the reference mirror surfaces 20 and 30 and the reflection surface are synthesized and the displacement of the cantilever 44 is detected from interference fringe occurring at such a time by an interference fringe counting part 34. Then, the image of the surface of the sample 48 is formed based on the detected displacement.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は原子開力顕微鏡、詳細には探針を支持するカ
ンチレバーの変位を干渉計を用いて検出する原子開力顕
微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an atomic force microscope, and more particularly to an atomic force microscope that uses an interferometer to detect the displacement of a cantilever that supports a probe.

[従来の技術] 鋭く尖った先端を有し、カンチレバーによって支持され
る探針を試料表面に近づけると、探針先端の原子と試料
表面の原子との間に微少な引力あるいは斥力(原子間力
)が発生する。探針が受ける力によって、カンチレバー
は変形し、変位が生じる。
[Prior art] When a probe with a sharp tip and supported by a cantilever is brought close to the sample surface, a slight attractive or repulsive force (interatomic force) is created between the atoms at the tip of the probe and the atoms on the sample surface. ) occurs. The force applied to the probe deforms the cantilever, causing displacement.

カンチレバーの変位を検出し、探針先端の原子と試料表
面の原子との間に作用する原子間力を測定しながら、探
針を試料表面に沿って走査することによって、試料表面
の力に関する2次元情報を入手し、この情報から試料の
表面構造を原子レベルの分解能で構成する原子開力顕微
鏡が提案されている。その−例が、フィジカル・レビュ
ー・レターズ(Phys、Rev、Letters)第
56巻、第9号、1986年3月、930〜933頁の
G、ビンニッヒ(Binnig) 、C,F、  クエ
イト(Quate )、Ch、ゲルバ(Gerber)
らの論文に記載されている。
By scanning the tip along the sample surface while detecting the displacement of the cantilever and measuring the interatomic force acting between the atoms at the tip of the tip and the atoms on the sample surface, we can measure the force on the sample surface. An atomic force microscope has been proposed that obtains dimensional information and uses this information to construct the surface structure of a sample with atomic-level resolution. An example is G. Binnig, C.F. Quate, Phys, Rev. Letters, Vol. 56, No. 9, March 1986, pp. 930-933. , Ch. Gerber
It is described in the paper by et al.

[発明が解決しようとする課題] カンチレバーの変位を検出する方法に、トンネル電流を
利用する方法や静電容量法などがある。
[Problems to be Solved by the Invention] Methods for detecting displacement of a cantilever include a method using tunnel current and a capacitance method.

トンネル電流を利用する方法は、カンチレバーの上方に
トンネル電流が流れ得る距離でトンネルチップを配置し
てバイアスし、両者間に流れるトンネル電流を用いてカ
ンチレバーの変位を検出する。
In a method using tunnel current, a tunnel tip is placed above the cantilever at a distance where tunnel current can flow, biased, and the displacement of the cantilever is detected using the tunnel current flowing between the two.

また、静電容量法は、カンチレバーの上面を極板とする
平板コンデンサを設け、カンチレバーの変位により生じ
る静電容量の変化を測定してカンチレバーの変位を検出
する。
Further, in the capacitance method, a flat plate capacitor is provided with the upper surface of the cantilever as an electrode plate, and the displacement of the cantilever is detected by measuring the change in capacitance caused by the displacement of the cantilever.

原子間力を受けて生じるカンチレバーの変位は極微小で
ある。従って、カンチレバーの変位検出系には、高感度
であること、また外部ノイズに強いことが要求される。
The displacement of the cantilever caused by the atomic force is extremely small. Therefore, the cantilever displacement detection system is required to be highly sensitive and resistant to external noise.

しかしながら、上述した方法はいずれも振動などの外部
ノイズに弱く、測定結果には外部ノイズの影響が含まれ
不安定である。
However, all of the above-mentioned methods are susceptible to external noise such as vibration, and the measurement results include the influence of external noise and are unstable.

この発明は高感度を有するとともに、振動などの外部ノ
イズに対する耐性に優れる原子開力顕微鏡の提供を目的
とする。
An object of the present invention is to provide an atomic force microscope that has high sensitivity and excellent resistance to external noise such as vibrations.

[課題を解決するための手段] この発明の原子開力顕微鏡は、原子間力を発生させるた
めの探針と、上面に高反射率の反射面を備え、前記探針
を原子間力が発生し得る距離以下に試料に近づけて支持
するカンチレバーと、前記探針を試料面に沿って走査す
る手段と、可干渉性の光を発生する光源と、この光源か
ら発生される光束を2本の光束に分離する手段と、前記
反射面と同一平面上に設けられる参照鏡面と、分離され
た一方の光束を前記参照鏡面に照射する手段と、分離さ
れた他方の光束を前記カンチレバーの反射面に照射する
手段と、前記参照鏡面及び前記反射面から反射される2
本の光束を干渉させ、前記カンチレバーの変位を検出し
て試料表面の像を形成する手段を備える。
[Means for Solving the Problems] The atomic open force microscope of the present invention includes a probe for generating atomic force and a reflective surface with a high reflectance on the upper surface, and the probe is configured to generate atomic force. a cantilever supported at a distance closer to the sample than possible; a means for scanning the probe along the sample surface; a light source that generates coherent light; a means for separating the light beam into a light beam, a reference mirror surface provided on the same plane as the reflecting surface, a means for irradiating one of the separated light beams onto the reference mirror surface, and a means for irradiating the other separated light beam onto the reflection surface of the cantilever. means for irradiating; and 2 reflected from the reference mirror surface and the reflective surface.
A means is provided for forming an image of the sample surface by interfering with the light flux of the book and detecting the displacement of the cantilever.

[作用] この発明の原子開力顕微鏡では、光源から射出される光
束は2本に分離され、一方が参照鏡面、他方がカンチレ
バーの反射面に照射される。参照鏡面と反射面は同一平
面上に位置し、好ましくは参照鏡面及びカンチレバーは
近接される。参照鏡面及び反射面で反射された2本の光
束は合成され、干渉計などによって、このとき生じる干
渉縞からカンチレバーの変位が検出され、これに基づい
て試料表面の像が形成される。
[Function] In the atomic force microscope of the present invention, the light beam emitted from the light source is separated into two beams, one of which is applied to the reference mirror surface and the other to the reflective surface of the cantilever. The reference mirror surface and the reflective surface are located on the same plane, and preferably the reference mirror surface and the cantilever are close to each other. The two beams reflected by the reference mirror surface and the reflecting surface are combined, and the displacement of the cantilever is detected from the interference fringes generated at this time using an interferometer or the like, and an image of the sample surface is formed based on this.

[実施例] この発明の実施例について第1図を参照しながら説明す
る。図において、伝搬する光束の中心光線だけが示され
る。レーザーダイオード等の光源12から射出される直
線偏光の光束りは、174波長板14で円偏光に変換さ
れ、偏光ビームスプリッタ−16に入射し、そのビーム
スブリット面で参照光束Lrとテスト光束Ltとに分け
られる。
[Example] An example of the present invention will be described with reference to FIG. In the figure, only the central ray of the propagating beam is shown. A linearly polarized light beam emitted from a light source 12 such as a laser diode is converted into circularly polarized light by a 174-wave plate 14, enters a polarizing beam splitter 16, and is divided into a reference light beam Lr and a test light beam Lt at the beam splitting surface. It can be divided into

偏光ビームスプリッタ−16で反射される参照光束Lr
  (S偏光)は1/4波長板18を通過して円偏光に
変換され、参照鏡20に照射される。参照鏡20で反射
される参照光束Lrは再度1/4波長板18を通過して
P偏光に変換され、偏光ビームスプリッタ−16を通過
し、プリズム22で反射される。プリズム22で反射さ
れた参照光束L「はさらにプリズム24で反射され、偏
光ビームスプリッタ−26及び1/4波長板28を通過
し、円偏光に変換されて参照鏡30に照射される。
Reference light beam Lr reflected by polarizing beam splitter 16
The (S-polarized light) passes through the quarter-wave plate 18, is converted into circularly polarized light, and is irradiated onto the reference mirror 20. The reference light beam Lr reflected by the reference mirror 20 passes through the quarter-wave plate 18 again, is converted into P-polarized light, passes through the polarization beam splitter 16, and is reflected by the prism 22. The reference light beam L'' reflected by the prism 22 is further reflected by the prism 24, passes through the polarizing beam splitter 26 and the quarter-wave plate 28, is converted into circularly polarized light, and is irradiated onto the reference mirror 30.

参照鏡20及び30は、図では異なる参照符号を付して
異なる部材として説明したが、アルミブロック32上に
リング状に設けられる共通の参照鏡でもよい。参照光束
Lrは参照鏡30で反射され、再び1/4波長板を通過
してS偏光に変わり、偏光ビームスプリッタ−26で反
射されて干渉縞計数部34に入射する。
Although the reference mirrors 20 and 30 are described as different members with different reference numerals in the drawings, they may be a common reference mirror provided in a ring shape on the aluminum block 32. The reference light beam Lr is reflected by the reference mirror 30, passes through the quarter-wave plate again, becomes S-polarized light, is reflected by the polarization beam splitter 26, and enters the interference fringe counting section 34.

一方、偏光ビームスプリッタ−16を透過するテスト光
束Lt  (P偏光)は172波長板36でS偏光に変
換され、偏光ビームスプリッタ−38で反射され、1/
4波長板40を通過して円偏光に変換され、レンズ42
で光路が曲げられるとともに集光され、カンチレバー4
4の先端部上面にビームスポットが照射される。カンチ
レバー44は、試料48の表面に対して作用する探針4
6を先端部下面に備え、圧電体50を介してアルミブロ
ック32に固定されている。さらに、カンチレバー44
の上面は、金などの高反射率コートを備えるとともに、
参照鏡20及び30と同一平面内に配置される。なお、
試料48はXYZスキャナー51に載置され、3次元方
向に移動できるように設けられる。カンチレバー44に
照射されたテスト光束Ltは反射され、レンズ42及び
1/4波長板40を通過し、P偏光に変換され、偏光ビ
ームスプリッタ−52を通過する。テスト光束Ltはプ
リズム54内で2回反射され、再び偏光ビームスプリッ
タ−38に入射される。テスト光束Ltは1/4波長板
40及びレンズ42を介してカンチレバー44に入射し
反射され、レンズ42及び1/4波長板40を介して偏
光ビームスプリッタ−52に入射する。テスト光束Lt
は1/4波長板40を2回通過することによってS偏光
に変換され、偏光ビームスプリッタ−52で反射される
。偏光ビームスプリッタ−52で反射されたテスト光束
Ltは1/4波長板56でP偏光に変換され、偏光ビー
ムスプリッタ−26を通過し、干渉縞計数部34に入射
する。
On the other hand, the test light beam Lt (P-polarized light) transmitted through the polarizing beam splitter 16 is converted into S-polarized light by the 172-wave plate 36, reflected by the polarized beam splitter 38, and 1/
It passes through a four-wavelength plate 40 and is converted into circularly polarized light, which is then passed through a lens 42.
The optical path is bent and focused, and the cantilever 4
A beam spot is irradiated onto the top surface of the tip of the pointer 4. The cantilever 44 has a probe 4 acting on the surface of the sample 48.
6 on the lower surface of the tip, and is fixed to the aluminum block 32 via a piezoelectric body 50. Furthermore, the cantilever 44
The top surface is coated with a high reflectance coating such as gold, and
It is arranged in the same plane as the reference mirrors 20 and 30. In addition,
The sample 48 is placed on the XYZ scanner 51 and is provided so as to be movable in three-dimensional directions. The test light beam Lt irradiated onto the cantilever 44 is reflected, passes through the lens 42 and the quarter-wave plate 40, is converted into P-polarized light, and passes through the polarizing beam splitter 52. The test light beam Lt is reflected twice within the prism 54 and enters the polarizing beam splitter 38 again. The test light beam Lt enters the cantilever 44 via the quarter-wave plate 40 and the lens 42, is reflected, and enters the polarizing beam splitter 52 via the lens 42 and the quarter-wave plate 40. Test luminous flux Lt
is converted into S-polarized light by passing through the quarter-wave plate 40 twice, and is reflected by the polarizing beam splitter 52. The test light beam Lt reflected by the polarizing beam splitter 52 is converted into P-polarized light by the quarter-wave plate 56, passes through the polarizing beam splitter 26, and enters the interference fringe counting section 34.

プリズム54は、カンチレバー44が基準位置あるとき
、すなわち参照鏡20及び30とカンチレバー44の上
面が同一平面上に位置するとき、参照光束Lrとテスト
光束Ltの光路長が等しくなるように、その位置が調整
される。参照光束Lr及びテスト光束Ltは干渉縞計数
部34に入射され、これらの光束の光路差からカンチレ
バー44の変位を検出する。なお、干渉縞計数部34に
は、偏光干渉計の可逆計数のできる干渉計が用いられる
The prism 54 is positioned so that when the cantilever 44 is in the reference position, that is, when the reference mirrors 20 and 30 and the top surface of the cantilever 44 are located on the same plane, the optical path lengths of the reference light beam Lr and the test light beam Lt are equal. is adjusted. The reference light beam Lr and the test light beam Lt are incident on the interference fringe counting section 34, and the displacement of the cantilever 44 is detected from the optical path difference between these light beams. Note that the interference fringe counting section 34 uses an interferometer capable of reversible counting of a polarization interferometer.

この実施例によれば、カンチレバー44の変位を検出す
る際の基準となる参照鏡20及び30が、試料48と同
じ振動系に配置されるので、振動など外部ノイズに対し
て安定性が向上する。
According to this embodiment, the reference mirrors 20 and 30, which serve as standards for detecting the displacement of the cantilever 44, are placed in the same vibration system as the sample 48, so stability against external noise such as vibration is improved. .

この発明の別の実施例が第2図に示される。伝搬する光
束は、その中心光線だけが図示される。
Another embodiment of the invention is shown in FIG. Only the central ray of the propagating light beam is illustrated.

光源62から射出される可干渉性の光束りは、ビームエ
キスパンダ64を介して偏光ビームスプリッタ−66に
入射し、ここで参照光束Lrとテスト光束Ltとに分離
される。偏光ビームスプリッタ−66で反射される参照
光束Lrは、プリズム68で反射され、1/2波長板7
0によりP偏光に変換される。1/2波長板70を通過
する光束Lrは、中央部に円形開口部を有し、周縁部に
レンズ面を備えるホログラムレンズ72によって屈折さ
れるとともに集光される。ホログラムレンズ72の焦点
には偏光膜74が配置されるとともに、その下方に設け
られる対物レンズ76の焦点に配置される。参照光束L
rは偏光膜74を通過し、対物レンズ76で屈折される
とともに平行光束に変換され、1/4波長板78を介し
て参照鏡80に照射され反射される。参照鏡80で反射
される参照光束Lrは、174波長板78を再度通過し
てS偏光に変換されるとともに、対物レンズ76によっ
て偏光膜74上に集光される。S偏光に変換された参照
光束Lrは偏光膜74で反射されて対物レンズ76の反
対側に到達し、平行光束に変換されるとともに屈折され
、1/4波長板82を介して参照鏡84に照射される。
A coherent beam emitted from the light source 62 enters a polarizing beam splitter 66 via a beam expander 64, where it is separated into a reference beam Lr and a test beam Lt. The reference light beam Lr reflected by the polarizing beam splitter 66 is reflected by the prism 68 and passed through the 1/2 wavelength plate 7.
0, it is converted into P polarized light. The light beam Lr passing through the half-wave plate 70 is refracted and condensed by a hologram lens 72 that has a circular opening in the center and a lens surface in the periphery. A polarizing film 74 is placed at the focal point of the hologram lens 72, and at the focal point of an objective lens 76 provided below. Reference light flux L
The light r passes through the polarizing film 74, is refracted by the objective lens 76, and is converted into a parallel beam of light, which is then irradiated onto the reference mirror 80 via the quarter-wave plate 78 and reflected. The reference light beam Lr reflected by the reference mirror 80 passes through the 174-wave plate 78 again, is converted into S-polarized light, and is focused onto the polarizing film 74 by the objective lens 76 . The reference light beam Lr converted into S-polarized light is reflected by the polarizing film 74 and reaches the opposite side of the objective lens 76 , where it is converted into a parallel light beam and refracted, and passes through the quarter-wave plate 82 to the reference mirror 84 . irradiated.

光束Lrは参照鏡84で反射され、174波長板82を
再度通過することによってP偏光に変換され、対物レン
ズ76によって屈折されるとともに、偏光膜74上に集
光される。P偏光に変換された参照光束Lrは偏光膜7
4を通過してホログラムレンズ72に至り、ここで光路
が曲げられるとともに平行光束ニ変換され、偏光ビーム
スプリッタ−86を通過して干渉縞計数部90に入射す
る。
The light beam Lr is reflected by the reference mirror 84, passes through the 174-wave plate 82 again, is converted into P-polarized light, is refracted by the objective lens 76, and is focused onto the polarizing film 74. The reference light beam Lr converted into P-polarized light is passed through the polarizing film 7
4 and reaches the hologram lens 72 , where the optical path is bent and converted into a parallel beam, which passes through the polarizing beam splitter 86 and enters the interference fringe counting section 90 .

一方、偏光ビームスプリッタ−66を通過するテスト光
束Ltは、1/4波長板92を通過して円偏光に変換さ
れ、対物レンズ76により屈折されるとともに集光され
、原子間力を検出するための探針(図示しない)を備え
るカンチレバー94の上面に照射される。カンチレバー
94は、上述の実施例と同様に、その上面に高反射率の
反射面を備え、照射されるテスト光束Ltを効率よく反
射する。カンチレバー94で反射された光束Ltは対物
レンズ76で屈折されるとともに、平行光束となりレン
ズ96に入射する。レンズ96はテスト光束Ltを反射
体98上に集光する。反射体98は照射されるテスト光
束Ltを高率で反射し、反射された光束Ltはレンズ9
6及び対物レンズ76を介してカンチレバー94に戻る
。テスト光束Ltは更にカンチレバー94で反射され、
対物レンズ76によって平行光束に再変換されて1/4
波長板92に入射する。テスト光束Ltは1/4波長板
92によってS偏光に変換され、2つの偏光ビームスプ
リッタ−66及び86で反射されて干渉縞計数部90に
入射する。干渉縞計数部90において、参照光束Lrと
テスト光束Ltとの光路差によって生じる干渉縞から、
原子間力によるカンチレバー94の変位が検出される。
On the other hand, the test light beam Lt passing through the polarizing beam splitter 66 passes through a quarter-wave plate 92, is converted into circularly polarized light, is refracted and condensed by an objective lens 76, and is used to detect atomic force. The upper surface of a cantilever 94 equipped with a probe (not shown) is irradiated with light. The cantilever 94 has a reflective surface with a high reflectance on its upper surface, as in the above-described embodiment, and efficiently reflects the irradiated test light beam Lt. The light beam Lt reflected by the cantilever 94 is refracted by the objective lens 76, and becomes a parallel light beam and enters the lens 96. The lens 96 focuses the test light beam Lt onto a reflector 98. The reflector 98 reflects the irradiated test light flux Lt at a high rate, and the reflected light flux Lt is reflected by the lens 9.
6 and returns to the cantilever 94 via the objective lens 76. The test light flux Lt is further reflected by the cantilever 94,
It is reconverted into a parallel beam by the objective lens 76 and becomes 1/4
The light is incident on the wave plate 92. The test light beam Lt is converted into S-polarized light by the quarter-wave plate 92, reflected by the two polarization beam splitters 66 and 86, and incident on the interference fringe counting section 90. In the interference fringe counting section 90, from the interference fringes caused by the optical path difference between the reference light beam Lr and the test light beam Lt,
Displacement of cantilever 94 due to atomic force is detected.

この実施例によれば、カンチレバー94と参照面80及
び84がより接近して設けられるので、振動に対する安
定性が更に向上する。
According to this embodiment, since the cantilever 94 and the reference surfaces 80 and 84 are provided closer together, stability against vibrations is further improved.

[発明の効果] この発明の原子開力顕微鏡によれば、カンチレバーの変
位検出に光の干渉が利用されるので、高精度の試料表面
の像が得られる。さらに、基準となる参照鏡面が試料と
同じ振動系に配置されるので、振動などの外部ノイズに
対する安定性が向上する。
[Effects of the Invention] According to the atomic force microscope of the present invention, since light interference is used to detect the displacement of the cantilever, a highly accurate image of the sample surface can be obtained. Furthermore, since the reference mirror surface serving as a reference is placed in the same vibration system as the sample, stability against external noise such as vibration is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る原子開力顕微鏡の構
成を示す図、第2図は別の実施例に係る原子開力顕微鏡
の構成を示す図である。 12・・・光源、16・・・偏光ビームスプリッタ−2
0,30・・・参照鏡、34・・・干渉縞計数部、44
・・・カンチレバー 46・・・探針、48・・・試料
FIG. 1 is a diagram showing the configuration of an atomic force microscope according to one embodiment of the present invention, and FIG. 2 is a diagram showing the configuration of an atomic force microscope according to another embodiment. 12... Light source, 16... Polarizing beam splitter-2
0, 30... Reference mirror, 34... Interference fringe counting unit, 44
...Cantilever 46...Tip, 48...Sample.

Claims (1)

【特許請求の範囲】[Claims]  原子間力を発生させるための探針と、上面に高反射率
の反射面を備え、前記探針を原子間力が発生し得る距離
以下に試料に近づけて支持するカンチレバーと、前記探
針を試料面に沿って走査する手段と、可干渉性の光を発
生する光源と、この光源から発生される光束を2本の光
束に分離する手段と、前記反射面と同一平面上に設けら
れる参照鏡面と、分離された一方の光束を前記参照鏡面
に照射する手段と、分離された他方の光束を前記カンチ
レバーの反射面に照射する手段と、前記参照鏡面及び前
記反射面から反射される2本の光束を干渉させ、前記カ
ンチレバーの変位を検出して試料表面の像を形成する手
段とを備える原子間力顕微鏡。
A probe for generating an atomic force; a cantilever having a reflective surface with a high reflectance on its upper surface and supporting the probe close to a sample at a distance below which the atomic force can be generated; means for scanning along the sample surface, a light source that generates coherent light, means for separating the light beam generated from the light source into two light beams, and a reference provided on the same plane as the reflecting surface. a mirror surface, means for irradiating one of the separated light beams onto the reference mirror surface, means for irradiating the other separated light beam onto the reflective surface of the cantilever, and two beams reflected from the reference mirror surface and the reflective surface. an atomic force microscope comprising: means for interfering the light beams of the cantilever and detecting the displacement of the cantilever to form an image of the sample surface.
JP26206189A 1989-10-09 1989-10-09 Interatomic force microscope Pending JPH03123805A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26206189A JPH03123805A (en) 1989-10-09 1989-10-09 Interatomic force microscope
US07/592,239 US5206702A (en) 1989-10-09 1990-10-03 Technique for canceling the effect of external vibration on an atomic force microscope
EP90119243A EP0422548B1 (en) 1989-10-09 1990-10-08 Atomic force microscope
DE69019913T DE69019913T2 (en) 1989-10-09 1990-10-08 Atomic force microscope.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26206189A JPH03123805A (en) 1989-10-09 1989-10-09 Interatomic force microscope

Publications (1)

Publication Number Publication Date
JPH03123805A true JPH03123805A (en) 1991-05-27

Family

ID=17370485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26206189A Pending JPH03123805A (en) 1989-10-09 1989-10-09 Interatomic force microscope

Country Status (1)

Country Link
JP (1) JPH03123805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0759536A1 (en) * 1995-08-23 1997-02-26 Mitsubishi Denki Kabushiki Kaisha Atomic force microscope and measuring head thereof
JP2005156525A (en) * 2003-10-31 2005-06-16 Seiko Instruments Inc Mechanical sensor and analysis system using it
JP2011522273A (en) * 2008-06-06 2011-07-28 インフィニテシマ・リミテッド Probe detection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0759536A1 (en) * 1995-08-23 1997-02-26 Mitsubishi Denki Kabushiki Kaisha Atomic force microscope and measuring head thereof
JP2005156525A (en) * 2003-10-31 2005-06-16 Seiko Instruments Inc Mechanical sensor and analysis system using it
JP2011522273A (en) * 2008-06-06 2011-07-28 インフィニテシマ・リミテッド Probe detection system

Similar Documents

Publication Publication Date Title
US5166751A (en) Interferometric profilometer sensor
US5491552A (en) Optical interferometer employing mutually coherent light source and an array detector for imaging in strongly scattered media
US8345260B2 (en) Method of detecting a movement of a measuring probe and measuring instrument
US7973939B2 (en) Differential-phase polarization-sensitive optical coherence tomography system
US4968144A (en) Single beam AC interferometer
JPH02259508A (en) Integrated interference measuring instrument
JPH03255904A (en) Small displacement detecting device
JP4286460B2 (en) Laser length measuring instrument and laser length measuring method
JP3073268B2 (en) Small displacement detection method
JPH0587540A (en) Three-dimensional measuring device
JPH03123805A (en) Interatomic force microscope
JPH0256604B2 (en)
JP3410802B2 (en) Interferometer device
JPH095018A (en) Device for measuring moving quantity
JPH0579834A (en) Interatomic-force microscope
JP2933678B2 (en) Surface shape measuring instrument
Tiziani Heterodyne interferometry using two wavelengths for dimensional measurements
JPH0510733A (en) Three-dimensional shape measuring apparatus
JPH02281103A (en) Interatomic force microscope
JP2002508838A (en) Interferometer
JP2942002B2 (en) Surface shape measuring device
JPS61272605A (en) Interferometer for measuring surface shape
JPH11325848A (en) Aspherical surface shape measurement device
JPH02259512A (en) Integrated interference measuring instrument
JPS63115017A (en) Optical vibrometer