JP3410802B2 - Interferometer device - Google Patents
Interferometer deviceInfo
- Publication number
- JP3410802B2 JP3410802B2 JP06350294A JP6350294A JP3410802B2 JP 3410802 B2 JP3410802 B2 JP 3410802B2 JP 06350294 A JP06350294 A JP 06350294A JP 6350294 A JP6350294 A JP 6350294A JP 3410802 B2 JP3410802 B2 JP 3410802B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- beam splitter
- optical path
- reflecting mirror
- reference light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は被検体の表面形状を干渉
縞により観察し得る干渉計装置に関し、詳しくはこの被
検面と基準面とが対向するように配されたフィゾー型の
干渉計装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer device capable of observing the surface shape of an object by means of interference fringes, and more specifically, a Fizeau interferometer in which the surface to be inspected and the reference surface are opposed to each other. It relates to the device.
【0002】[0002]
【従来の技術】球面あるいは非球面の表面形状を精密に
測定するための手法として干渉法が知られている。2. Description of the Related Art Interferometry is known as a method for accurately measuring the surface shape of a spherical surface or an aspherical surface.
【0003】干渉法による形状測定は、精度の高い基準
面(干渉原器)に対して被検面がどの程度変位している
かを、それぞれの面から反射した光を干渉させ発生した
干渉縞に基づき求めようとするものである。In the shape measurement by the interferometric method, the degree of displacement of the surface to be inspected with respect to a highly accurate reference surface (interference standard) is determined by the interference fringes generated by interfering the light reflected from each surface. It seeks to be based on.
【0004】干渉法は非接触で全面の形状精度を瞬時に
確認できるという利点があり、この中でもフィゾー型の
干渉計装置を用いた干渉法は装置構成が簡便であること
から種々の表面形状測定に用いられている。The interferometric method has an advantage that the shape accuracy of the entire surface can be instantly confirmed without contact. Among them, the interferometric method using the Fizeau interferometer device has a simple device configuration, and thus various surface profile measurements can be performed. Is used for.
【0005】一般的なフィゾー型の干渉計装置としては
図7に示すようにレーザ光源101 と、レーザビーム102
を発散光105 に変換する発散レンズ104 と、ビームスプ
リッタ106 と、コリメータレンズ107 と、この平行光10
8 をこの平行光に対して垂直に配された、半透鏡基準平
面109aにより一部反射せしめるとともにその残りの平行
光108 を透過せしめて被検体110 の被検面110aに照射せ
しめる基準板109 と、基準面109aから反射された参照光
と被検面110aから反射された物体光との干渉により形成
される干渉縞を観察するためのTVカメラ111 を備えて
いる。As a general Fizeau interferometer device, a laser light source 101 and a laser beam 102 are shown in FIG.
To a divergent light 105, a beam splitter 106, a collimator lens 107, and a parallel light 10
A reference plate 109 for partially reflecting 8 by the semi-transparent mirror reference plane 109a arranged perpendicularly to this parallel light and transmitting the remaining parallel light 108 to irradiate the test surface 110a of the subject 110 with the reference plate 109. The TV camera 111 is provided for observing interference fringes formed by interference between the reference light reflected from the reference surface 109a and the object light reflected from the surface 110a to be tested.
【0006】[0006]
【発明が解決しようとする課題】このようにフィゾー型
の干渉計装置は構造的に簡易な構成とされているが、そ
の反面、上記物体光と参照光が基準平面109aと被検面11
0aの距離の2倍の光路差を有しているため、光源として
可干渉性の高い光を照射し得るレーザ光源等を用いる必
要があり、また主に基準板109 の基準平面109aとは逆側
の表面からの反射光により不要な干渉縞が発生し易いと
いう問題があった。As described above, the Fizeau interferometer device has a structurally simple structure, but on the other hand, the object light and the reference light have the reference plane 109a and the surface 11 to be inspected.
Since the optical path difference is twice the distance of 0a, it is necessary to use a laser light source or the like capable of irradiating light with high coherence as a light source, and it is mainly opposite to the reference plane 109a of the reference plate 109. There is a problem that unnecessary interference fringes are likely to occur due to the reflected light from the side surface.
【0007】本発明はこのような事情に鑑みなされたも
のであり、コンパクトな構成を有するフィゾー型の干渉
計装置の利点を有しつつ、可干渉性の余り良好でない照
射光を用いても鮮明度の高い干渉縞が得られる干渉計装
置を提供することを目的とするものである。The present invention has been made in view of the above circumstances, and has the advantages of a Fizeau interferometer having a compact structure, and is clear even when using irradiation light having a very poor coherence. It is an object of the present invention to provide an interferometer device capable of obtaining high-frequency interference fringes.
【0008】[0008]
【課題を解決するための手段】本願発明の第1の干渉計
装置は、可干渉光を、基準板の基準面を介して被検体の
被検面に入射せしめ、該可干渉光の、該被検面における
反射により生じた物体光と前記基準面における反射によ
り生じた参照光との光干渉により生じる干渉縞を所定の
干渉縞形成面上に形成する干渉計装置において、前記物
体光と、この物体光と重ね合わされた前記参照光を互い
に分離し、この後これら物体光と参照光を再び重ね合わ
せるまでにこの参照光が前記物体光よりも、前記基準面
と前記被検面との距離の2倍に相当する光路長Lだけ長
い光路長を有するように前記物体光と前記参照光を導く
光路差調整光学系を前記基準板と前記干渉縞形成面との
間に配設したことを特徴とするものである。A first interferometer device of the present invention makes coherent light incident on a test surface of a subject through a reference surface of a reference plate, and In the interferometer device that forms an interference fringe caused by optical interference between the object light generated by the reflection on the surface to be inspected and the reference light generated by the reflection on the reference surface, the object light, The reference light superposed on the object light is separated from each other, and thereafter the reference light is more than the object light until the superposition of the object light and the reference light again, the distance between the reference surface and the surface to be inspected. An optical path difference adjusting optical system that guides the object light and the reference light so as to have an optical path length L corresponding to twice the optical path length L is disposed between the reference plate and the interference fringe formation surface. It is a feature.
【0009】また、本願発明の第2の干渉計装置は、上
記第1の干渉計装置の光路差調整光学系が、前記物体光
および前記参照光のうちいずれか一方を透過し、他方を
側方に反射せしめるビームスプリッタと、このビームス
プリッタから射出された前記参照光を照射されて該参照
光を該ビームスプリッタ方向に反射せしめる第1の反射
鏡と、この第1の反射鏡により反射され該ビームスプリ
ッタから射出された該参照光を照射されてこの参照光を
該ビームスプリッタ方向に反射せしめる第2の反射鏡と
を、前記光路長Lの1/2に等しい光学距離だけ光路上
で互いに離れた位置に配設してなる反射鏡ペアとからな
り、前記第2の反射鏡により反射され前記ビームスプリ
ッタから射出された前記参照光が前記ビームスプリッタ
から射出された前記物体光と重なり合うように構成され
てなることを特徴とするものである。Further, in the second interferometer device of the present invention, the optical path difference adjusting optical system of the first interferometer device transmits either one of the object light and the reference light, and the other side. A beam splitter for reflecting the reference beam emitted from the beam splitter, a first reflecting mirror for irradiating the reference beam emitted from the beam splitter and reflecting the reference beam in the direction of the beam splitter, and a first reflecting mirror for reflecting the reference beam by the first reflecting mirror. A second reflecting mirror, which is irradiated with the reference light emitted from the beam splitter and reflects the reference light in the beam splitter direction, is separated from each other on the optical path by an optical distance equal to 1/2 of the optical path length L. Before the reference light emitted from the beam splitter is reflected by the second reflecting mirror and is emitted from the beam splitter. Those characterized by comprising configured to overlap with the object beam.
【0010】さらに、本願発明の第3の干渉計装置は、
上記第2の干渉計装置であって、この第1および第2の
反射鏡の少なくとも一方に前記ビームスプリッタ方向に
振動するよう駆動される反射鏡振動手段が取り付けられ
てなることを特徴とするものである。Further, the third interferometer device of the present invention is
The second interferometer device, wherein at least one of the first and second reflecting mirrors is provided with a reflecting mirror vibrating means that is driven to vibrate in the beam splitter direction. Is.
【0011】なお、本明細書において光路長とは真空中
において換算した長さをいう。In this specification, the optical path length means a length converted in vacuum.
【0012】[0012]
【作用】上記第1の干渉計装置によれば、フィゾー型の
干渉計装置において、基準面からの参照光と被検面から
の物体光との、これら両面間距離に基づく光路長の差を
キャンセルする光路差調整光学系を設けており、これに
より干渉縞形成面上で重なり合う上記物体光と参照光
の、光源における射出タイミングが略等しくなり、可干
渉性がそれ程良好でない光を射出する光源を用いた場合
にも上記干渉縞形成面上に鮮明度に優れた干渉縞を形成
することが可能となる。According to the first interferometer device described above, in the Fizeau interferometer device, the difference in optical path length between the reference light from the reference surface and the object light from the surface to be inspected is calculated based on the distance between the two surfaces. An optical path difference adjusting optical system for canceling is provided, whereby the emission timings of the object light and the reference light, which overlap each other on the interference fringe formation surface, at the light source become substantially equal to each other, and a light source that emits light whose coherence is not so good In the case of using, it is possible to form an interference fringe with excellent definition on the interference fringe formation surface.
【0013】また、上記光路長の差をキャンセルするこ
とにより、基準板の基準面とは反対側の面からの反射光
等により形成される不要な干渉縞が軽減されるという利
点もある。Further, by canceling the difference in the optical path length, there is also an advantage that unnecessary interference fringes formed by the reflected light from the surface of the reference plate opposite to the reference surface are reduced.
【0014】また上記第2の干渉計装置は、ビームスプ
リッタと2枚の反射鏡により、参照光を上記基準面と上
記被検面の面間距離に基づく光路長の差に等しい光路長
だけ迂回させてから物体光と重なり合うようにしてお
り、いわばマイケルソン型の干渉計装置の特徴をフィゾ
ー型の干渉計装置に取り入れることにより簡単な構成
で、干渉縞形成面上における参照光と物体光の光路差が
キャンセルされるようにしている。In the second interferometer device, the beam splitter and the two reflecting mirrors detour the reference light by an optical path length equal to the difference in optical path length based on the surface distance between the reference surface and the test surface. After that, the characteristics of the Michelson-type interferometer device are incorporated into the Fizeau-type interferometer device, so to speak. The optical path difference is canceled.
【0015】また、上記第3の干渉計装置は、上記物体
光と参照光の光路差をキャンセルするための光路差調整
光学系の2つの反射鏡のうちいずれか一方にピエゾ素子
等の反射鏡振動手段を取り付け、該反射鏡をビームスプ
リッタ方向に振動させることにより、干渉縞形成面にお
ける物体光と参照光の光路差を微小に変化せしめて干渉
縞を変化せしめているので、これに基づきいわゆるフリ
ンジスキャニング法(位相シフト法とも称され、参照光
と物体光の位相差を変動させた際に縞がどの方向に移動
するかを観察して被検面の凹凸を検出する方法)を適用
することが可能となる。従来のフィゾー型の干渉計装置
においては、フリンジスキャニング法を適用するために
被検面もしくは基準面を光軸方向に振動させていたた
め、振動用の駆動機構が大型化し、装置の大型化を招い
ていたが、本願発明装置ではパスマッチ用の反射鏡を振
動させることにより同様の効果が得られるので反射鏡振
動手段および振動駆動機構の小型化ひいては装置の小型
化を促進することができる。In the third interferometer apparatus, one of two reflecting mirrors of an optical path difference adjusting optical system for canceling the optical path difference between the object light and the reference light is a reflecting mirror such as a piezo element. By attaching a vibrating means and vibrating the reflecting mirror in the beam splitter direction, the optical path difference between the object light and the reference light on the interference fringe formation surface is slightly changed to change the interference fringes. Apply the fringe scanning method (also called the phase shift method, which is to detect the unevenness of the test surface by observing in which direction the stripes move when the phase difference between the reference light and the object light is changed) It becomes possible. In the conventional Fizeau interferometer device, the test surface or the reference surface was vibrated in the optical axis direction in order to apply the fringe scanning method, so the drive mechanism for vibration became large and the device became large. However, since the same effect can be obtained by vibrating the path-matching reflecting mirror in the device of the present invention, it is possible to reduce the size of the reflecting-mirror vibrating means and the vibration driving mechanism, and thus the size of the device.
【0016】[0016]
【実施例】以下、本発明の実施例について図面を用いて
説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0017】図1は本発明の一実施例に係る干渉計装置
を示す概略図である。この干渉計装置はコヒーレント長
の短い光を発する光源1と、この光源1から射出された
光2を平行光4とするコリメータレンズ3と、この平行
光4を90°回転した方向に反射せしめる偏光ビームスプ
リッタ5と、この反射された平行光4のビーム径を拡大
するビームエクスパンダ6と、このビーム径を拡大され
た平行光7を垂直に照射される極めて平面度の高い半透
鏡平面である基準平面8aを下面に有する基準板8と、基
準平面8aから反射された光の残りの平行光7が照射され
る被検面9aを有する被検体9を載設保持し、この被検面
9aが基準平面8aと平行となるように調整し得る台10を備
えており、略平面とれさた被検面9aの微小な表面形状を
観察するために用いられる。FIG. 1 is a schematic diagram showing an interferometer device according to an embodiment of the present invention. This interferometer device includes a light source 1 which emits light with a short coherence length, a collimator lens 3 which converts the light 2 emitted from the light source 1 into parallel light 4, and a polarized light which reflects the parallel light 4 in a direction rotated by 90 °. A beam splitter 5, a beam expander 6 that expands the beam diameter of the reflected parallel light 4, and a semi-transparent mirror plane with extremely high flatness that is vertically irradiated with the parallel light 7 that has the expanded beam diameter. A reference plate 8 having a reference plane 8a on its lower surface, and a subject 9 having a subject surface 9a on which the remaining parallel light 7 of the light reflected from the reference plane 8a is irradiated are mounted and held.
A table 10 that can be adjusted so that 9a is parallel to the reference plane 8a is provided, and is used for observing the minute surface shape of the test surface 9a that is substantially flat.
【0018】また、上記基準平面8aから反射された参照
光と上記被検面9aから反射された物体光とが互いに重な
り合い戻り光となってビームエクスパンダ6および偏光
ビームスプリッタ5を透過することになるが、この戻り
光を結像するための結像レンズ11と、この結像レンズ11
の焦点面上に受光面を有し、上記物体光および参照光に
より形成される干渉縞を観察するためのTVカメラ12を
備えている。Further, the reference light reflected from the reference plane 8a and the object light reflected from the surface 9a to be inspected are overlapped with each other to form return light which is transmitted through the beam expander 6 and the polarization beam splitter 5. The image forming lens 11 for forming an image of this return light and the image forming lens 11
The TV camera 12 has a light receiving surface on its focal plane and is used to observe the interference fringes formed by the object light and the reference light.
【0019】また、偏光ビームスプリッタ5と結像レン
ズ11との間にビームスプリッタ13および2つの反射ミラ
ー14a,b からなる光路差調整光学系15を備えている。ま
た、このビームスプリッタ13の前段位置には直線偏光を
円偏光とするための1/4波長板20が挿入されている。An optical path difference adjusting optical system 15 including a beam splitter 13 and two reflecting mirrors 14a and 14b is provided between the polarization beam splitter 5 and the imaging lens 11. Further, a quarter wavelength plate 20 for converting linearly polarized light into circularly polarized light is inserted at a position before the beam splitter 13.
【0020】さらに、コリメータレンズ3の後段には平
行光4を直線偏光とするための偏光板16が、また偏光ビ
ームスプリッタ5のビームエクスパンダ6側には1/4
波長板17が配設されている。Further, a polarizing plate 16 for converting the parallel light 4 into linearly polarized light is provided after the collimator lens 3, and a 1/4 is provided on the beam expander 6 side of the polarization beam splitter 5.
A wave plate 17 is provided.
【0021】次に、本実施例装置の作用について説明す
る。Next, the operation of the apparatus of this embodiment will be described.
【0022】すなわち、光源1からの光2は平行光4と
された後偏光板16によって直線偏光とされ、偏光ビーム
スプリッタ5の反射面において下方に反射される。この
平行光4はビームエクスパンダ6でビーム径が拡げられ
た平行光7とされ、基準平面8aと被検面9aにおける反射
により各々参照光と物体光となる。That is, the light 2 from the light source 1 is converted into parallel light 4 and then linearly polarized by the polarizing plate 16 and reflected downward by the reflection surface of the polarization beam splitter 5. The collimated light 4 is made into a collimated light 7 whose beam diameter is expanded by the beam expander 6, and becomes a reference light and an object light by being reflected on the reference plane 8a and the test surface 9a.
【0023】この後、物体光および参照光は重なり合っ
てビームエクスパンダ6を介して1/4波長板17に入射
する。この1/4波長板17に入射する前の平行光に対
し、この1/4波長板17から射出された物体光および参
照光は偏光面が90°回転した状態となっており、この物
体光および参照光はこの後偏光ビームスプリッタ5の反
射面を透過する直線偏光とされる。次に光路差調整光学
系15に入射するとこの直線偏光は1/4波長板20により
円偏光され、ビームスプリッタ13において、透過する直
線偏光と反射する直線偏光の両者が生成されるようにな
る。After that, the object light and the reference light overlap with each other and enter the quarter wavelength plate 17 through the beam expander 6. With respect to the parallel light before entering the quarter-wave plate 17, the object light and the reference light emitted from the quarter-wave plate 17 have their polarization planes rotated by 90 °. The reference light and the reference light are then linearly polarized light that passes through the reflecting surface of the polarization beam splitter 5. Next, when the linearly polarized light enters the optical path difference adjusting optical system 15, the linearly polarized light is circularly polarized by the quarter-wave plate 20, and both the linearly polarized light that is transmitted and the linearly polarized light that is reflected are generated in the beam splitter 13.
【0024】ところで、前述したように、上記基準平面
8aと被検面9aとの距離に基づく、上記物体光および参照
光がビームエクスパンダ6に入射する際の両者の光路差
はLとなっている。By the way, as described above, the reference plane
The optical path difference between the object light and the reference light when they enter the beam expander 6 is L based on the distance between the surface 8a and the surface 9a to be inspected.
【0025】上記光路差調整光学系15は上記物体光およ
び参照光の光路差Lをキャンセルすることにより、可干
渉性の小さい光によってもTVカメラ12の受光面上に干
渉縞画像を形成することが可能となる。The optical path difference adjusting optical system 15 cancels the optical path difference L between the object light and the reference light to form an interference fringe image on the light receiving surface of the TV camera 12 even with light having a small coherence. Is possible.
【0026】すなわち、このビームスプリッタ13に入射
した物体光および参照光はそのハーフミラー面におい
て、透過する光と第1の反射ミラー14a 方向に反射され
る光とに分割され、この後第1の反射ミラー14a から反
射された光はビームスプリッタ13に戻る。この後、第1
の反射ミラー14a からの光の一部は第2の反射ミラー14
b に照射され、この第2の反射ミラー14b により反射さ
れ再びビームスプリッタ13に戻る。この第2の反射ミラ
ー14b から反射された光の一部はビームスプリッタ13の
ハーフミラー面により反射されてTVカメラ12方向に射
出される。そして、最初にビームスプリッタ13をTVカ
メラ12方向に透過した光と、2つの反射ミラー14a,b に
より反射され、これらミラー14a,b の間を1往復した後
ビームスプリッタ13からTVカメラ12方向に射出された
光とはちょうど光路長Lに等しい光路差を有するように
設定されている。したがって、最初にビームスプリッタ
13をTVカメラ12方向に透過した光のうちの物体光と、
上記2つのミラー14a,b 間を1往復した後ビームスプリ
ッタ13からTVカメラ12方向に射出された光のうちの参
照光とは上記基準平面8aと被検面9aとの距離により生じ
た光路差Lがキャンセルされて光路差が略0となり、可
干渉性の小さい光によってもTVカメラ12の受光面上に
鮮明度(ビジビリティ)の高い干渉縞を形成することが
可能となる。That is, the object light and the reference light that have entered the beam splitter 13 are split on the half mirror surface thereof into light that is transmitted and light that is reflected in the direction of the first reflecting mirror 14a, and then the first light is split. The light reflected from the reflection mirror 14a returns to the beam splitter 13. After this, the first
A part of the light from the reflection mirror 14a of the second reflection mirror 14a
It is irradiated to b, reflected by the second reflecting mirror 14b, and returned to the beam splitter 13 again. A part of the light reflected from the second reflecting mirror 14b is reflected by the half mirror surface of the beam splitter 13 and emitted toward the TV camera 12. Then, the light that first passes through the beam splitter 13 in the direction of the TV camera 12 and is reflected by the two reflecting mirrors 14a and 14b, travels back and forth between these mirrors 14a and 14b, and then from the beam splitter 13 in the direction of the TV camera 12. It is set so as to have an optical path difference exactly equal to the optical path length L with the emitted light. Therefore, first the beam splitter
Of the light transmitted through the TV camera 12 direction 13 through the object light,
The reference light of the light emitted in the direction of the TV camera 12 from the beam splitter 13 after one round trip between the two mirrors 14a and 14b is the optical path difference caused by the distance between the reference plane 8a and the test surface 9a. Since L is canceled and the optical path difference becomes almost 0, it is possible to form an interference fringe with high definition (visibility) on the light receiving surface of the TV camera 12 even with light having a small coherence.
【0027】なお、この光路差調整光学系15における参
照光と物体光の光路差は、図2に示す如く、第1の反射
ミラー14a からビームスプリッタ13までの距離をL1 、
第2の反射ミラー14b からビームスプリッタ13までの距
離をL2 、ビームスプリッタ13の幅をL3 、ビームスプ
リッタ13の屈折率をnとするとき2(L1 +L2 +nL
3 )で表わされ、これが上記基準平面8aと被検面9aの距
離の2倍の光路長Lと等しくなるように上記光学系15が
位置設定されている。The optical path difference between the reference light and the object light in the optical path difference adjusting optical system 15 is, as shown in FIG. 2, the distance from the first reflecting mirror 14a to the beam splitter 13 is L 1 ,
When the distance from the second reflection mirror 14b to the beam splitter 13 is L 2 , the width of the beam splitter 13 is L 3 , and the refractive index of the beam splitter 13 is n, 2 (L 1 + L 2 + nL
3 ), and the optical system 15 is positioned so that it is equal to the optical path length L which is twice the distance between the reference plane 8a and the surface 9a to be tested.
【0028】光源1としては可干渉性の小さい光を発す
る光源を使用することが可能であるから、例えば白色ラ
ンプ、キセノンランプ、LEDあるいはスーパールミネ
ッセンスダイオード(SLD)等の使用が可能である。As the light source 1, it is possible to use a light source which emits light having a small coherence, and therefore, for example, a white lamp, a xenon lamp, an LED or a super luminescence diode (SLD) can be used.
【0029】ただし、このようなハーフミラー面を有す
るビームスプリッタ13を用いた光路差調整光学系15内を
光が進む間にその光量が減衰することから、明瞭な干渉
縞を形成するためには参照光を生成する基準平面8aにお
ける反射率を高くしておき、初期段階において参照光の
光量を物体光の光量に比して大きくしておく。However, since the amount of light is attenuated while the light travels in the optical path difference adjusting optical system 15 using the beam splitter 13 having such a half mirror surface, it is necessary to form a clear interference fringe. The reflectance on the reference plane 8a for generating the reference light is set high, and the light amount of the reference light is made larger than the light amount of the object light in the initial stage.
【0030】また、上記2つの反射ミラー14a,b のうち
少なくとも一方は可動としておき、光路差キャンセル用
の光路の長さを微調整することができるようにしておく
のが望ましい。It is desirable that at least one of the two reflecting mirrors 14a and 14b is movable so that the length of the optical path for canceling the optical path difference can be finely adjusted.
【0031】さらに、上記可動とされたもの以外の反射
ミラーについては筐体等にAl等の金属を蒸着すること
により生成した蒸着ミラーとすることも可能である。Further, the reflection mirror other than the movable mirror may be a vapor deposition mirror produced by vapor-depositing a metal such as Al on the case.
【0032】また、上記実施例装置は、図1に示すよう
に第1の反射ミラー14a (第2の反射ミラー14b とする
ことも可能)にピエゾ素子18が取り付けられており、所
定のタイミングでピエゾ素子駆動電源19から印加された
所定周波数の、のこぎり波電圧信号に応じてこのピエゾ
素子18が振動し第1の反射ミラー14a が光軸方向(ビー
ムスプリッタ13方向)に振動する。この振動に伴ない干
渉縞が移動し、このときの干渉縞画像をコンピュータに
入力し自動解析させるフリンジスキャニング法を用いる
ことにより被検面の凹凸形状を正確に認識することが可
能となる。Further, in the apparatus of the above embodiment, as shown in FIG. 1, the piezo element 18 is attached to the first reflecting mirror 14a (or the second reflecting mirror 14b can be used), and at a predetermined timing. The piezo element 18 vibrates in response to a sawtooth voltage signal of a predetermined frequency applied from the piezo element driving power source 19, and the first reflection mirror 14a vibrates in the optical axis direction (direction of the beam splitter 13). The interference fringes move due to this vibration, and by using the fringe scanning method in which the interference fringe image at this time is input to a computer and automatically analyzed, it becomes possible to accurately recognize the uneven shape of the test surface.
【0033】本実施例装置においては、光路差調整光学
系15の反射ミラー14a にピエゾ素子18を取り付けて光路
差を微小変化せしめているので、基準板8や被検体9に
ピエゾ素子を取り付けて光路差を微小変化せしめている
従来技術と比べ、ピエゾ素子の駆動電力が小さくてよ
く、また、実際の振動に係る機構部分(例えば、ミラー
保持機構)も簡単となる。さらに、基準板8が大きいた
めに1つのピエゾ素子によっては片持ち構造となり平面
性がくずれるというような従来の問題も生じない。In the apparatus of this embodiment, since the piezo element 18 is attached to the reflection mirror 14a of the optical path difference adjusting optical system 15 to slightly change the optical path difference, the piezo element is attached to the reference plate 8 or the subject 9. Compared with the prior art in which the optical path difference is slightly changed, the driving power of the piezo element may be small, and the mechanical part related to the actual vibration (for example, the mirror holding mechanism) becomes simple. Further, since the reference plate 8 is large, a single piezo element has a cantilever structure, and the conventional problem that the flatness is deteriorated does not occur.
【0034】なお、本発明の実施例装置としては上記実
施例のものに限られず、種々の態様の変更が可能であ
る。The apparatus of the embodiment of the present invention is not limited to the above-mentioned embodiment, and various modifications can be made.
【0035】例えば光路差調整光学系としては参照光を
物体光に対し上記光路長Lに相当する光路長だけ迂回せ
しめるものであればよく、例えば図3あるいは図4に示
すような構成であってもよい。For example, the optical path difference adjusting optical system may be any one as long as it detours the reference light by an optical path length corresponding to the above-mentioned optical path length L with respect to the object light. Good.
【0036】図3に示す光路差調整光学系115 は、ビー
ムスプリッタ113aにより光を2系に分割し、反射された
光を2つの反射ミラー114a,bにより反射した後ビームス
プリッタ113bに入射せしめ、このビームスプリッタ113b
において、分割された2系の光を合成するようにしたも
ので、迂回させた系の光が、そのまま直進した系の光に
対して光路長Lだけ長くなるように設定されている。The optical path difference adjusting optical system 115 shown in FIG. 3 splits the light into two systems by the beam splitter 113a, reflects the reflected light by the two reflecting mirrors 114a and 114b, and then makes it enter the beam splitter 113b. This beam splitter 113b
In (2), the split light of two systems is combined, and the light of the detoured system is set to be longer than the light of the system that goes straight as much as the optical path length L.
【0037】また、図4に示す光路差調整光学系215
は、ビームスプリッタ213 により光を2系に分割し、反
射光はそのまま結像レンズ211 を介してTVカメラ212
へ、一方透過光は反射ミラー214a、ビームスプリッタ21
3 、反射ミラー214b、ビームスプリッタ213 を経由し、
結像レンズ211 を介してTVカメラ212 へ各々入射す
る。このとき、ビームスプリッタ213 から透過された光
は、反射されてそのままTVカメラ212 に入射する光に
対して光路長L(真空中に換算)だけ迂回することとな
るように構成されている。Further, an optical path difference adjusting optical system 215 shown in FIG.
Is split into two systems by the beam splitter 213, and the reflected light is directly transmitted through the imaging lens 211 to the TV camera 212.
On the other hand, the transmitted light reflects the reflection mirror 214a and the beam splitter 21.
3, via reflection mirror 214b, beam splitter 213,
The light enters each of the TV cameras 212 via the imaging lens 211. At this time, the light transmitted from the beam splitter 213 is configured to detour by the optical path length L (converted into a vacuum) with respect to the light reflected and incident on the TV camera 212 as it is.
【0038】さらに、上記実施例装置においては、光路
差調整光学系15のビームスプリッタ13のハーフミラー面
によって光を分割するものであるが、この場合には前述
したように干渉に寄与する光量分が小さくなってしまう
ので、図5に示すように、分光手段として偏光ビームス
プリッタ13a を使用するようにして上記光量の減少割合
を小さくすることも可能である。この場合には図5に示
すように偏光ビームスプリッタ13a と各反射ミラー14a,
b の間の位置に1/4波長板21a,b を挿入して偏光ビー
ムスプリッタ13a による偏光の透過および反射を切り換
えるようにする。Further, in the apparatus of the above embodiment, the light is split by the half mirror surface of the beam splitter 13 of the optical path difference adjusting optical system 15. In this case, however, the amount of light contributing to the interference is divided as described above. Therefore, the polarization beam splitter 13a can be used as the spectroscopic means to reduce the reduction rate of the light quantity, as shown in FIG. In this case, as shown in FIG. 5, the polarization beam splitter 13a and each reflection mirror 14a,
The quarter-wave plates 21a and 21b are inserted between the positions b to switch the transmission and reflection of polarized light by the polarization beam splitter 13a.
【0039】また、偏光ビームスプリッタ13a の前段お
よび後段に各々1/4波長板20および1/4波長板21c
が配設される。Further, a quarter wavelength plate 20 and a quarter wavelength plate 21c are provided in the front and rear stages of the polarization beam splitter 13a, respectively.
Is provided.
【0040】すなわち、ビームスプリッタ5を透過し
た、直線偏光の参照光と物体光は上記1/4波長板20に
入射して偏光面が45°回転し、この後偏光ビームスプリ
ッタ13a に入射して、透過する直線偏光と反射する直線
偏光に分離される。この偏光ビームスプリッタ13a によ
り反射された直線偏光は反射ミラー14a により反射され
て偏光ビームスプリッタ13a に戻されるが、この間に1
/4波長板21a を2回通過することとなるため偏光面が
90°回転した直線偏光とされ偏光ビームスプリッタ13a
を透過することとなる。That is, the linearly polarized reference light and the object light that have passed through the beam splitter 5 are incident on the quarter-wave plate 20 and the plane of polarization is rotated by 45 °, and then are incident on the polarizing beam splitter 13a. , Linearly polarized light that is transmitted and linearly polarized light that is reflected. The linearly polarized light reflected by the polarization beam splitter 13a is reflected by the reflection mirror 14a and returned to the polarization beam splitter 13a.
Since it will pass through the / 4 wave plate 21a twice, the polarization plane
Linearly polarized light rotated by 90 ° Polarization beam splitter 13a
Will be transmitted.
【0041】この後偏光ビームスプリッタ13a を透過し
た直線偏光は反射ミラー14b により反射されて再び偏光
ビームスプリッタ13a に戻されるが、この間に1/4波
長板21b を2回通過することとなるため偏光面が90°回
転した直線偏光とされ偏光ビームスプリッタ13a により
干渉縞観察用のTVカメラ212 方向に反射されることと
なる。After that, the linearly polarized light transmitted through the polarization beam splitter 13a is reflected by the reflection mirror 14b and returned to the polarization beam splitter 13a again, but during this time, the linearly polarized light passes through the quarter-wave plate 21b twice, so that the polarized light is polarized. The surface is rotated by 90 ° to be linearly polarized light, which is reflected by the polarization beam splitter 13a toward the TV camera 212 for observing interference fringes.
【0042】この偏光ビームスプリッタ13a で反射され
た直線偏光は、この偏光ビームスプリッタ13a をそのま
ま透過した直線偏光と重ね合わされる。これら2つの直
線偏光は共に参照光と物体光を合成したものであって、
2つの反射ミラー14a,b 間を往復した直線偏光のうちの
物体光と、偏光ビームスプリッタ13a をそのまま透過し
た直線偏光のうちの参照光との光路長が等しく合わされ
ることとなる。The linearly polarized light reflected by the polarization beam splitter 13a is superimposed on the linearly polarized light that has been transmitted through the polarization beam splitter 13a as it is. Both of these two linearly polarized lights are a combination of reference light and object light,
The optical path lengths of the object light of the linearly polarized light that reciprocates between the two reflection mirrors 14a and 14b and the reference light of the linearly polarized light that has passed through the polarization beam splitter 13a as they are are equalized.
【0043】ところが、この光路長を合わされた参照光
と物体光とは偏光面が互いに90°ずれているため、これ
ら両者の偏光面を1/4波長板21c により回転させ、同
一方向の偏光成分を発生させてこの偏光成分により参照
光と物体光を干渉させるようにしている。However, since the polarization planes of the reference light and the object light whose optical path lengths have been adjusted are deviated from each other by 90 °, the polarization planes of the reference light and the object light are rotated by the 1/4 wavelength plate 21c, and the polarization components in the same direction are rotated. Is generated, and the reference light and the object light are caused to interfere with each other by this polarization component.
【0044】また、上記実施例装置は、略平面とされた
被検面の表面形状を観察する場合について説明している
が、本発明の干渉計装置は被検面が球面や非球面(回転
楕円面、双曲面、放物面、円筒面等)等の場合について
もその被検面形状に応じた基準板を所定位置に配設する
ことにより適用可能である。In the above-mentioned embodiment, the description has been made on the case of observing the surface shape of the substantially flat surface to be inspected. Even in the case of an elliptical surface, a hyperboloidal surface, a paraboloidal surface, a cylindrical surface, etc., it is applicable by disposing a reference plate according to the shape of the surface to be inspected at a predetermined position.
【0045】例えば、凹状の略球面とされた被検面を観
察する場合には、図6に示す如き装置構成のものを使用
する。すなわち、基準レンズ118 として、被検面119a側
に凹面からなる基準面を向けた、正の屈折力を有するレ
ンズを用いる。For example, in the case of observing a surface to be inspected, which has a substantially spherical concave shape, a device having a device configuration as shown in FIG. 6 is used. That is, as the reference lens 118, a lens having a positive refracting power with a reference surface formed of a concave surface facing the surface 119a to be tested is used.
【0046】この基準面118aは、極めて高精度の凹状の
球面に所定の反射率を有する反射膜を蒸着された半透鏡
球面として形成されてなる。The reference surface 118a is formed as a semi-transparent mirror spherical surface in which a highly accurate concave spherical surface is vapor-deposited with a reflective film having a predetermined reflectance.
【0047】この基準レンズ118 に入射された平行光4
はこの基準レンズ118 によって、点Oに収束した後発散
光となって被検面119aに入射する光束に変換される。な
お、凹状の略球面からなる被検面119aを有する被検体11
9 は、この被検体119 と基準レンズ118 のアライメント
を調整し得る台10上に載設保持されている。Parallel light 4 incident on the reference lens 118
Is converted by this reference lens 118 into a light flux which is converged at the point O and then becomes divergent light and is incident on the surface 119a to be tested. It should be noted that the subject 11 having the test surface 119a formed of a substantially spherical concave surface
The reference numeral 9 is mounted and held on a table 10 capable of adjusting the alignment between the subject 119 and the reference lens 118.
【0048】上記基準レンズ118 および被検体119 は、
基準面118aおよび被検面119aが収束点Oを球心とする球
面上に位置するように配設される。The reference lens 118 and the subject 119 are
The reference surface 118a and the test surface 119a are arranged so as to be located on a spherical surface having the converging point O as a spherical center.
【0049】これにより、被検面119aに照射された発散
光はこの被検面119aで反射され、収束光となって点Oに
収束し、次に発散光となって基準面118aに再入射する。
すなわち、基準面118aから被検面119aに向かう光線束
と、この被検面119aにより反射され、被検面119aから基
準面118aに向かう光線束(物体光)とは互いに重なり合
い、これにより基準面118aにおける反射により形成され
た参照光とこの基準面118aに再入射した物体光とが重な
り合ってこれら2つの光の進む方向を一致させることが
可能となる。As a result, the divergent light emitted to the surface 119a to be inspected is reflected by the surface 119a to be inspected, becomes convergent light and converges at the point O, and then becomes divergent light and re-enters the reference surface 118a. To do.
That is, the light flux traveling from the reference surface 118a to the test surface 119a and the light flux reflected by the test surface 119a and traveling from the test surface 119a to the reference surface 118a (object light) overlap with each other, whereby the reference surface The reference light formed by the reflection at 118a and the object light re-incident on the reference surface 118a overlap each other, and the traveling directions of these two lights can be matched.
【0050】そしてこの場合にも、光路差調整光学系15
において参照光が基準面118aと被検面119aとの距離の2
倍に相当する光路長Lだけ迂回せしめられ、TVカメラ
12の受光面上で、光路長がそろえられた参照光と物体光
とにより、被検面119aの表面形状を表わす干渉縞が形成
される。Also in this case, the optical path difference adjusting optical system 15
In the reference light, the reference light has a distance of 2 between the reference surface 118a and the surface 119a to be measured.
The TV camera is detoured by an optical path length L equivalent to double
On the light receiving surface of 12, the reference light and the object light whose optical path lengths are aligned form an interference fringe representing the surface shape of the surface 119a to be tested.
【0051】さらに、上記実施例では反射ミラーを振動
せしめる反射鏡振動手段としてピエゾ素子を用いている
が、他の振動素子を用いることも可能である。Further, in the above embodiment, the piezo element is used as the reflecting mirror vibrating means for vibrating the reflecting mirror, but other vibrating elements can be used.
【0052】[0052]
【発明の効果】以上説明したように、本発明の干渉計装
置によれば、フィゾー型の装置を用い、基準面からの光
と被検面からの光との光路差がキャンセルされるように
しているので可干渉性の小さい光によっても鮮明度の高
い干渉縞画像を得ることができる。As described above, according to the interferometer device of the present invention, the Fizeau device is used to cancel the optical path difference between the light from the reference surface and the light from the surface to be inspected. Therefore, it is possible to obtain an interference fringe image with high definition even with light having a small coherence.
【0053】また、光路差調整光学系の反射鏡に反射鏡
振動手段を取り付けこの反射鏡を振動させるようにし
て、光路差を微小変動させれば、構成簡易かつ小さな駆
動電力によりフリンジスキャニング法による干渉縞解析
が可能となる。Further, if the reflecting mirror vibrating means is attached to the reflecting mirror of the optical path difference adjusting optical system and the optical path difference is slightly changed by vibrating this reflecting mirror, the fringe scanning method can be realized with a simple structure and a small driving power. Interference fringe analysis becomes possible.
【図1】本発明の実施例に係る干渉計装置を示す概略図FIG. 1 is a schematic diagram showing an interferometer device according to an embodiment of the present invention.
【図2】図1に示す干渉計装置の一部を拡大して示す概
略図FIG. 2 is a schematic view showing an enlarged part of the interferometer device shown in FIG.
【図3】図1に示す干渉計装置の光路差調整光学系の変
更例を示す概略図FIG. 3 is a schematic diagram showing a modification of an optical path difference adjusting optical system of the interferometer device shown in FIG.
【図4】図1に示す干渉計装置の光路差調整光学系の他
の変更例を示す概略図FIG. 4 is a schematic view showing another modification of the optical path difference adjusting optical system of the interferometer device shown in FIG.
【図5】図1に示す干渉計装置の光路差調整光学系の他
の変更例を示す概略図5 is a schematic view showing another modification of the optical path difference adjusting optical system of the interferometer device shown in FIG.
【図6】図1の実施例装置とは異なる実施例装置を示す
概略図FIG. 6 is a schematic view showing an embodiment apparatus different from the embodiment apparatus of FIG.
【図7】従来の干渉計装置を示す概略図FIG. 7 is a schematic diagram showing a conventional interferometer device.
1,101 光源 2,102 光 5,13a ,106 偏光ビームスプリッタ 8,109 基準板 8a,109a 基準平面 9,110 ,119 被検体 9a,110a,119a 被検面 12,111 ,212 TVカメラ 13,113a,113b,213 ビームスプリッタ 14a ,14b ,114a,114b,214a,214b 反射ミラー 15,115 ,215 光路差調整光学系 17,20,21a ,21b 1/4波長板 18 ピエゾ素子 19 ピエゾ素子駆動電源 118 基準レンズ 118a 基準面 1,101 light source 2,102 light 5,13a, 106 Polarizing beam splitter 8,109 reference plate 8a, 109a Reference plane 9,110,119 subjects 9a, 110a, 119a Test surface 12,111,212 TV cameras 13, 113a, 113b, 213 Beam splitter 14a, 14b, 114a, 114b, 214a, 214b Reflection mirror 15, 115, 215 Optical path difference adjustment optical system 17, 20, 21a, 21b 1/4 wave plate 18 Piezo element 19 Piezo element drive power supply 118 Reference lens 118a Reference plane
Claims (3)
検体の被検面に入射せしめ、該可干渉光の、該被検面に
おける反射により生じた物体光と前記基準面における反
射により生じた参照光との光干渉により生じる干渉縞を
所定の干渉縞形成面上に形成する干渉計装置において、 前記物体光と、この物体光と重ね合わされた前記参照光
を互いに分離し、この後これら物体光と参照光を再び重
ね合わせるまでにこの参照光が前記物体光よりも、前記
基準面と前記被検面との距離の2倍に相当する光路長L
だけ長い光路長を有するように前記物体光と前記参照光
を導く光路差調整光学系を前記基準板と前記干渉縞形成
面との間に配設したことを特徴とする干渉計装置。1. Coherent light is made incident on a test surface of a subject through a reference surface of a reference plate, and object light generated by reflection of the coherent light on the test surface and the reference surface In an interferometer device that forms an interference fringe caused by optical interference with the reference light generated by reflection on a predetermined interference fringe forming surface, the object light and the reference light superposed with the object light are separated from each other, Thereafter, by the time the object light and the reference light are overlapped again, the reference light has an optical path length L corresponding to twice the distance between the reference surface and the test surface as compared with the object light.
An interferometer device characterized in that an optical path difference adjusting optical system for guiding the object light and the reference light is arranged between the reference plate and the interference fringe formation surface so as to have a long optical path length.
よび前記参照光のうちいずれか一方を透過し、他方を側
方に反射せしめるビームスプリッタと、このビームスプ
リッタから射出された前記参照光を照射されて該参照光
を該ビームスプリッタ方向に反射せしめる第1の反射鏡
と、この第1の反射鏡により反射され該ビームスプリッ
タから射出された該参照光を照射されてこの参照光を該
ビームスプリッタ方向に反射せしめる第2の反射鏡と
を、前記光路長Lの1/2に等しい光学距離だけ光路上
で互いに離れた位置に配設してなる反射鏡ペアとからな
り、 前記第2の反射鏡により反射され前記ビームスプリッタ
から射出された前記参照光が前記ビームスプリッタから
射出された前記物体光と重なり合うように構成されてな
ることを特徴とする請求項1記載の干渉計装置。2. A beam splitter in which the optical path difference adjusting optical system transmits one of the object light and the reference light and reflects the other in a lateral direction, and the reference light emitted from the beam splitter. A first reflecting mirror that reflects the reference light toward the beam splitter, and the reference light that is reflected by the first reflecting mirror and is emitted from the beam splitter. A second reflecting mirror for reflecting in the direction of the beam splitter, and a second reflecting mirror arranged at positions separated from each other on the optical path by an optical distance equal to ½ of the optical path length L. The reference light reflected by the reflecting mirror and emitted from the beam splitter overlaps the object light emitted from the beam splitter. Interferometer according to claim 1, wherein that.
も一方に、該少なくとも一方の反射鏡が前記ビームスプ
リッタ方向に振動するよう駆動する反射鏡振動手段が取
り付けられてなることを特徴とする請求項2記載の干渉
計装置。3. A reflecting mirror vibrating unit for driving at least one of the first and second reflecting mirrors so that the at least one reflecting mirror vibrates in the beam splitter direction. The interferometer device according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06350294A JP3410802B2 (en) | 1994-03-31 | 1994-03-31 | Interferometer device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06350294A JP3410802B2 (en) | 1994-03-31 | 1994-03-31 | Interferometer device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07270115A JPH07270115A (en) | 1995-10-20 |
JP3410802B2 true JP3410802B2 (en) | 2003-05-26 |
Family
ID=13231079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06350294A Expired - Fee Related JP3410802B2 (en) | 1994-03-31 | 1994-03-31 | Interferometer device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3410802B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4665290B2 (en) * | 2000-05-15 | 2011-04-06 | 株式会社ニコン | Interval measuring device and surface shape measuring device |
GB0215248D0 (en) | 2002-07-02 | 2002-08-14 | Qinetiq Ltd | Imaging apparatus |
EP1864079A1 (en) | 2005-03-30 | 2007-12-12 | Carl Zeiss SMT AG | Method of manufacturing an optical element |
JP2011237348A (en) * | 2010-05-12 | 2011-11-24 | Disco Abrasive Syst Ltd | Height position measuring device for workpiece held by chuck table and laser processing apparatus |
CN102589414B (en) * | 2012-02-21 | 2014-08-06 | 中国科学院西安光学精密机械研究所 | Synchronous phase-shifting Fizeau interference device capable of measuring in real time |
CN103792657A (en) * | 2012-10-30 | 2014-05-14 | 福州高意通讯有限公司 | Optical path length fine tuning structure and application structure thereof |
-
1994
- 1994-03-31 JP JP06350294A patent/JP3410802B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07270115A (en) | 1995-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4538388B2 (en) | Phase shift interferometer | |
JP5087186B1 (en) | Iso-optical path interferometer | |
US7391521B2 (en) | Position detection apparatus and method | |
EP1724550A1 (en) | Interferometer and shape measuring method | |
US7466427B2 (en) | Vibration-resistant interferometer apparatus | |
JP4729423B2 (en) | Optical interferometer | |
US7675628B2 (en) | Synchronous frequency-shift mechanism in Fizeau interferometer | |
JP4198929B2 (en) | Laser length measuring instrument and laser length measuring method | |
WO1997045698A1 (en) | Interferometer for measuring thickness variations of semiconductor wafers | |
JP3410802B2 (en) | Interferometer device | |
JPH07190714A (en) | Interferometer | |
JP4208069B2 (en) | Refractive index and thickness measuring apparatus and measuring method | |
JPH11183116A (en) | Method and device for light wave interference measurement | |
US20110299090A1 (en) | Real-time interferometer | |
JPS59137802A (en) | Interferometer measuring length | |
JPH05277075A (en) | Eye axis length measuring aparatus | |
JP4583611B2 (en) | Oblique incidence interferometer device | |
JP2002286409A (en) | Interferometer | |
JP2006349382A (en) | Phase shift interferometer | |
JP2007292650A (en) | Optical interferometer | |
JP2942002B2 (en) | Surface shape measuring device | |
JP2002286410A (en) | Interferometer | |
JP2000088513A (en) | Aspherical wave generating lens system assembling adjusting equipment | |
JP3230280B2 (en) | Interferometer | |
JPH02259506A (en) | Fringe scanning type interference measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030227 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140320 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |