JPH07190714A - Interferometer - Google Patents

Interferometer

Info

Publication number
JPH07190714A
JPH07190714A JP5328735A JP32873593A JPH07190714A JP H07190714 A JPH07190714 A JP H07190714A JP 5328735 A JP5328735 A JP 5328735A JP 32873593 A JP32873593 A JP 32873593A JP H07190714 A JPH07190714 A JP H07190714A
Authority
JP
Japan
Prior art keywords
light
polarizing
polarization
light beam
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5328735A
Other languages
Japanese (ja)
Inventor
Hajime Morokuma
肇 諸隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5328735A priority Critical patent/JPH07190714A/en
Publication of JPH07190714A publication Critical patent/JPH07190714A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure a distance between surfaces by an interferometer having a light path passing through a space between two surfaces with a polarizing prism combined with wave length plates and the like. CONSTITUTION:The interferometer includes a laser 3 generating (p) polarization and (s) polarization which are different in frequency, a light receiving element 9, a polarizing prism 5 having a polarizing film 501, a polarizing plate 8, and 1/4 wave length plates 6 and 7. The polarizing prism and the 1/4 wave length plates 6 and 7 for rotating a polarizing surface are interposed between surfaces 1 and 2 where normal lines are overlapped, an incident (s) polarization component from the laser 3 is made a measuring beam, and the aforesaid measuring beam is reciprocated between the surfaces 1 and 2, so that it thereby enters the light receiving element 9 through the polarizing plate 8. On the other hand, the (p) polarization component of a reference light beam passes through the polarizing prism 5, and enters the light receiving element 9 through the polarizing plate 8. A distance between surfaces can accurately be measured by the interferometer which has both the measuring light beam reciprocating a light path between two surfaces and the reference light beam not passing through the aforesaid light path. The interferometer is small in size and easy to be manufactured as compared with an interferometer measuring the phase of an interference fringe. Scanning enables the profile of a surface, even if it is large, to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、干渉計、特に間隔測定
用干渉計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer, and more particularly to an interferometer for measuring distance.

【0002】[0002]

【従来の技術】近年、表面の形状を精度高く測定する必
要性は増々高くなってきており、特にナノメータオーダ
ーの保証ができる測定法が要求されている。干渉計を用
いることによって、この程度の精度を実現できるといわ
れており、従って、例えばそのような目的に使用される
のに適した干渉計についての新しい技術の開発・実用化
が望まれている。従来から、面形状の測定についてはい
わゆる干渉縞の位相を測定する方法が広く利用されてい
る。
2. Description of the Related Art In recent years, the need to measure the shape of a surface with high precision has been increasing more and more, and in particular, a measuring method that can guarantee the order of nanometer is required. It is said that this degree of accuracy can be realized by using an interferometer, and therefore, it is desired to develop and put into practical use a new technique for an interferometer suitable for being used for such a purpose. . Conventionally, a method of measuring the phase of so-called interference fringes has been widely used for measuring the surface shape.

【0003】[0003]

【発明が解決しようとする課題】しかして、面形状の測
定において測定できる範囲は干渉計の開口によって決ま
り、それ以上の大きさの面を測定することはできない。
よって、そうした大きな表面を被測定面として測定を行
いたいといったような用途には、この方法は不向きなも
のである。また、従来の干渉縞の位相を測定する干渉計
は、充分に小型で製作の容易なものもいまだみられな
い。小型にしてかつ製作も容易であり、しかも精密に面
間隔を知ることのできる干渉計が実現できれば、これを
走査することで、種々の面形状の測定にあたりそれを高
い精度で行うことを可能にするが、かかる干渉計につい
ても提案はされていない。
However, the measurable range in the surface shape measurement is determined by the aperture of the interferometer, and it is impossible to measure a surface having a size larger than that.
Therefore, this method is not suitable for applications in which such a large surface is to be measured as the surface to be measured. In addition, no conventional interferometer for measuring the phase of interference fringes is sufficiently small and easy to manufacture. If an interferometer that can be made compact and easy to manufacture and that can accurately determine the surface spacing can be realized, it will be possible to scan it with high accuracy when measuring various surface shapes. However, no proposal is made for such an interferometer.

【0004】本発明は、面間隔の測定に好適な干渉計を
提供しようというものである。より詳しくは、面形状の
高精度の測定にも有利に利用できて、たとえ大きな表面
であっても走査することにより形状の測定を可能とし、
かつ小型で製作も容易な間隔測定用の干渉計を得ること
である。
The present invention seeks to provide an interferometer suitable for measuring surface spacing. More specifically, it can be advantageously used for highly accurate measurement of surface shape, and even if it is a large surface, it is possible to measure the shape by scanning.
And it is to obtain an interferometer for distance measurement which is small and easy to manufacture.

【0005】[0005]

【課題を解決するための手段】本発明干渉計は、直交す
る2つの偏光成分を発生する偏光発生手段と、該偏光発
生手段から発せられる第1の偏光成分と第2の偏光成分
のうち、一方を反射し、他方を透過させる偏光プリズム
を少なくとも1つと、偏光成分が透過する際該偏光面を
回転する波長板が少なくとも2枚と、偏光板と、前記第
1の偏光成分と第2の偏光成分を受光する受光素子とを
有し、前記偏光発生手段から発生した偏光成分のうち、
前記偏光プリズムを透過する偏光成分を参照光束とし、
該参照光束が前記偏光板を透過する一方、前記偏光発生
手段から発生した偏光成分のうち、前記偏光プリズムを
反射する偏光成分を測定光束とし、該測定光束が前記波
長板のうち1枚を透過し、測定する面に到達・反射した
後、前記波長板を透過し、前記偏光プリズムの少なくと
も1つを透過後、前記波長板ともう1枚の波長板を透過
し、前記測定する面とは対向する測定面に到達・反射し
た後、前記もう1枚の波長板を透過した後、前記偏光プ
リズムの少なくとも1つで反射し、前記偏光板を透過
し、前記偏光板を透過した前記参照光束及び前記測定光
束を前記受光素子によって受光するようになすことを特
徴とするものである。
The interferometer of the present invention comprises a polarized light generating means for generating two orthogonal polarized light components, and a first polarized light component and a second polarized light component emitted from the polarized light generating means. At least one polarizing prism that reflects one and transmits the other, at least two wave plates that rotate the polarization plane when transmitting the polarized component, a polarizing plate, the first polarized component and the second polarized component. Having a light receiving element for receiving a polarization component, among the polarization components generated from the polarization generating means,
As a reference light beam a polarized light component that passes through the polarizing prism,
While the reference light beam passes through the polarizing plate, the polarization component reflected by the polarization prism among the polarization components generated by the polarization generation means is used as a measurement light beam, and the measurement light beam passes through one of the wave plates. Then, after reaching / reflecting on the surface to be measured, the wave plate is transmitted, and after passing through at least one of the polarizing prisms, the wave plate and another wave plate are transmitted, and the surface to be measured is After reaching / reflecting on the opposite measurement surface, after passing through the other wave plate, it is reflected by at least one of the polarizing prisms, passes through the polarizing plate, and passes through the polarizing plate. And the measurement light flux is received by the light receiving element.

【0006】また、光源と、受光素子とを有するととも
に、法線が重なるか、またはほぼ重なる2枚の面の間に
配置された半透鏡の組にして、前記光源からの入射光束
を反射させ測定光束とする一方、参照光束として透過さ
せる第1の半透鏡と、前記受光素子に対し参照光束は透
過させて入射させかつ測定光束は反射させて入射させる
第2の半透鏡とからなる2個の半透鏡と、前記第1の半
透鏡を透過した参照光束を前記第2の半透鏡へ導く光路
形成のための光学系と、前記第1の半透鏡で分割された
測定光束が前記2枚の面の間の光路を経た後、該光学系
による参照光束と重ね合わされて前記第2の半透鏡から
前記受光素子へ入射するよう、該第1の半透鏡と前記2
つの面の一方との間、及び該第2の半透鏡と前記2つの
面の他方との間のそれぞれの位置において軸外れで挿入
された2枚のレンズとを含んでなることを特徴とするも
のである。
Also, a set of semi-transparent mirrors having a light source and a light-receiving element and arranged between two surfaces whose normals overlap or substantially overlap each other are formed, and the incident light flux from the light source is reflected. Two of the first semi-transparent mirror, which is used as a measurement light beam and which is transmitted as a reference light beam, and the second semi-transparent mirror which allows the reference light beam to be transmitted and made incident on the light receiving element and reflects the measurement light beam to be made incident. , A semitransparent mirror, an optical system for forming an optical path that guides the reference light flux that has passed through the first semitransparent mirror to the second semitransparent mirror, and two measurement light beams divided by the first semitransparent mirror. Of the first semitransparent mirror and the second semitransparent mirror so as to be incident on the light receiving element from the second semitransparent mirror after being overlapped with the reference light flux by the optical system after passing through the optical path between the surfaces.
Two lenses inserted off-axis at one of the two surfaces and at each position between the second semi-transparent mirror and the other of the two surfaces. It is a thing.

【0007】[0007]

【作用】本発明においては、2つの面を配置し、それら
の間の光路を通る測定光束と同光路を通らない参照光束
を有する干渉計により面間隔を精度よく測定することが
できる。
In the present invention, the interplanar distance can be accurately measured by an interferometer having two surfaces arranged and having a measurement light beam passing through the optical path between them and a reference light beam not passing through the same optical path.

【0008】請求項1記載のものでは、その偏光発生手
段と、偏光プリズムと、波長板と、偏光板と、受光素子
を有して上記を実現し得、2枚の面の間に少なくとも1
つの偏光プリズムと偏光面を回転するための波長板を2
枚配置して、測定光束が該面の間を往復するようにな
す。測定する面は法線が重なるか、またはほぼ重なる2
枚の面であり、その間に上記の偏光プリズムと波長板が
あって測定がなされる。干渉計自体は干渉縞の位相を測
定する干渉計に比べて小型で、製作ははるかに容易であ
る。かかる偏光プリズムと偏光板を組み合わせて2枚の
面の間を往復する光路を有する小型な干渉計は、面形状
の測定に使用する場合において走査をするときでも、容
易に走査可能であり、また従来の干渉計ならその開口を
超える大きさの面を測定するのに不向きであるが、たと
えそのように大きな表面であっても走査することにより
形状の測定を可能とする。
According to the first aspect of the present invention, the polarization generating means, the polarization prism, the wave plate, the polarizing plate, and the light receiving element can be provided to realize the above, and at least one surface is provided between the two surfaces.
Two polarizing prisms and two wave plates to rotate the plane of polarization
One sheet is arranged so that the measurement light beam reciprocates between the surfaces. The surfaces to be measured have normals that overlap or almost overlap 2
It is a surface of a sheet, and the polarizing prism and the wave plate described above are provided between them, and the measurement is performed. The interferometer itself is smaller than an interferometer that measures the phase of interference fringes and is much easier to fabricate. A small interferometer having a light path that reciprocates between two surfaces by combining such a polarizing prism and a polarizing plate can be easily scanned even when scanning is used when measuring the surface shape. A conventional interferometer is not suitable for measuring a surface having a size exceeding the aperture, but even a surface having such a large size can be measured by scanning.

【0009】請求項2記載の場合は、偏光プリズムを使
用しないで実現可能であり、その光源と、受光素子と、
第1の半透鏡及び第2の半透鏡と、光路形成のための光
学系と、2枚のレンズとそれぞれを有して、2枚の面の
間に2個の半透鏡と2枚のレンズ及び光路形成のための
光学系を配置して、測定光束が該面の間の光路を経た
後、参照光束と重ね合わせる。これによっても、上記と
同様の作用効果を奏し得る。
The present invention can be realized without using a polarizing prism, and the light source, the light receiving element, and
A first semi-transparent mirror and a second semi-transparent mirror, an optical system for forming an optical path, and two lenses, respectively, and two semi-transparent mirrors and two lenses between two surfaces. And an optical system for forming an optical path is arranged so that the measurement light beam passes through the optical path between the surfaces and then is superposed on the reference light beam. This can also achieve the same effect as the above.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は、本発明の一実施例を示す。図中、1,2は
それぞれ平面鏡を示す。これらが面間隔を測定しようと
する2枚の面を構成するもので、表面法線が重なるよう
に配置してある。本実施例による干渉計は、このような
法線が重なる2枚の平面1,2の間に1次元または2次
元的に移動可能に配置して使用でき、ここでは、2周波
数レーザ3、光束拡大用レーザ4、偏光プリズム5、1
/4波長板6,7、偏光板8及び受光素子9の各部品か
ら構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. In the figure, reference numerals 1 and 2 respectively represent plane mirrors. These constitute two surfaces whose surface spacing is to be measured, and are arranged so that their surface normals overlap. The interferometer according to the present embodiment can be used by being arranged so as to be movable one-dimensionally or two-dimensionally between two planes 1 and 2 where such normals overlap, and here, a two-frequency laser 3 and a light beam are used. Enlarging laser 4, polarizing prism 5, 1
The quarter wave plates 6 and 7, the polarizing plate 8 and the light receiving element 9 are included.

【0011】2周波数レーザ3は、紙面内に周波数f1
で振動するp偏光と紙面に垂直に周波数f2で振動する
s偏光を発生する光源を構成するものであり、図示例で
は、その出射光束の出射方向上に、レーザ3からの光束
を広げるための光束拡大用レンズ4、1個の偏光プリズ
ム5、受光素子9が、それぞれこの順で図示の如くに配
置してある。本実施例では、偏光プリズム5は、偏光膜
501を1面有するとともに、その平面1,2と対向す
る各面側には偏光面を回転するための1/4波長板6,
7が、また受光素子9と対向する面側には偏光板8が、
それぞれ偏光プリズム5と一体に設けてある。1/4波
長板6,7は、偏光プリズム5と平面1,2の間の位置
にあり、偏光板8は、偏光プリズム5から受光素子9に
至る光路中にある。
The two-frequency laser 3 has a frequency f1 within the plane of the drawing.
A light source that generates p-polarized light that oscillates at a frequency of s-polarized light and s-polarized light that oscillates at a frequency f2 perpendicular to the paper surface are configured. A light beam expanding lens 4, a polarizing prism 5, and a light receiving element 9 are arranged in this order as shown in the drawing. In the present embodiment, the polarizing prism 5 has a polarizing film 501 on one side, and a quarter wavelength plate 6 for rotating the polarization plane on each side facing the planes 1 and 2.
7 and a polarizing plate 8 on the side facing the light receiving element 9,
Each is provided integrally with the polarization prism 5. The quarter-wave plates 6 and 7 are located between the polarizing prism 5 and the planes 1 and 2, and the polarizing plate 8 is in the optical path from the polarizing prism 5 to the light receiving element 9.

【0012】各1/4波長板6,7は、それぞれ透過す
る偏光成分の偏光面を回転させるよう、平面1と対向す
る1/4波長板6は結晶軸が紙面に対して45度の方位
に、また平面2と対向する1/4波長板7は結晶軸が紙
面に対して45度の方位に、それぞれ選定され、偏光板
8については、その偏光軸が紙面とそれに垂直な面以外
の面内に選定されている。
The quarter-wave plates 6 and 7 face the plane 1 so that the planes of polarization of the transmitted polarization components are rotated. , And the quarter-wave plate 7 facing the plane 2 is selected such that the crystal axis is in the direction of 45 degrees with respect to the paper surface, and the polarizing plate 8 has a polarization axis other than the paper surface and the plane perpendicular thereto. Selected within the plane.

【0013】上記構成において、本実施例では、2周波
数レーザ3からのp偏光及びs偏光(直線偏光)のうち
のs偏光成分を、平面1及び平面2の間を往復させる測
定光束として、またp偏光成分を参照光束として使用
し、下記するようにして測定を行う。この場合におい
て、分割されるs偏光成分の測定光束の方は、平面1と
平面2の間の間隔に対応する光路長差をもって、p偏光
成分を参照光束と結合し、それら面間隔がこの光路差に
反映することになる。今、レーザ3から光束を出射させ
ると、その出射光束は光束拡大用レンズ4により拡大さ
れ、偏光プリズム5に入射する。この拡大された平行光
束のうちs偏光成分(測定光束)、p偏光成分(参照光
束)については、それぞれ次のような光路で受光素子9
に至る。
In the above-mentioned configuration, in the present embodiment, the s-polarized component of the p-polarized light and the s-polarized light (linearly polarized light) from the two-frequency laser 3 is used as a measurement light flux that reciprocates between the plane 1 and the plane 2. The p-polarized component is used as a reference light beam, and the measurement is performed as described below. In this case, the split measurement light beam of the s-polarized light component combines the p-polarized light component with the reference light beam with an optical path length difference corresponding to the distance between the plane 1 and the plane 2, and these surface distances are equal to this optical path. It will be reflected in the difference. Now, when a light flux is emitted from the laser 3, the emitted light flux is expanded by the light flux expanding lens 4 and enters the polarizing prism 5. The s-polarized light component (measurement light beam) and the p-polarized light component (reference light beam) of the expanded parallel light beam are received by the light receiving element 9 in the following optical paths.
Leading to.

【0014】即ち、レーザ3側からの入射s偏光成分
は、偏光プリズム5の偏光膜501で反射し、結晶軸が
紙面に対して45度の方位にある1/4波長板6を通っ
て平面1に至る。このとき、直線偏光は円偏光に変換さ
れ、平面1に垂直に入射して反射される。かくして反射
した光束は、再び1/4波長板6を透過する。ここで偏
光は円偏光は直線偏光に変換されることによりp偏光に
変わるので、今度は偏光膜501を透過して平面2側へ
向かい、もう一つの結晶軸が紙面に対して45度の方位
にある1/4波長板7を通って平面2で反射する。そし
て、これは反射した後再び1/4波長板7を通るが、上
記の1/4波長板7の透過、平面2での反射、1/4波
長板7の透過の過程でs偏光になる結果、偏光膜501
で反射し、偏光軸が紙面とそれに垂直な面以外の面内に
ある偏光板8を通って受光素子9に入る。このようにし
て、2枚の平面1,2の間に偏光プリズム5と偏光面を
回転するための1/4波長板6,7を配置して測定光束
としての入射s偏光成分が該面の間における法線上の光
路を往復するようになすものである。
That is, the incident s-polarized component from the laser 3 side is reflected by the polarizing film 501 of the polarizing prism 5 and passes through the quarter-wave plate 6 whose crystal axis is in the direction of 45 degrees with respect to the plane of the drawing to form a plane. To 1. At this time, the linearly polarized light is converted into circularly polarized light, and is incident perpendicularly to the plane 1 and reflected. The light flux thus reflected again passes through the quarter-wave plate 6. Here, the circularly polarized light is converted into the p polarized light by converting the circularly polarized light into the linearly polarized light. Therefore, the polarized light is transmitted through the polarizing film 501 toward the plane 2 side, and the other crystal axis is oriented at 45 degrees with respect to the paper surface. It is reflected by the plane 2 through the quarter-wave plate 7 located at. Then, after passing through the quarter-wave plate 7 after being reflected, this becomes s-polarized light in the process of transmission of the quarter-wave plate 7, reflection on the plane 2 and transmission of the quarter-wave plate 7 described above. As a result, the polarizing film 501
And enters the light receiving element 9 through the polarizing plate 8 whose polarization axis is in a plane other than the plane of the paper and the plane perpendicular thereto. In this way, the polarization prism 5 and the quarter-wave plates 6 and 7 for rotating the polarization plane are arranged between the two planes 1 and 2 so that the incident s-polarized component as the measurement light flux is The optical path on the normal line between them is reciprocated.

【0015】一方、参照光束の方は、同光路を通らない
で受光素子9に至る。即ち、レーザ3側からの入射p偏
光成分は、偏光プリズム5を透過し、かつ偏光板8を透
過して受光素子9に入り、平面1と平面2の間を往復し
た上述のs偏光と干渉し、2つの周波数f1,f2の差
に等しいビート信号を得る。しかして、良く知られてい
るように、このビート信号の位相変化を測定することに
より移動に伴う光路長変化を測定することができる。こ
の測定法はヘテロダイン干渉測定法として公知であるの
でこれ以上の説明は省略するが、本干渉計を予め定めら
れた経路に沿って光軸に垂直な面内で動かしたときのビ
ート信号の位相変化を公知の方法により2つの面1,2
の間隔変化として測定することができる。
On the other hand, the reference light flux reaches the light receiving element 9 without passing through the same optical path. That is, the incident p-polarized light component from the laser 3 side passes through the polarizing prism 5 and the polarizing plate 8 and enters the light-receiving element 9, and interferes with the above-mentioned s-polarized light traveling back and forth between the plane 1 and the plane 2. Then, a beat signal equal to the difference between the two frequencies f1 and f2 is obtained. Then, as is well known, by measuring the phase change of the beat signal, it is possible to measure the change of the optical path length due to the movement. Since this measurement method is known as a heterodyne interferometry method, further explanation is omitted, but the phase of the beat signal when the interferometer is moved along a predetermined path in a plane perpendicular to the optical axis. Change the two surfaces 1 and 2 by a known method.
Can be measured as a change in the interval.

【0016】本実施例によれば、上述のように表面法線
が重なるように表面を配置し、法線上の光路を往復する
測定光束と同光路を通らない参照光束を有する干渉計に
より面間隔を精度よく測定することができる。また、こ
の場合において、干渉計自体は干渉縞の位相を測定する
干渉計に比べて小型であり、製作ははるかに容易であ
る。このようにして、面間隔を測定するのに好適な干渉
計が実現され、超精密長さ測定の実用化に大いに効果を
発揮することができる。更にまた、面形状の測定におい
て測定できる範囲が干渉計の開口により制限されると、
それ以上の大きな面の測定に適用できないが、このよう
な不利も解消され、大きな表面であっても走査すること
により形状の測定が可能となる。
According to the present embodiment, as described above, the surfaces are arranged so that the surface normals are overlapped with each other, and the surface spacing is measured by an interferometer having a measurement light beam that reciprocates on the optical path on the normal line and a reference light beam that does not pass through the optical path. Can be accurately measured. Also, in this case, the interferometer itself is smaller than the interferometer that measures the phase of the interference fringes, and is much easier to manufacture. In this way, an interferometer suitable for measuring the interplanar distance is realized, and it is possible to exert a great effect on the practical application of the ultraprecision length measurement. Furthermore, when the measurable range in surface shape measurement is limited by the aperture of the interferometer,
Although it cannot be applied to the measurement of a larger surface than that, such disadvantages are eliminated, and the shape can be measured by scanning even a large surface.

【0017】なお、測定にはレーザ3の部分及びその他
の干渉計構成部分を一体にして動かすか、またはレーザ
3は固定してその他の干渉計構成部分のみを動かすかの
二つの方法が考えられ、そのどちらであってもよい。い
ずれにせよ、測定系をどのように構成するかは、必要に
応じ当業者には容易にできるところである。
There are two possible methods for measurement: moving the laser 3 and other interferometer components integrally, or fixing the laser 3 and moving only the other interferometer components. , It does not matter. In any case, those skilled in the art can easily determine how to configure the measurement system, if necessary.

【0018】図2は、本発明の他の実施例(第2の実施
例)を示す。本実施例は、前記実施例(第1の実施例)
において、更に、同図の如くに、偏光プリズム5からそ
れぞれ平面1,2に向かう光束をそれぞれの平面上に集
光するためのレンズ10,11を配した構成としたもの
である。
FIG. 2 shows another embodiment (second embodiment) of the present invention. This embodiment is the same as the above-mentioned embodiment (first embodiment).
In addition, as shown in the same drawing, lenses 10 and 11 for condensing the light beams traveling from the polarization prism 5 to the planes 1 and 2 are arranged on the respective planes.

【0019】本実施例によると、光束をレンズ10、レ
ンズ11によって小さなスポットにするので、それだけ
第1の実施例に比べて分解能を良くすることができる。
即ち、レンズ10及びレンズ11の付加により、小スポ
ット径としてより測定を正確なものにすることが容易に
実現される。また、2つのレンズ10,11の焦点距離
を等しくすれば、本干渉計を動かしたとき光軸方向に変
位するとピント外れの影響で波面が曲がるが、偏光プリ
ズム5を射出するときには平面に戻るので、干渉縞のコ
ントラストの低下を小さくすることができる利点もあ
る。
According to the present embodiment, since the light beam is made into a small spot by the lens 10 and the lens 11, the resolution can be improved as much as that in the first embodiment.
That is, the addition of the lens 10 and the lens 11 facilitates more accurate measurement with a small spot diameter. Also, if the focal lengths of the two lenses 10 and 11 are made equal, the wavefront will bend due to defocusing if displaced in the optical axis direction when the interferometer is moved, but it returns to a flat surface when exiting the polarizing prism 5. There is also an advantage that the reduction in the contrast of the interference fringes can be reduced.

【0020】次に、前記第1,第2実施例のように偏光
プリズムを使用する場合において、その偏光プリズムに
おける光束分離結合の他の好適構成例について述べる。
図3、図4、図5、並びに図6、図7、図8は、それぞ
れ図1または図2の構成における偏光プリズム5、1/
4波長板6,7、及び偏光板8の部分を別の構成にした
場合を示す図であって、光束の分割結合、即ち測定光束
(s偏光成分)と参照光束(p偏光成分)との分離、並
びにその分離後の結合の方法を示すものである。
Next, in the case where the polarizing prism is used as in the first and second embodiments, another preferable configuration example of the light beam separating and coupling in the polarizing prism will be described.
3, FIG. 4, FIG. 5, and FIG. 6, FIG. 7, and FIG. 8 respectively show the polarization prisms 5 and 1 / in the configuration of FIG.
It is a figure which shows the case where the parts of the four-wavelength plates 6 and 7 and the polarizing plate 8 are made into another structure, and split-combining of a light beam, ie, a measurement light beam (s polarization component) and a reference light beam (p polarization component). It shows a method of separation and a coupling after the separation.

【0021】以下、反射及び透過の態様を主としてその
要部を説明するに、前記図1,2のものにあっては、偏
光プリズム5としては1面の偏光膜501を有するもの
を使用したが、図3の場合は、偏光プリズム5は3面の
平行な偏光膜501,502,503を有する構成とし
てある。図3において、測定光束としての入射s偏光成
分は、偏光プリズム5の偏光膜501及び偏光膜502
で順次反射したあと、再び偏光膜501で反射し、次い
で1/4波長板6を通って図示しない一方の平面鏡(図
1,2の平面鏡1参照)で反射する。当該一方の平面鏡
で反射した光束は、再び1/4波長板6を通り、更に偏
光膜501、偏光膜503、1/4波長板7をこの順で
透過して図示しない他方の平面鏡(図1,2の平面鏡2
参照)で反射する。そして、その反射した光束は、1/
4波長板7を透過した後、偏光膜503で反射し、かく
して偏光プリズム5から射出する。
In the following, the main parts of the reflection and transmission modes will be explained. In the structures shown in FIGS. 1 and 2, the polarizing prism 5 having the one-sided polarizing film 501 was used. In the case of FIG. 3, the polarizing prism 5 is configured to have three parallel polarizing films 501, 502, 503. In FIG. 3, the incident s-polarized light component as the measurement light beam is the polarization film 501 and the polarization film 502 of the polarization prism 5.
After being sequentially reflected by, the light is reflected again by the polarizing film 501, then passes through the quarter-wave plate 6 and is reflected by one plane mirror (see plane mirror 1 in FIGS. 1 and 2) not shown. The light beam reflected by the one plane mirror passes through the quarter wavelength plate 6 again, and further passes through the polarizing film 501, the polarization film 503, and the quarter wavelength plate 7 in this order, and the other plane mirror (not shown) (see FIG. 1). , 2 plane mirror 2
(Refer to). Then, the reflected light flux is 1 /
After passing through the four-wave plate 7, the light is reflected by the polarizing film 503 and thus exits from the polarizing prism 5.

【0022】一方、参照光束としてのp偏光成分は、偏
光プリズム5の偏光膜501、偏光膜503をこの順で
透過して偏光プリズム5から射出する。その後は上記s
偏光成分と一緒になり、偏光板を通って受光素子でビー
ト信号として検出されることは前述の各実施例と同じで
ある。
On the other hand, the p-polarized light component as the reference light beam is transmitted through the polarizing film 501 and the polarizing film 503 of the polarizing prism 5 in this order and is emitted from the polarizing prism 5. After that, the above s
It is the same as each of the above-described embodiments that it is combined with the polarized component and is detected by the light receiving element as a beat signal through the polarizing plate.

【0023】本構成例では、偏光プリズム5での使用偏
光膜の特性が不十分であっても、それぞれの光束が少な
くとも2回以上反射及び/又は透過するので、2つの偏
光成分が混じり合うことが少なくなり、ビート信号の位
相測定の精度を向上することができる。具体的には、例
えばs偏光成分についての偏光膜での反射回数をみる
と、前記図1,2の場合が計2回であったのに対し、本
例では4回(まず偏光膜501で1回、次に偏光膜50
2で1回、更に偏光膜501で1回、そして偏光膜50
3で1回の計4回)となる。2つの偏光成分の分離にあ
たり、本来なら100%反射、100%透過が理想的で
あるところ、そうでない場合でも、本構成によると、分
離をより十分なものとし得、分離性の向上、従って、よ
り精度高く測定ができる。
In this configuration example, even if the characteristics of the polarizing film used in the polarizing prism 5 are insufficient, the respective light fluxes are reflected and / or transmitted at least twice, so that the two polarization components are mixed. Can be reduced, and the accuracy of the beat signal phase measurement can be improved. Specifically, looking at the number of reflections of the s-polarized component on the polarizing film, for example, in the cases of FIGS. Once, then polarizing film 50
2 times, once with the polarizing film 501, and once with the polarizing film 50
3 times, 1 time, 4 times in total). When separating the two polarized components, originally, 100% reflection and 100% transmission are ideal, but even if this is not the case, according to the present configuration, the separation can be more sufficient and the separability is improved. More accurate measurement is possible.

【0024】図4も同様に光束の分割結合の更に他の構
成例を示す。同図中、5a,5b及び5cはそれぞれ偏
光膜を1面有する各偏光プリズム、12はプリズム、5
04sはs偏光成分のみを通す偏光板、505p及び5
06pはそれぞれp偏光成分のみを通す偏光板を示し、
本例においては、これら要素を図示の如くに組み合わせ
て光束分割結合の光学系を構成してある。
FIG. 4 similarly shows still another example of the structure for splitting and combining light beams. In the figure, 5a, 5b and 5c are polarizing prisms each having one polarizing film, 12 is a prism,
04s is a polarizing plate that passes only the s-polarized component, 505p and 5
06p indicates a polarizing plate that passes only the p-polarized component,
In this example, these elements are combined as shown in the figure to form a light beam splitting / combining optical system.

【0025】図4において、入射s偏光成分は、偏光プ
リズム5aの偏光膜501及びプリズム12でそれぞれ
この順で反射し、次にs偏光成分のみを通す偏光板50
4sを透過し、更に偏光プリズム5bの偏光膜502で
反射したあと、1/4波長板6を通って一方の平面鏡
(図示せず)で反射する。その反射した光束は、再び1
/4波長板6、偏光膜502、p偏光成分のみを通す偏
光板505pをこの順で透過した後、更に偏光プリズム
5cの偏光膜503、1/4波長板7をこの順で透過し
て他方の平面鏡(図示せず)で反射する。反射した光束
は1/4波長板7を透過した後、偏光膜503で反射し
て偏光プリズム5cから射出する。
In FIG. 4, the incident s-polarized component is reflected by the polarizing film 501 of the polarizing prism 5a and the prism 12 in this order, and then the s-polarized component is passed through.
After passing through 4s, the light is further reflected by the polarizing film 502 of the polarizing prism 5b, and then passes through the quarter-wave plate 6 and is reflected by one plane mirror (not shown). The reflected light beam is again 1
After passing through the / 4 wavelength plate 6, the polarizing film 502, and the polarizing plate 505p that passes only the p-polarized component in this order, the polarizing film 503 of the polarizing prism 5c and the ¼ wavelength plate 7 further pass in this order, and the other It is reflected by a plane mirror (not shown). The reflected light flux passes through the quarter-wave plate 7, is reflected by the polarizing film 503, and is emitted from the polarizing prism 5c.

【0026】一方、p偏光成分については、偏光プリズ
ム5aの偏光膜501、p偏光成分のみを通す偏光板5
06p、更に偏光膜503をこの順で透過して偏光プリ
ズム5cから射出する。その後は上記s偏光成分と一緒
になり、偏光板を通って受光素子でビート信号として検
出されることは、これも前述の各実施例と同様である。
On the other hand, for the p-polarized component, the polarizing film 501 of the polarizing prism 5a and the polarizing plate 5 that allows only the p-polarized component to pass therethrough.
06p, and further passes through the polarizing film 503 in this order, and is emitted from the polarizing prism 5c. After that, the s-polarized light component is combined with the s-polarized light component, and is detected as a beat signal by the light receiving element through the polarizing plate, which is the same as in each of the above-described embodiments.

【0027】本構成例でも、図3の場合と同様の作用効
果を得られるほか、分離をより十分なものとするための
上述の偏光板504s,505p,506pを用いる
分、より一層の分離の向上が図れる。
In this configuration example as well, the same operational effects as in the case of FIG. 3 can be obtained, and since the above-mentioned polarizing plates 504s, 505p, and 506p for making the separation more sufficient are used, further separation can be achieved. Can be improved.

【0028】図5は、同様に光束の分割結合の更に他の
構成例を示す。本例は、2個の偏光プリズム5a,5b
とプリズム13とを図示のような組み合わせで配置した
ものである。なお、偏光プリズム5a,5bとプリズム
13とは予め決められた所定の位置関係で配することが
できる。なおまた、1/4波長板6,7を離して配置す
る例をも示している。
FIG. 5 similarly shows still another example of the structure of splitting and combining light beams. This example shows two polarizing prisms 5a and 5b.
And the prism 13 are arranged in a combination as illustrated. The polarizing prisms 5a, 5b and the prism 13 can be arranged in a predetermined positional relationship. In addition, an example in which the quarter-wave plates 6 and 7 are arranged separately is also shown.

【0029】同図において、測定光束の入射s偏光成分
は、偏光プリズム5aの偏光膜501で反射したあと1
/4波長板6を通って一方の平面鏡(図示せず)で反射
し、再び1/4波長板6、偏光膜501、偏光プリズム
5bの偏光膜502、1/4波長板7をこの順で透過し
て他方の平面鏡(図示せず)で反射する。その反射した
光束は1/4波長板7を透過した後、偏光膜502で反
射して偏光プリズム5から射出する。
In the figure, the incident s-polarized light component of the measurement light beam is reflected by the polarizing film 501 of the polarizing prism 5a and then 1
The light is reflected by one of the plane mirrors (not shown) through the quarter wave plate 6, and again the quarter wave plate 6, the polarization film 501, the polarization film 502 of the polarization prism 5b, and the quarter wavelength plate 7 are arranged in this order. The light is transmitted and reflected by the other plane mirror (not shown). The reflected light flux passes through the quarter-wave plate 7, is reflected by the polarizing film 502, and is emitted from the polarizing prism 5.

【0030】一方、参照光束としてのp偏光成分は、偏
光プリズム5aの偏光膜501を透過した後、プリズム
13に入射して光路を変えられて偏光プリズム5bに入
射し、その偏光膜502を透過して偏光プリズム5bか
ら射出するものである。その後は上記s偏光成分と一緒
になり、偏光板を通って受光素子でビート信号として検
出されることは、前述の各実施例と同じである。測定光
束を分離し、測定光束が2つの表面の間を往復した後、
参照光束と重ね合わせる光束の分離結合については、本
例のようにして実施してもよい。なお、本例の場合は、
上記偏光板及び受光素子は、2周波数レーザの光源と同
じ側に配することができる。
On the other hand, the p-polarized light component as the reference light beam is transmitted through the polarizing film 501 of the polarizing prism 5a, then is incident on the prism 13, the optical path is changed, and then the polarizing prism 5b is transmitted through the polarizing film 502. Then, the light is emitted from the polarizing prism 5b. After that, it becomes the same as the s-polarized component and is detected as a beat signal by the light receiving element through the polarizing plate, as in the above-mentioned respective embodiments. After splitting the measurement beam and back and forth between the two surfaces,
Separation and coupling of the reference light beam and the superposed light beam may be performed as in this example. In the case of this example,
The polarizing plate and the light receiving element can be arranged on the same side as the light source of the dual frequency laser.

【0031】次に、図6〜図8によるものについて述べ
る。図6は、ほぼ等しい光路差を有する光束分割結合の
例による実施例を示し、例えば、図1の第1の実施例の
構成において、干渉計は、参照光束用のp偏光成分の光
学系に関し、平面鏡1,2と別の参照反射鏡(平面鏡)
1′,2′を設けるとともに、それらの間に、1面の偏
光膜502を有する偏光プリズム5′、1/4波長板
6′,7′をそれぞれ追加し、かつ偏光プリズム5と上
記追加の偏光プリズム5′の間に、偏光面を90度回転
するための1/2波長板14を更に配置したものであ
る。なお、図示例では、1/2波長板14は偏光プリズ
ム5側の一面に設けてある。
Next, the structure shown in FIGS. 6 to 8 will be described. FIG. 6 shows an embodiment according to an example of light beam splitting coupling having substantially equal optical path differences. For example, in the configuration of the first embodiment of FIG. 1, the interferometer is related to the optical system of the p-polarized component for the reference light beam. , Another reference reflecting mirror (plane mirror) other than the plane mirrors 1 and 2.
1'and 2'are provided, and a polarizing prism 5'having a polarizing film 502 on one surface and quarter wavelength plates 6'and 7'are respectively added between them, and the polarizing prism 5 and the above-mentioned additional A half-wave plate 14 for rotating the plane of polarization by 90 degrees is further arranged between the polarizing prisms 5 '. In the illustrated example, the half-wave plate 14 is provided on one surface of the polarizing prism 5 side.

【0032】本例においては、測定光束及び参照光束成
分が偏光プリズム5から出射するまでの過程は、前記第
1の実施例と同様である。従って、s偏光成分は平面
1,2間を往復した後、前段の偏光プリズム5から出射
し、p偏光成分はこれを透過して出射する。こうして偏
光プリズム5から射出したs偏光成分(測定光束)は、
偏光面を90度回転させる1/2波長板14を通って後
段の偏光プリズム5′に向かい、従って、当該偏光プリ
ズム5′を透過し出射する。
In this example, the process until the measurement light beam and the reference light beam component are emitted from the polarizing prism 5 is the same as in the first embodiment. Therefore, the s-polarized component reciprocates between the planes 1 and 2 and then exits from the polarizing prism 5 in the preceding stage, and the p-polarized component passes through this and exits. In this way, the s-polarized light component (measurement light flux) emitted from the polarization prism 5 is
The light passes through the half-wave plate 14 that rotates the plane of polarization by 90 degrees toward the polarizing prism 5 ′ in the subsequent stage, and thus passes through and exits the polarizing prism 5 ′.

【0033】これに対し、同じく前段の偏光プリズム5
から射出したp偏光成分(参照光束)は、偏光面を90
度回転させる1/2波長板14を通って後段の偏光プリ
ズム5′に入射し、ここで反射鏡1′,2′の間を往復
することとなる。かくして、このようにして、偏光プリ
ズム5からの射出p偏光成分は反射鏡1′,2′間を往
復したのちに、偏光プリズム5′から射出し、s偏光成
分と一緒になる。
On the other hand, the polarizing prism 5 of the previous stage is also used.
The p-polarized light component (reference light beam) emitted from the
After passing through the half-wave plate 14 which is rotated by one degree, the light enters the polarizing prism 5'in the subsequent stage and reciprocates between the reflecting mirrors 1'and 2 '. Thus, in this way, the p-polarized light component emitted from the polarizing prism 5 reciprocates between the reflecting mirrors 1'and 2 ', and then exits from the polarizing prism 5', and is combined with the s-polarized light component.

【0034】このようにすれば、両成分の光路差はほぼ
等しくなり、気圧、温度など雰囲気の影響をキャンセル
することもできる利点がある。
By doing so, the optical path differences of both components become substantially equal, and there is an advantage that the influence of the atmosphere such as atmospheric pressure and temperature can be canceled.

【0035】図7は、図6と同じ形式の干渉計に係る別
の構成例である。本例においては、4面の偏光膜50
1,502,503及び503′を用いるもので、それ
ぞれ偏光膜を1面有する偏光プリズム5a,5b,5c
及び5c′を図示のように組み合わせて配置するととも
に、偏光プリズム5aと偏光プリズム5c′との間、並
びに偏光プリズム5aと偏光プリズム5cとの間のそれ
ぞれに、図示の如く偏光面を90度回転させるための1
/2波長板14,15を挿入して構成したものである。
FIG. 7 shows another example of the structure of an interferometer of the same type as that of FIG. In this example, the four-sided polarizing film 50
1, 502, 503 and 503 ', each having one polarizing film 5a, 5b, 5c
And 5c 'are arranged in combination as shown, and the polarization plane is rotated by 90 degrees between the polarizing prism 5a and the polarizing prism 5c' and between the polarizing prism 5a and the polarizing prism 5c, respectively. 1 to let
This is configured by inserting the / 2 wavelength plates 14 and 15.

【0036】図8は、更に図7の構成によるものの変形
例を示す。即ち、これは、図7のものを、その偏光膜5
01,502、1/4波長板、及び1/2波長板からな
る部分と、その偏光膜503,503′、及び1/4波
長板からなる部分とに、図8に示すように分離した形の
干渉計の例である。
FIG. 8 shows a modification of the structure of FIG. That is, this is the same as that of FIG.
01, 502, a quarter wave plate, and a half wave plate, and a polarization film 503, 503 ', and a quarter wave plate are separated as shown in FIG. Is an example of the interferometer.

【0037】これらの例については、これまでの説明で
その作用効果を容易に理解できるので詳細な説明は省略
するが、例えば図7での光路順について簡略して示すな
ら、入射s偏光成分は、偏光プリズム入射→偏光膜50
1で反射→1/4波長板6を透過→平面で反射→1/4
波長板6を透過→偏光膜501を透過→偏光膜502を
透過→1/4波長板7を透過→平面で反射→1/4波長
板7を透過→偏光膜502で反射→1/2波長板15を
透過→偏光膜503を透過→偏光プリズム出射の順であ
り、入射p偏光成分は、偏光プリズム入射→偏光膜50
1を透過→1/2波長板14を透過→偏光膜503′で
反射→1/4波長板6を透過→平面で反射→1/4波長
板6を透過→偏光膜503′を透過→偏光膜503を透
過→1/4波長板7を透過→平面で反射→1/4波長板
7を透過→偏光膜503で反射→偏光プリズム出射の順
となる。
Detailed explanations of these examples will be omitted because their functions and effects can be easily understood from the above description. For example, if the optical path order in FIG. , Polarizing prism incident → Polarizing film 50
Reflection at 1 → Transmission through quarter wave plate 6 → Reflection at plane → 1/4
Wave plate 6 is transmitted → Polarizing film 501 is transmitted → Polarizing film 502 is transmitted → 1/4 Wave plate 7 is transmitted → Plane is reflected → 1/4 Wave plate 7 is transmitted → Polarizing film 502 is reflected → 1/2 wavelength The order is in the order of transmission through the plate 15 → transmission through the polarizing film 503 → exiting the polarizing prism, and the incident p-polarized component is incident on the polarizing prism → the polarizing film 50.
1 → Transmits 1/2 wavelength plate 14 → Reflects at polarizing film 503 ′ → Transmits 1/4 wavelength plate → Reflects on a plane → Transmits 1/4 wavelength plate → Transmits polarizing film 503 ′ → Polarized The order of the light is transmitted through the film 503, transmitted through the quarter-wave plate 7, reflected on a plane, transmitted through the quarter-wave plate 7, reflected by the polarizing film 503, and emitted from the polarizing prism.

【0038】図8では、s偏光成分は、入射→偏光膜5
01で反射→1/4波長板6を透過→平面1で反射→1
/4波長板6を透過→偏光膜501を透過→偏光膜50
2を透過→1/4波長板7を透過→平面2で反射→1/
4波長板7を透過→偏光膜502で反射→1/2波長板
14を透過→偏光膜503を透過→出射の順であり、p
偏光成分は、入射→偏光膜501を透過→1/2波長板
14を透過→偏光膜503′で反射→1/4波長板6′
を透過→参照表面1′で反射→1/4波長板6′を透過
→偏光膜503′を透過→偏光膜503を透過→1/4
波長板7′を透過→参照表面2′で反射→1/4波長板
7′を透過→偏光膜503で反射→出射の順である。本
発明は、上記のような構成で実施してもよい。
In FIG. 8, the s-polarized component is incident → polarized film 5
Reflection at 01 → Transmission through quarter-wave plate 6 → Reflection at plane 1 → 1
/ 4 Wave plate 6 is transmitted → Polarizing film 501 is transmitted → Polarizing film 50
2 is transmitted → 1/4 Wave plate is transmitted → Reflected by plane 2 → 1 /
In this order, the light is transmitted through the four-wavelength plate 7, is reflected by the polarizing film 502, is transmitted through the half-wave plate 14, is transmitted through the polarizing film 503, and is emitted.
The polarized component is incident → transmitted through the polarizing film 501 → transmitted through the ½ wavelength plate 14 → reflected by the polarizing film 503 ′ → quarter wavelength plate 6 ′
Through → reference surface 1 ′ → through 1/4 wave plate 6 ′ → through polarizing film 503 ′ → through polarizing film 503 → 1/4
The order is transmission of the wave plate 7 ', reflection of the reference surface 2', transmission of the quarter wave plate 7 ', reflection of the polarizing film 503, and emission. The present invention may be implemented with the above-described configuration.

【0039】なお、図6,7,8についてここで補足的
に説明すると、干渉計はそもそも絶対測定をするもので
はなく、相対測定をするものである。従って、例えば図
6,7,8において、基準面を平面1としたとき、平面
2の相対測定をすることを目的とするものに適用でき
る。この場合、間隔測定は、実際には、間隔ズレ測定
(相対値)である。
Incidentally, supplementary description of FIGS. 6, 7 and 8 will be made. The interferometer does not perform absolute measurement in the first place but performs relative measurement. Therefore, for example, in FIGS. 6, 7 and 8, when the reference plane is the plane 1, it can be applied to the one for the purpose of relative measurement of the plane 2. In this case, the interval measurement is actually an interval deviation measurement (relative value).

【0040】次に、本発明の更に他の実施例(第3の実
施例)を示す。図9は、改良された光路長測定用干渉計
の実施例を示すもので、1個のレンズが光束中に配置さ
れた構成を示している。このものにおいて、前記図1,
図2の実施例と比べて異なる主な点は、2枚の面間の往
復路に係る光路中に1個のレンズ10が配され、かつそ
れが図9に示す如くに軸外れで挿入されていることであ
る。以下、測定光束の光路につきその要部を説明する
と、光源(図示せず)から入射した平行光束は、そのう
ちの所望の偏光成分の測定光束が偏光プリズム5の偏光
膜501で反射し、1/4波長板6を透過し、平面1で
反射して再び1/4波長板6を透過し、偏光プリズム5
偏光膜501、1/4波長板7をこの順で透過する。
Next, still another embodiment (third embodiment) of the present invention will be shown. FIG. 9 shows an embodiment of an improved interferometer for measuring an optical path, and shows a configuration in which one lens is arranged in a light beam. In this one, as shown in FIG.
The main difference from the embodiment of FIG. 2 is that one lens 10 is arranged in the optical path relating to the round-trip path between the two surfaces, and it is inserted off-axis as shown in FIG. It is that. The main part of the optical path of the measurement light beam will be described below. Of the parallel light beams incident from the light source (not shown), the measurement light beam of the desired polarization component is reflected by the polarizing film 501 of the polarization prism 5 and The light is transmitted through the four-wavelength plate 6, reflected by the plane 1 and again transmitted through the one-quarter wavelength plate 6, and the polarization prism 5
The light is transmitted through the polarizing film 501 and the quarter wave plate 7 in this order.

【0041】その後、軸外れで挿入されているレンズ1
0で平面2の上に集光され、ここで反射して図示のよう
に再びそのレンズ10を通り、平行光束となって、本実
施例では再度、平面1に向かい当該平面1に入射する。
このようにすることによって、平面1,2間には、等間
隔離れて2つの往復光路が形成されることとなる。即
ち、平面1に向かった光束はそこで反射し、光路を逆行
して偏光プリズム5に戻り(平面1→レンズ10→平面
2→レンズ10→1/4波長板7→偏光プリズム5)、
ここでその偏光膜501で反射し、かくして偏光板8を
透過し受光素子9に入るものである。
After that, the lens 1 inserted off-axis
At 0, the light is condensed on the plane 2, reflected there, passes through the lens 10 again as shown in the figure, becomes a parallel light flux, and again enters the plane 1 toward the plane 1 in this embodiment.
By doing so, two reciprocating optical paths are formed between the planes 1 and 2 at equal intervals. That is, the light beam directed to the plane 1 is reflected there, goes back in the optical path and returns to the polarization prism 5 (plane 1 → lens 10 → plane 2 → lens 10 → quarter wave plate 7 → polarization prism 5),
Here, the light is reflected by the polarizing film 501 and thus passes through the polarizing plate 8 and enters the light receiving element 9.

【0042】本実施例によると、表面法線が重なるよう
に表面を配置し、平行で等間隔離れた光路を往復する測
定光束と、同光路を通らない参照光束を有する干渉計を
得ることができ、これにより面間隔を精度よく測定する
ことができるなど、前記各実施例と同様の作用効果を奏
するほか、更に次のような利点がある。即ち、測定光束
は平面1と平面2の間を2往復するので感度は2倍にな
り、面間隔がより正確に測れ、かつ干渉計が傾いても干
渉計から射出する波面は傾かないので、干渉縞のコント
ラストあるいはビート信号の振幅が低下することはな
い。
According to this embodiment, it is possible to obtain an interferometer in which the surfaces are arranged so that the surface normals overlap with each other, and the measurement light beam that reciprocates in the optical paths that are parallel and equally spaced apart from each other and the reference light beam that does not pass through the optical path are obtained. In addition to the same operational effects as those of the above-described respective embodiments, such as the ability to measure the surface spacing with high accuracy, there are the following advantages. That is, since the measurement light beam makes two round trips between the plane 1 and the plane 2, the sensitivity is doubled, the surface spacing can be measured more accurately, and the wavefront emitted from the interferometer does not tilt even if the interferometer tilts. The contrast of the interference fringes or the amplitude of the beat signal does not decrease.

【0043】また、面形状の測定についても、本実施例
に従う干渉計で走査をすることにより、開口によって制
約を受けるということなく大きな面でも形状の測定が可
能であることも各実施例と同様であるのに加え、面1に
対しては大きい直径の光束で表面を走査することができ
るので、直径に比べて非常に細かい凹凸が面1にあって
も、測定に際し、それが検出されることはない。従っ
て、面2のみを測定したいときには、細かい凹凸はあっ
てもうねりがない精度の低い面を基準面として用いるこ
とができるという利点もある。
As for the measurement of the surface shape, it is possible to measure the shape of a large surface without being restricted by the aperture by scanning with the interferometer according to the present embodiment. In addition, since the surface can be scanned with a light beam having a large diameter with respect to the surface 1, even if the surface 1 has very fine unevenness as compared with the diameter, it can be detected during measurement. There is no such thing. Therefore, when only the surface 2 is desired to be measured, there is also an advantage that a surface having small irregularities and no waviness and having low accuracy can be used as the reference surface.

【0044】なお、レンズ10も含めて干渉計を一体で
動かすとき、平面2とレンズ10の間隔が変化すると、
干渉計を出る波面が彎曲して干渉縞のコントラストある
いはビート信号の振幅が低下するので、走査用の移動機
構(図示せず)として、間隔は一定になるよう真直度の
高い移動機構を用いるのは、好ましい態様である。この
場合、詳細な説明は省略するが、干渉縞のコントラスト
あるいはビート信号の振幅から、間隔を知ることができ
るので、間隔を一定に制御することは可能である。例え
ば、レンズ10を光軸方向に一定振幅で振動させたとき
のビート信号の振幅変化を同期検波することにより制御
信号を得ることができるので、間隔を一定に制御するこ
とができる。
When the interferometer including the lens 10 is moved integrally, if the distance between the plane 2 and the lens 10 changes,
Since the wavefront exiting the interferometer is curved and the contrast of the interference fringes or the amplitude of the beat signal is reduced, a moving mechanism with high straightness is used as the moving mechanism (not shown) for scanning so that the interval is constant. Is a preferred embodiment. In this case, although the detailed description is omitted, the interval can be known from the contrast of the interference fringes or the amplitude of the beat signal, so that the interval can be controlled to be constant. For example, since the control signal can be obtained by synchronously detecting the amplitude change of the beat signal when the lens 10 is vibrated in the optical axis direction with a constant amplitude, the interval can be controlled to be constant.

【0045】なおまた、光束の分割結合については、レ
ンズ10と併用することにより面1、2の間を往復でき
れば、以上説明してきた、あるいは以下に説明する実施
例等に示されている方法またはそれ以外の方法を利用す
ることができる。
As for the splitting / combining of the light fluxes, the method described in the above or the examples shown in the following examples or the like can be used as long as it can reciprocate between the surfaces 1 and 2 by being used in combination with the lens 10. Other methods can be used.

【0046】図10,11は、上記図9による実施例を
改良した実施例の要部構成を示す。なおまた、本実施例
は、図3における構成の場合の偏光プリズムの改良の例
をも示すものである。
10 and 11 show the essential structure of an embodiment which is an improvement of the embodiment shown in FIG. In addition, this embodiment also shows an example of improvement of the polarizing prism in the case of the configuration in FIG.

【0047】図10において、入射測定光束は、図示の
如くの4面の偏光膜501,502,503及び504
を有する偏光プリズム5における偏光膜501及び偏光
膜502で順次反射し、再び偏光膜501で反射し、1
/4波長板6を経て被測定平面1に向かい、ここで反射
する。反射した光束は、再び1/4波長板6を経て今度
は偏光プリズム5の偏光膜501、偏光膜503、1/
4波長板7、レンズ10をこの順で経て被測定平面2に
集光され、反射される。
In FIG. 10, the incident measurement light flux is obtained by polarizing films 501, 502, 503 and 504 having four surfaces as shown in the figure.
The polarizing film 501 and the polarizing film 502 in the polarizing prism 5 having the
It goes through the / 4 wave plate 6 to the plane to be measured 1 and is reflected here. The reflected light flux passes through the quarter-wave plate 6 again, and this time, the polarization film 501, the polarization films 503, 1 / of the polarization prism 5.
After passing through the four-wave plate 7 and the lens 10 in this order, the light is focused on the measured plane 2 and reflected.

【0048】平面2で反射した光束は、軸外れで挿入さ
れているレンズ10で平行光束に戻り、被測定平面1に
向かう(図11参照)。ここで、被測定平面1で反射し
た光束は上記と逆の経路をたどり(図11参照)、偏光
プリズム5に入射してその偏光膜503に至り、ここで
反射し、更に偏光膜504及び503でそれぞれこの順
で反射し、かくして偏光プリズム5から出射するもので
ある。一方、参照光束の方は、偏光プリズム5における
偏光膜501及び偏光膜503をこの順で透過し、偏光
プリズム5から出射する。
The light beam reflected by the plane 2 returns to a parallel light beam by the lens 10 which is inserted off-axis and travels toward the plane 1 to be measured (see FIG. 11). Here, the light beam reflected by the plane to be measured 1 follows the path opposite to the above (see FIG. 11), enters the polarizing prism 5 and reaches the polarizing film 503, is reflected there, and is further polarized films 504 and 503. The light is reflected in this order, and is thus emitted from the polarizing prism 5. On the other hand, the reference light beam passes through the polarizing film 501 and the polarizing film 503 in the polarizing prism 5 in this order, and is emitted from the polarizing prism 5.

【0049】本実施例では、図9によるものに加え、偏
光膜501と502及び503と504で測定光束が反
射されるため、使用偏光膜が多少不完全なものでも、所
望の偏光成分(例えば、s成分)のみを2つの平面間の
往復光路を経由させて通すことができる。また、参照光
束についても、偏光膜501及び503を透過するた
め、所望の偏光成分(例えば、p成分)のみを通すこと
ができる。従って、分離は更により一層向上し、精密測
定が可能である。また、精度の高い1/4波長板を用い
れば、光源に戻る光量を極めて小さくすることができ
る。
In this embodiment, in addition to the one shown in FIG. 9, since the measurement light beams are reflected by the polarizing films 501 and 502 and 503 and 504, even if the polarizing film used is somewhat incomplete, a desired polarization component (for example, , S component) can be passed through the round-trip optical path between the two planes. Further, since the reference light flux also passes through the polarization films 501 and 503, only a desired polarization component (for example, p component) can pass through. Therefore, the separation is further improved and precise measurement is possible. Moreover, if a highly accurate quarter-wave plate is used, the amount of light returning to the light source can be made extremely small.

【0050】図12は、光束分割結合の更に他の実施例
である。本例は、偏光発生手段から光の進む方向と、測
定する面の間隔を測定する光の方向が同じになっている
ものである。即ち、これまでの実施例と異なり(前例で
は、すべてそれらは直交している)、入射光束の方向を
測定光束と同じ方向にした実施例である。同図におい
て、入射光束のうちs偏光成分は、偏光プリズム5aの
偏光膜501、偏光プリズム5bの偏光膜502で反射
し、1/4 波長板6を経て被測定面1で反射し、再び1/4
波長板6を経て今度は偏光プリズム5bの偏光膜50
2、偏光プリズム5cの偏光膜503、1/4 波長板7を
経て、被測定面2に至る。平面2で反射した光束は、逆
の光路をたどり偏光プリズム5cの偏光膜503に至
り、ここで反射し、更に偏光プリズム5dの偏光膜50
4で反射して偏光プリズムから射出する。一方、入射光
束のうちp偏光成分は、偏光プリズム5aの偏光膜50
1、偏光プリズム5dの偏光膜504を透過した後、s
偏光成分と一緒になる。本実施例では、偏光膜501と
502及び503と504で測定光束が反射されるた
め、偏光膜が多少不完全でも所望の偏光成分(s成分)
のみを通すことができる。参照光束についても、偏光膜
501、504を透過するため、所望の偏光成分(p成
分)のみを通すことができる。また、精度の高い1/4 波
長板を用いれば、光源に戻る光量を極めて小さくするこ
とができる。本実施例は、いうまでもなく、前述のレン
ズを用いる実施例にも適用することができる。
FIG. 12 shows still another embodiment of beam splitting / combining. In this example, the direction in which the light travels from the polarized light generating means and the direction in which the light for measuring the distance between the surfaces to be measured are the same. That is, unlike the previous embodiments (in the previous example, they are all orthogonal), the incident light beam is directed in the same direction as the measurement light beam. In the figure, the s-polarized light component of the incident light beam is reflected by the polarizing film 501 of the polarizing prism 5a and the polarizing film 502 of the polarizing prism 5b, reflected by the surface 1 to be measured through the quarter-wave plate 6, and again 1 /Four
After passing through the wave plate 6, this time the polarizing film 50 of the polarizing prism 5b.
2. Through the polarizing film 503 of the polarizing prism 5c and the quarter-wave plate 7, the surface to be measured 2 is reached. The light flux reflected by the plane 2 follows the reverse optical path to reach the polarizing film 503 of the polarizing prism 5c, is reflected there, and is further reflected by the polarizing film 50 of the polarizing prism 5d.
The light is reflected at 4 and exits from the polarizing prism. On the other hand, the p-polarized component of the incident light flux is the polarization film 50 of the polarization prism 5a.
1. After passing through the polarizing film 504 of the polarizing prism 5d, s
It goes with the polarization component. In this embodiment, since the measurement light beams are reflected by the polarizing films 501 and 502 and 503 and 504, a desired polarization component (s component) is obtained even if the polarizing film is somewhat incomplete.
Can only pass through. Since the reference light flux also passes through the polarization films 501 and 504, only the desired polarization component (p component) can pass through. Moreover, if a highly accurate quarter-wave plate is used, the amount of light returning to the light source can be made extremely small. Needless to say, this embodiment can be applied to the embodiment using the above-mentioned lens.

【0051】以上の各例はいずれも偏光プリズムを使用
するものであり、それらによれば偏光プリズムと波長板
を組み合わせて2つの面の間を往復する光路を有する干
渉計を構成することにより面間隔を精度よく計測するこ
とができる。なお、先にも既に触れているように、干渉
計を構成する部品を一体に構成する必要はなく、例えば
図5の実施例等に示すように、部品を全部または部分的
に離して構成してもよいことはいうまでもない。
In each of the above examples, a polarizing prism is used. According to them, a surface is formed by combining an polarizing prism and a wave plate to form an interferometer having an optical path that reciprocates between two surfaces. The interval can be measured accurately. As already mentioned above, it is not necessary to integrally configure the components that make up the interferometer. For example, as shown in the embodiment of FIG. It goes without saying that it is okay.

【0052】次に例をもって示すものは、本発明の更に
他の実施例であって、前記図1〜図12のものが、法線
が重なる2枚の面の間に少なくとも1個の偏光プリズム
と偏光面を回転するための波長板を配置して測定光束が
該面の間を往復するようにしたものであったのに対し、
図13の場合の例は、偏光プリズムを使用しないで実施
できる例である。本実施例に従えば、法線が重なる2枚
の表面の間に2個の半透鏡と2枚のレンズ及び光路形成
のための光学部品を配置して測定光束が該表面の間を往
復した後、参照光束と重ね合わせるようにする間隔測定
用干渉計が得られる。
What is shown next by way of example is still another embodiment of the present invention, in which at least one polarizing prism is provided between two surfaces whose normals overlap with each other in FIGS. And a wavelength plate for rotating the plane of polarization was arranged so that the measurement light beam reciprocates between the planes,
The example of FIG. 13 is an example that can be implemented without using a polarizing prism. According to this embodiment, two semi-transparent mirrors, two lenses, and optical components for forming an optical path are arranged between two surfaces whose normals overlap with each other, and a measurement light beam travels back and forth between the surfaces. After that, an interferometer for measuring the distance is obtained which is superposed on the reference light beam.

【0053】図13において、16,17は半透鏡でレ
ーザからの光束はここで分割される。干渉計は、図示の
ように2つの面1,2間に配置した半透鏡16,17の
ほか、分割された反射光束のための面1,2間の往復光
路中に配されるようそれぞれ軸外れで挿入されているレ
ンズ10,11、分割された透過光束の光路形成用のプ
リズム18、及び受光素子9を含んで構成できる。レン
ズ10は半透鏡16と面2との間に、またレンズ11は
半透鏡17と面1との間にある。プリズム18は、半透
鏡16を透過した光束を、半透鏡16と並設した半透鏡
17に導く。なお、半透鏡16と半透鏡17とプリズム
18とは相互に予め決められた所定の位置関係で配する
ことができる。
In FIG. 13, reference numerals 16 and 17 denote semitransparent mirrors, and the light flux from the laser is split here. The interferometer includes semi-transparent mirrors 16 and 17 arranged between the two surfaces 1 and 2 as shown in FIG. It can be configured to include the lenses 10 and 11 that are inserted at the outside, the prism 18 for forming the optical path of the divided transmitted light flux, and the light receiving element 9. The lens 10 is between the semi-transparent mirror 16 and the surface 2, and the lens 11 is between the semi-transparent mirror 17 and the surface 1. The prism 18 guides the light flux transmitted through the semitransparent mirror 16 to the semitransparent mirror 17 arranged in parallel with the semitransparent mirror 16. The semi-transparent mirror 16, the semi-transparent mirror 17, and the prism 18 can be arranged in a predetermined positional relationship with each other.

【0054】不図示の光源としてのレーザからの光束が
一方の半透鏡16に入射すると、その光束はここで半分
反射、半分透過により分割される。反射した光束(測定
光束)は、一方のレンズ10に向かい、当該レンズ1
0、表面2、レンズ10、他方のレンズ11、表面1、
レンズ11をこの順序で経て、もう一方の半透鏡17で
反射して受光素子9に入る。こうして、上記反射した光
束の測定光束の方は、2つの面1,2の間の光路を経
る。一方、半透鏡16を透過した光束(参照光束)は、
プリズム18で反射し光路を変えられた後、半透鏡17
を透過し、受光素子9に入る。
When a light beam from a laser (not shown) as a light source enters one of the semi-transparent mirrors 16, the light beam is split here by half reflection and half transmission. The reflected light flux (measurement light flux) is directed to one of the lenses 10 and the lens 1
0, surface 2, lens 10, other lens 11, surface 1,
After passing through the lens 11 in this order, the light is reflected by the other semi-transparent mirror 17 and enters the light receiving element 9. In this way, the measured light flux of the reflected light flux follows the optical path between the two surfaces 1, 2. On the other hand, the luminous flux (reference luminous flux) transmitted through the semi-transparent mirror 16 is
After being reflected by the prism 18 and changing the optical path, the semi-transparent mirror 17
To enter the light receiving element 9.

【0055】このようにして、2個の半透鏡16,17
と2枚のレンズ10,11とプリズム18を用い、半透
鏡16を反射する光束を測定光束、透過する光束を参照
光束として、測定光束が2つの表面の間を進んだ後、参
照光束の方と重ね合わせることができ、かくして測定光
束と参照光束が重なる結果できる干渉縞の位相差は公知
の方法で検出される。本実施例によっても、上記のよう
な測定光束についての光路を有する干渉計を構成するこ
とにより、偏光プリズムを使用しないでも、面間隔を精
度よく計測することができる。かつまた、前記各例と同
様に、面形状の高精度の測定にも有利に利用できて、た
とえ大きな表面であっても走査することにより形状の測
定を可能とする。本発明は、このようにして実施するこ
ともできる。
In this way, the two semi-transparent mirrors 16 and 17 are
Using the two lenses 10 and 11 and the prism 18, the luminous flux reflected by the semi-transparent mirror 16 is used as the measuring luminous flux, and the luminous flux passing through is used as the reference luminous flux. The phase difference of the interference fringes, which can result from the measurement light beam and the reference light beam overlapping, can be detected by a known method. Also according to this embodiment, by configuring the interferometer having the optical path for the measurement light flux as described above, it is possible to accurately measure the surface distance without using the polarization prism. Further, like the above-described examples, it can be advantageously used for highly accurate measurement of surface shape, and even if the surface is large, the shape can be measured by scanning. The present invention can also be implemented in this manner.

【0056】なお、本発明は、以上の例に限定されるも
のではない。例えば、上記では主としてヘテロダイン干
渉測定法をベースとして説明を行ったが、位相測定法に
ついては種々の方法が知られており、それらを適用でき
ることはいうまでもない。例えば測定光束または参照光
束の光路長をステップ状に一定間隔づつ変化させたとき
に得られる一連の干渉縞強度から位相を算出する位相変
化法がよく知られているが、この位相変化法を適用する
ことも容易に可能である。
The present invention is not limited to the above example. For example, in the above description, the heterodyne interferometry method was mainly used as the basis, but various methods are known as the phase measurement method, and it goes without saying that they can be applied. For example, the phase change method is well known, which calculates the phase from a series of interference fringe intensities obtained when the optical path length of the measurement light beam or the reference light beam is changed stepwise at regular intervals. It is also possible to do so easily.

【0057】また、例えば表面は実施例では全て平面を
用いて説明したが、法線がほぼ重なるように配置すれば
よいので平面である必要はない。例えば、軸を共有する
2つの円筒面、あるいは中心を共有する2つの球面等に
本発明に従う干渉計を使うことができる。
Further, for example, the surface has been described by using the plane in all the embodiments, but it is not necessary that the surface is a plane because it may be arranged so that the normals are substantially overlapped. For example, the interferometer according to the present invention can be used for two cylindrical surfaces sharing an axis or two spherical surfaces sharing a center.

【0058】[0058]

【発明の効果】本発明干渉計によれば、面間隔の測定に
好適なものが提供され、2つの面の間の光路を経る測定
光束と同光路を通らない参照光束を有する干渉計により
面間隔を精度よく測定することができる。また、干渉計
自体は干渉縞の位相を測定する干渉計に比べて小型にし
得て製作もはるかに容易であり、更に、面形状の高精度
の測定にも有利に利用できて、たとえ大きな表面であっ
ても走査することにより形状の測定を可能とする。ま
た、請求項2記載のものの場合は、偏光プリズムを使用
しないでこれを実現できる。
According to the interferometer of the present invention, the interferometer suitable for measuring the interplanar distance is provided, and the interferometer having the measurement light beam passing through the optical path between the two surfaces and the reference light beam not passing through the optical path is used. The distance can be accurately measured. In addition, the interferometer itself can be made smaller and much easier to manufacture than an interferometer that measures the phase of interference fringes. Furthermore, it can be advantageously used for highly accurate measurement of surface shape, even if a large surface is used. Even in this case, the shape can be measured by scanning. Further, in the case of the second aspect, this can be realized without using the polarizing prism.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る間隔測定用干渉計を示
す図である。
FIG. 1 is a diagram showing a distance measuring interferometer according to an embodiment of the present invention.

【図2】同じく、本発明の他の実施例を示す図である。FIG. 2 is a diagram similarly showing another embodiment of the present invention.

【図3】光束分割結合の他の構成例を示す図である。FIG. 3 is a diagram showing another configuration example of light beam division coupling.

【図4】同じく、光束分割結合の更に他の構成例を示す
図である。
FIG. 4 is a diagram showing yet another configuration example of light beam splitting / coupling.

【図5】同じく、更に他の構成例を示す図である。FIG. 5 is a diagram showing still another configuration example.

【図6】ほぼ等しい光路差を有する光束分割結合の構成
例を示す図である。
FIG. 6 is a diagram showing a configuration example of light beam splitting / coupling having substantially equal optical path differences.

【図7】同じく、ほぼ等しい光路差を有する光束分割結
合の別の構成例を示す図である。
FIG. 7 is a diagram showing another configuration example of the light beam splitting / coupling having substantially the same optical path difference.

【図8】同じく、ほぼ等しい光路差を有する光束分割結
合の更に別の構成例を示すもので、図7の構成の変形例
を示す図である。
FIG. 8 is a diagram showing still another configuration example of the light beam splitting / coupling having substantially equal optical path differences, and is a diagram showing a modification example of the configuration of FIG. 7.

【図9】本発明の更に他の実施例を示すもので、1個の
レンズを光束中に配置した場合の干渉計の構成を示す図
である。
FIG. 9 is a view showing still another embodiment of the present invention and is a diagram showing a configuration of an interferometer when one lens is arranged in a light beam.

【図10】同じく、本発明の更に他の実施例を示すもの
で、図9の構成の改良に係る干渉計を示す図である。
FIG. 10 is a view showing an interferometer according to another embodiment of the present invention, which is an improved configuration of FIG. 9.

【図11】同側面図である。FIG. 11 is a side view of the same.

【図12】光束分割結合の更に別の実施例を示す図であ
る。
FIG. 12 is a diagram showing yet another embodiment of beam splitting and combining.

【図13】本発明の更に他の実施例を示すもので、偏光
プリズムを使用しない場合の構成を示す図である。
FIG. 13 is a view showing still another embodiment of the present invention and is a diagram showing a configuration in the case where a polarizing prism is not used.

【符号の説明】[Explanation of symbols]

1 平面鏡 1′ 平面鏡(参照反射鏡,参照表面) 2 平面鏡 2′ 平面鏡(参照反射鏡,参照表面) 3 2周波数レーザ 4 光束拡大用レンズ 5,5′,5a,5b,5c,5c′,5d 偏光プリ
ズム 6,6′ 1/4波長板 7,7′ 1/4波長板 8 偏光板 9 受光素子 10,11 レンズ 12 プリズム 13 プリズム 14 1/2波長板 15 1/2波長板 16,17 半透鏡 18 プリズム 501,502,503,503′,504 偏光膜 504p,505p,506p 偏光板
1 plane mirror 1'plane mirror (reference reflecting mirror, reference surface) 2 plane mirror 2'plane mirror (reference reflecting mirror, reference surface) 3 2 frequency laser 4 luminous flux expansion lens 5, 5 ', 5a, 5b, 5c, 5c', 5d Polarizing prism 6,6 '1/4 wave plate 7,7' 1/4 wave plate 8 Polarizing plate 9 Light receiving element 10,11 Lens 12 Prism 13 Prism 14 1/2 wave plate 15 1/2 wave plate 16,17 Half Mirror 18 Prism 501,502,503,503 ', 504 Polarizing film 504p, 505p, 506p Polarizing plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直交する2つの偏光成分を発生する偏光
発生手段と、 該偏光発生手段から発せられる第1の偏光成分と第2の
偏光成分のうち、一方を反射し、他方を透過させる偏光
プリズムを少なくとも1つと、 偏光成分が透過する際該偏光面を回転する波長板が少な
くとも2枚と、 偏光板と、 前記第1の偏光成分と第2の偏光成分を受光する受光素
子とを有し、 前記偏光発生手段から発生した偏光成分のうち、前記偏
光プリズムを透過する偏光成分を参照光束とし、該参照
光束が前記偏光板を透過する一方、 前記偏光発生手段から発生した偏光成分のうち、前記偏
光プリズムを反射する偏光成分を測定光束とし、 該測定光束が前記波長板のうち1枚を透過し、測定する
面に到達・反射した後、前記波長板を透過し、前記偏光
プリズムの少なくとも1つを透過後、前記波長板ともう
1枚の波長板を透過し、前記測定する面とは対向する測
定面に到達・反射した後、前記もう1枚の波長板を透過
した後、前記偏光プリズムの少なくとも1つで反射し、
前記偏光板を透過し、 前記偏光板を透過した前記参照光束及び前記測定光束を
前記受光素子によって受光するようになすことを特徴と
する干渉計。
1. A polarized light generation unit that generates two orthogonal polarized light components, and a polarized light that reflects one of the first polarized light component and the second polarized light component emitted from the polarized light generation unit and transmits the other. There are at least one prism, at least two wave plates that rotate the plane of polarization when transmitting a polarization component, a polarizing plate, and a light receiving element that receives the first polarization component and the second polarization component. Then, of the polarization components generated from the polarization generating means, the polarization component passing through the polarization prism is used as a reference light beam, and while the reference light flux passes through the polarizing plate, among the polarization components generated from the polarization generating means. The polarized light component reflected by the polarizing prism is used as a measuring light beam, and the measuring light beam passes through one of the wave plates and reaches / reflects on a surface to be measured, and then passes through the wave plate, After passing through at least one wave plate, after passing through the wave plate and another wave plate, after reaching and reflecting on a measurement surface opposite to the measurement surface, after passing through the other wave plate , Reflected by at least one of said polarizing prisms,
An interferometer, wherein the reference light flux and the measurement light flux transmitted through the polarizing plate are received by the light receiving element.
【請求項2】 光源と、受光素子とを有するとともに、 法線が重なるか、またはほぼ重なる2枚の面の間に配置
された半透鏡の組にして、前記光源からの入射光束を反
射させ測定光束とする一方、参照光束として透過させる
第1の半透鏡と、前記受光素子に対し参照光束は透過さ
せて入射させかつ測定光束は反射させて入射させる第2
の半透鏡とからなる2個の半透鏡と、 前記第1の半透鏡を透過した参照光束を前記第2の半透
鏡へ導く光路形成のための光学系と、 前記第1の半透鏡で分割された測定光束が前記2枚の面
の間の光路を経た後、該光学系による参照光束と重ね合
わされて前記第2の半透鏡から前記受光素子へ入射する
よう、該第1の半透鏡と前記2つの面の一方との間、及
び該第2の半透鏡と前記2つの面の他方との間のそれぞ
れの位置において軸外れで挿入された2枚のレンズとを
含んでなることを特徴とする干渉計。
2. A set of semi-transparent mirrors, each of which has a light source and a light-receiving element and is arranged between two surfaces whose normals overlap or substantially overlap each other, and reflects an incident light flux from the light source. A first semi-transparent mirror that transmits as a reference light beam while making it a measurement light beam, and a second semi-transparent mirror that allows the reference light beam to pass through and enter the light receiving element while reflecting the measurement light beam.
Two semi-transparent mirrors, an optical system for forming an optical path that guides the reference light beam that has passed through the first semi-transparent mirror to the second semi-transparent mirror, and is divided by the first semi-transparent mirror. After the measured light flux passes through the optical path between the two surfaces, it is superposed on the reference light flux by the optical system and is incident on the light receiving element from the second semi-transparent mirror. Two lenses inserted off axis at respective positions between the one of the two surfaces and between the second semi-transparent mirror and the other of the two surfaces. And an interferometer.
JP5328735A 1993-12-24 1993-12-24 Interferometer Pending JPH07190714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328735A JPH07190714A (en) 1993-12-24 1993-12-24 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328735A JPH07190714A (en) 1993-12-24 1993-12-24 Interferometer

Publications (1)

Publication Number Publication Date
JPH07190714A true JPH07190714A (en) 1995-07-28

Family

ID=18213595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328735A Pending JPH07190714A (en) 1993-12-24 1993-12-24 Interferometer

Country Status (1)

Country Link
JP (1) JPH07190714A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522668A (en) * 2004-02-11 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Product positioning system
JP2008309655A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2008309645A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2009180712A (en) * 2008-02-01 2009-08-13 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
WO2011158530A1 (en) * 2010-06-16 2011-12-22 シグマ光機株式会社 Optical element and interferometer
JP2015036169A (en) * 2013-08-13 2015-02-23 株式会社ディスコ Grinding device
US9316487B2 (en) 2013-05-24 2016-04-19 Mitutoyo Corporation Laser tracking interferometer
CN107702657A (en) * 2017-10-31 2018-02-16 北京汽车研究总院有限公司 A kind of gap measuring device
CN112424562A (en) * 2018-05-18 2021-02-26 密歇根大学董事会 Path fluctuation monitoring for frequency modulation interferometer
CN112539696A (en) * 2020-11-30 2021-03-23 中国科学院微电子研究所 Depolarization compensation method for prism of self-reference interferometer
CN115542565A (en) * 2022-11-03 2022-12-30 北京中科国光量子科技有限公司 90-degree space optical mixer insensitive to polarization

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522668A (en) * 2004-02-11 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Product positioning system
JP2008309655A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2008309645A (en) * 2007-06-14 2008-12-25 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
JP2009180712A (en) * 2008-02-01 2009-08-13 National Institute Of Advanced Industrial & Technology Inner diameter measuring device
WO2011158530A1 (en) * 2010-06-16 2011-12-22 シグマ光機株式会社 Optical element and interferometer
US9316487B2 (en) 2013-05-24 2016-04-19 Mitutoyo Corporation Laser tracking interferometer
JP2015036169A (en) * 2013-08-13 2015-02-23 株式会社ディスコ Grinding device
CN107702657A (en) * 2017-10-31 2018-02-16 北京汽车研究总院有限公司 A kind of gap measuring device
CN107702657B (en) * 2017-10-31 2024-03-22 北京汽车集团越野车有限公司 Spacing measuring device
CN112424562A (en) * 2018-05-18 2021-02-26 密歇根大学董事会 Path fluctuation monitoring for frequency modulation interferometer
US11467031B2 (en) 2018-05-18 2022-10-11 The Regents Of The University Of Michigan Path fluctuation monitoring for frequency modulated interferometer
CN112539696A (en) * 2020-11-30 2021-03-23 中国科学院微电子研究所 Depolarization compensation method for prism of self-reference interferometer
CN115542565A (en) * 2022-11-03 2022-12-30 北京中科国光量子科技有限公司 90-degree space optical mixer insensitive to polarization

Similar Documents

Publication Publication Date Title
JP2752003B2 (en) Inspection interferometer with scanning function
US7355719B2 (en) Interferometer for measuring perpendicular translations
EP1724550B1 (en) Interferometer and shape measuring method
JP4538388B2 (en) Phase shift interferometer
US7542149B2 (en) Optics system for an interferometer that uses a measuring mirror, a reference mirror and a beam deflector
US6943894B2 (en) Laser distance measuring system and laser distance measuring method
US7466427B2 (en) Vibration-resistant interferometer apparatus
EP1258781A2 (en) Interferometer system
JPH07190714A (en) Interferometer
JPH0455243B2 (en)
JP3600881B2 (en) Interferometer and stage device
JPH11183116A (en) Method and device for light wave interference measurement
JP3410802B2 (en) Interferometer device
JPH0222503A (en) Laser interference measuring instrument
JP2757072B2 (en) Laser interferometer
JP3141363B2 (en) Interferometer
JP3230280B2 (en) Interferometer
JP3495918B2 (en) Optical component eccentricity measuring method and eccentricity measuring device
JP2000018918A (en) Laser interference apparatus for detecting moving quantity of movable body
JPH02259506A (en) Fringe scanning type interference measuring instrument
JPH11344303A (en) Laser interference length measuring apparatus
JPH0579816A (en) Length measuring interferometer
JPH05231816A (en) Interferometer
JPH11211417A (en) Method and device for measuring light wave interference
JPH05180643A (en) Surface-shape measuring apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030527