JPH0579834A - Interatomic-force microscope - Google Patents
Interatomic-force microscopeInfo
- Publication number
- JPH0579834A JPH0579834A JP24150391A JP24150391A JPH0579834A JP H0579834 A JPH0579834 A JP H0579834A JP 24150391 A JP24150391 A JP 24150391A JP 24150391 A JP24150391 A JP 24150391A JP H0579834 A JPH0579834 A JP H0579834A
- Authority
- JP
- Japan
- Prior art keywords
- cantilever
- measured
- light
- polarized light
- linearly polarized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、被測定物の表面粗さを
測定する原子間力顕微鏡に関する。より詳しくは、原子
間力により生じる片持ちばりのたわみを光学的に検出す
る原子間力顕微鏡に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic force microscope for measuring the surface roughness of an object to be measured. More specifically, the present invention relates to an atomic force microscope that optically detects deflection of a cantilever beam caused by an atomic force.
【0002】[0002]
【従来の技術】物体と物体を原子レベルまで接近させた
ときに原子同士に働く力を検出して物体の表面形状を測
定する原子間力顕微鏡が提唱されている。2. Description of the Related Art An atomic force microscope has been proposed which measures the surface shape of an object by detecting the force acting on the atoms when the objects are brought close to each other to the atomic level.
【0003】微小な片持ちばりの先端に鋭く尖った探針
を取り付け、この探針を被測定物表面に極近傍まで接近
または接触させると探針の先端の原子と被測定物表面と
の原子の間に原子間力が働き、片持ちばりがたわむ。被
測定物を走査させて片持ちばりのたわみ量の変化を検出
することにより、被測定物の表面粗さあるいは表面形状
を測定することができる。このような原子間力顕微鏡の
例として、特開昭62−130302号公報、特開平2
−281103号公報があげられる。When a sharply pointed probe is attached to the tip of a minute cantilever and the probe is brought close to or in contact with the surface of the object to be measured, atoms between the tip of the probe and the surface of the object to be measured are attached. The interatomic force acts between and the cantilever bends. The surface roughness or surface shape of the measured object can be measured by scanning the measured object and detecting the change in the deflection amount of the cantilever. As examples of such an atomic force microscope, Japanese Patent Laid-Open Nos. 62-130302 and 2
No. 281103 is cited.
【0004】前記特開昭62−130302号公報にお
いては片持ちばりのたわみの検出にはトンネル顕微鏡が
用いられている。これを図3に示す。片持ちばり26の
背面にはトンネルチップ64がトンネル距離以下に配置
されている。片持ちばり26がたわむとたわみ量に応じ
てトンネル電流が変化するため、このトンネル電流を検
出することによって片持ちばり26のたわみ量が検出で
きる。In Japanese Patent Laid-Open No. 62-130302, a tunnel microscope is used to detect the deflection of a cantilever beam. This is shown in FIG. On the back surface of the cantilever 26, a tunnel chip 64 is arranged below the tunnel distance. When the cantilever 26 is deflected, the tunnel current changes according to the amount of deflection, so the amount of deflection of the cantilever 26 can be detected by detecting this tunnel current.
【0005】また、前記特開平2−281103号公報
においては光を使ったいわゆる臨界角によるフォーカス
エラー検出法が用いられている。これを図4に示す。片
持ちばり26の背面の鏡面74にはレーザ光が照射され
ている。片持ちばり26のたわみ量が変化すると、臨界
角プリズム76、77に入射する鏡面74からの反射光
が発散光束または収束光束へと変化する。その結果、光
検出器78、79での2つの検出部に出力の差が生じ、
片持ちばりのたわみ量が検出できる。Further, in Japanese Patent Application Laid-Open No. 2-281103, a so-called critical angle focus error detection method using light is used. This is shown in FIG. The mirror surface 74 on the back surface of the cantilever 26 is irradiated with laser light. When the deflection amount of the cantilever beam 26 changes, the reflected light from the mirror surface 74 entering the critical angle prisms 76 and 77 changes to a divergent light beam or a convergent light beam. As a result, a difference in output occurs between the two detectors in the photodetectors 78 and 79,
The amount of cantilever deflection can be detected.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、原子間
力による片持ちばりのたわみ量は極微小であるため、上
記従来方法では探針と被測定物表面との間に外部振動の
影響を受け易く、測定結果に外部振動の成分が含まれて
しまうという欠点があった。However, since the deflection amount of the cantilever beam due to the interatomic force is extremely small, the above conventional method is easily affected by external vibration between the probe and the surface of the object to be measured. However, there is a drawback that the measurement result includes a component of external vibration.
【0007】本発明は、上述した問題点を解決するため
になされたものであり、その目的とするところは、外部
振動の影響のない測定ができる原子間力顕微鏡の実現に
ある。The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to realize an atomic force microscope capable of performing measurement without the influence of external vibration.
【0008】[0008]
【課題を解決するための手段】この目的を達成するため
に本発明の原子間力顕微鏡は、互いに偏波面が直交し、
周波数が僅かに異なる2種類の直線偏光を含むレーザ光
を出力するレーザ光源装置と、前記レーザ光源装置によ
って出力された2種類の直線偏光のうちの一方を平行
光、他方を収束光とさせる二重焦点レンズを含み、一方
の直線偏光を前記片持ちばりの背面上に集光させるとと
もに、他方の直線偏光を平行光とし、かつ前記被測定物
の表面上に該一方の直線偏光の照射径よりも十分大きい
照射径にて照射させる光学系と、前記2種類の直線偏光
の反射光を前記光学系によって干渉させ、その干渉のビ
ート周波数から前記片持ちばりのたわみ量を検出する検
出手段と、を備えている。In order to achieve this object, the atomic force microscope of the present invention comprises:
A laser light source device that outputs laser light containing two types of linearly polarized light having slightly different frequencies, and one that makes one of the two types of linearly polarized light output by the laser light source device parallel light and the other one convergent light. Including a multifocal lens, one linearly polarized light is condensed on the back surface of the cantilever, the other linearly polarized light is made into parallel light, and the irradiation diameter of the one linearly polarized light on the surface of the object to be measured. An optical system for irradiating with a radiation diameter sufficiently larger than the above, and a detection means for causing the reflected light of the two types of linearly polarized light to interfere with each other by the optical system and detecting the amount of deflection of the cantilever from the beat frequency of the interference. , Are provided.
【0009】[0009]
【作用】上記の構成を有する本発明の原子間力顕微鏡に
よれば片持ちばりのたわみ量は二重焦点レンズを用いた
光学系によって光ヘテロダイン法で検出される。According to the atomic force microscope of the present invention having the above-mentioned structure, the deflection amount of the cantilever beam is detected by the optical heterodyne method by the optical system using the bifocal lens.
【0010】レーザ光源装置から出力された2種類の直
線偏光は前記二重焦点レンズ含む光学系によって一方が
計測光として片持ちばり背面上に集光され、他方が被測
定物表面上に該一方の直線偏光の照射径よりも十分に大
きい照射径にて平行光として照射される。片持ちばり背
面からの反射光は、片持ちばりのたわみ量にともなって
光路長が変化するので周波数変化を受ける。片持ちばり
背面と被測定物表面からの反射光は検出手段で検出さ
れ、その干渉のビート信号から片持ちばりのたわみ量が
算出される。One of the two types of linearly polarized light output from the laser light source device is converged on the back surface of the cantilever as the measurement light by the optical system including the bifocal lens, and the other on the surface of the object to be measured. The irradiation is performed as parallel light with an irradiation diameter that is sufficiently larger than the irradiation diameter of the linearly polarized light. The light reflected from the back surface of the cantilever beam undergoes a frequency change because the optical path length changes with the deflection amount of the cantilever beam. The reflected light from the back surface of the cantilever and the surface of the object to be measured is detected by the detection means, and the deflection amount of the cantilever is calculated from the beat signal of the interference.
【0011】[0011]
【実施例】以下、本発明を具体化した一実施例を図面を
参照して説明する。なお、本実施例において、図3、図
4に示す従来装置と同一の部材は同一の符号を付して詳
しい説明を省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In this embodiment, the same members as those of the conventional device shown in FIGS. 3 and 4 are designated by the same reference numerals, and detailed description thereof will be omitted.
【0012】図1、図2は本発明の一実施例を説明する
構成図である。レーザ光源装置10には、偏波面が互い
に直交し、かつ周波数が僅かに異なる2種類の直線偏
光、たとえばP偏光LPとS偏光LSとを含むレーザ光
Lを出力するゼーマンレーザが用いられる。このレーザ
光源10と無偏光ビームスプリッタ12と検光子14と
基準用光センサ16とはZ軸と平行な直線上に配置され
ている。前記レーザ光源装置10から出力されたレーザ
光Lは、無偏光ビームスプリッタ12により2本に分割
され、そのうちの無偏光ビームスプリッタ12を透過し
たレーザ光は基準用光センサ16により検出され、基準
ビート信号FBが出力される。上記P偏光LP、S偏光
LSの周波数をそれぞれfP、fSとすると、基準ビー
ト信号FBの周波数fBは、|fP−fS|となる。1 and 2 are block diagrams for explaining an embodiment of the present invention. As the laser light source device 10, a Zeeman laser that outputs laser light L including two types of linearly polarized light whose polarization planes are orthogonal to each other and whose frequencies are slightly different, for example, P polarized light LP and S polarized light LS is used. The laser light source 10, the non-polarization beam splitter 12, the analyzer 14, and the reference optical sensor 16 are arranged on a straight line parallel to the Z axis. The laser light L output from the laser light source device 10 is divided into two by the non-polarization beam splitter 12, and the laser light transmitted through the non-polarization beam splitter 12 is detected by the reference optical sensor 16 and the reference beat. The signal FB is output. When the frequencies of the P-polarized light LP and the S-polarized light LS are fP and fS, respectively, the frequency fB of the reference beat signal FB is | fP-fS |.
【0013】一方、無偏光ビームスプリッタ12によっ
て、X軸の負方向に反射されたレーザ光Lは、光軸上に
配置されたビームエキスパンダ18によりビーム径が拡
大された後、ミラー20に入射する。On the other hand, the laser beam L reflected by the non-polarizing beam splitter 12 in the negative direction of the X-axis is incident on the mirror 20 after the beam diameter is expanded by the beam expander 18 arranged on the optical axis. To do.
【0014】レーザ光Lはミラー20によってZ軸の負
方向に反射され、ミラー20の下方に配置された二重焦
点レンズ22、対物レンズ24に入射する。The laser light L is reflected by the mirror 20 in the negative direction of the Z-axis and is incident on the bifocal lens 22 and the objective lens 24 arranged below the mirror 20.
【0015】この二重焦点レンズ22と対物レンズ24
は図2に示すように支持体25によって二重焦点レンズ
22の後焦点と対物レンズ24の前焦点の位置が一致す
るよう保持されている。また支持体25の下方には片持
ちばり26が取り付けられており、片持ちばり26の先
端には探針28が取り付けられている。片持ちばり26
はその背面が概ね対物レンズ24の焦点位置に来るよう
取り付け位置が決められている。The bifocal lens 22 and the objective lens 24
As shown in FIG. 2, the support 25 holds the double focus lens 22 so that the rear focus of the double focus lens 22 and the front focus of the objective lens 24 coincide with each other. A cantilever beam 26 is attached below the support 25, and a probe 28 is attached to the tip of the cantilever beam 26. Cantilever 26
The mounting position is determined so that the back surface of the is approximately at the focal position of the objective lens 24.
【0016】対物レンズ24の下方には、Z駆動装置5
6により圧電素子42を駆動させて上記対物レンズ24
の光軸方向(Z方向)に移動させられるZステージ40
と、XY駆動装置58により上記対物レンズ24の光軸
方向に垂直なXY平面内を移動させられるXYステージ
44が配置されている。被測定物30はZステージ40
上に搭載されている。前記Z駆動装置56を介してZス
テージ40をZ軸の正方向に動かし、被測定物30を探
針28との間に原子間力が働く程極近傍まで接近させる
か、片持ちばり26が軽くたわむ程度に接触させてお
く。Below the objective lens 24, the Z drive device 5 is provided.
6 to drive the piezoelectric element 42 to drive the objective lens 24
Z stage 40 that can be moved in the optical axis direction (Z direction) of
An XY stage 44 is arranged which can be moved by an XY drive device 58 in an XY plane perpendicular to the optical axis direction of the objective lens 24. The DUT 30 is the Z stage 40.
Mounted on. The Z stage 40 is moved in the positive direction of the Z axis via the Z drive device 56 to bring the object to be measured 30 close to the vicinity so that the atomic force acts between the object 30 and the probe 28, or the cantilever 26 is moved. Touch it so that it flexes lightly.
【0017】また、検光子34、計測用光センサ36が
前記無偏光ビームスプリッタ12のX軸プラス方向であ
って、前記ビームエキスパンダ18の光軸と同一の直線
上に配置されている。Further, the analyzer 34 and the measurement optical sensor 36 are arranged in the positive direction of the X axis of the non-polarizing beam splitter 12 and on the same straight line as the optical axis of the beam expander 18.
【0018】ミラー20からのレーザ光Lは二重焦点レ
ンズ22に入射する。二重焦点レンズ22は、光学ガラ
スと複屈折性材料とから構成されており、入射する光線
の偏波面の方向によって屈折率が異なるという性質を持
っている。そのため、二重焦点レンズ22に入射したレ
ーザ光LのうちP偏光LPは平行光、S偏光LSは収束
光となって対物レンズ24に入射する。また前述の通り
対物レンズ24はその前焦点が二重焦点レンズ22の後
焦点に位置するように構成されている。このため、収束
光として入射したS偏光LSは平行光とされて被測定物
30の表面の比較的広い範囲に照射される。一方、平行
光として対物レンズ24に入射したP偏光LPは収束光
として片持ちばり26の背面上であってかつ、探針28
の真上の位置の一点に集光される。The laser light L from the mirror 20 enters a bifocal lens 22. The bifocal lens 22 is composed of optical glass and a birefringent material, and has a property that the refractive index differs depending on the direction of the plane of polarization of the incident light. Therefore, of the laser light L entering the bifocal lens 22, the P-polarized light LP becomes parallel light and the S-polarized light LS becomes convergent light and enters the objective lens 24. Further, as described above, the objective lens 24 is configured such that its front focus is located at the rear focus of the bifocal lens 22. For this reason, the S-polarized light LS that has entered as convergent light is converted into parallel light and is applied to a relatively wide range on the surface of the DUT 30. On the other hand, the P-polarized light LP that has entered the objective lens 24 as parallel light is on the back surface of the cantilever 26 as convergent light, and the probe 28
It is focused on a point directly above.
【0019】レーザ光LがHeNeレーザであって対物
レンズの倍率が150倍の場合、片持ちばり26の背面
上に集光されるP偏光LPの直径は約0.8μm、被測
定物30の表面上に照射されるS偏光LSの直径は約6
0μmである。When the laser light L is a HeNe laser and the magnification of the objective lens is 150 times, the diameter of the P-polarized light LP condensed on the back surface of the cantilever 26 is about 0.8 μm, and the diameter of the object 30 to be measured is 30 μm. The diameter of the S-polarized light LS irradiated on the surface is about 6
It is 0 μm.
【0020】被測定物30は、前記Zステージ40、X
Yステージ44からなる移動ステージ上に搭載されてい
る。被測定物30がXYステージ44によって走査させ
られると、表面の微小凹凸に対応して探針28が上下に
動き、片持ちばり26がたわむ。The object 30 to be measured is the Z stage 40, X
The Y stage 44 is mounted on a moving stage. When the DUT 30 is scanned by the XY stage 44, the probe 28 moves up and down corresponding to the minute irregularities on the surface, and the cantilever 26 bends.
【0021】片持ちばり26の背面上に集光させられた
P偏光LPの反射光は、片持ちばり26の上下動に伴っ
てその光路長が変化させられるので、これによる周波数
シフトΔfsを受けている。また、測定の際のXYステ
ージ44の振動その他の外乱による周波数シフトΔfd
も受けるため、P偏光LPの反射光の周波数はfP+Δ
fd+Δfsとなる。これに対し、円形平行ビームの状
態で被測定物30の表面の比較的広い範囲に照射される
S偏光LSは、被測定物30の表面の微小凹凸による影
響が平均化されて全体として相殺されるため、外乱によ
る周波数シフトΔfdの影響を受けるだけで、その反射
光の周波数はfS+Δfdとなる。上記P偏光LPは計
測光であり、S偏光LSは参照光である。The reflected light of the P-polarized light LP focused on the back surface of the cantilever beam 26 has its optical path length changed as the cantilever beam 26 moves up and down, and thus receives a frequency shift Δfs. ing. Further, the frequency shift Δfd due to the vibration of the XY stage 44 and other disturbances at the time of measurement
Therefore, the frequency of the reflected light of P-polarized light LP is fP + Δ
It becomes fd + Δfs. On the other hand, in the S-polarized light LS which is irradiated in a relatively wide range on the surface of the DUT 30 in the state of the circular parallel beam, the influence of the fine irregularities on the surface of the DUT 30 is averaged and canceled as a whole. Therefore, the frequency of the reflected light becomes fS + Δfd only by the influence of the frequency shift Δfd due to the disturbance. The P-polarized light LP is measurement light and the S-polarized light LS is reference light.
【0022】片持ちばり26の背面で反射されたP偏光
LPと、被測定物30の表面で反射されたS偏光LS
は、それぞれ入射経路と逆の光路を辿って無偏光ビーム
スプリッタ12に入射させられ、これを透過し計測用光
センサ36で受光されて、計測ビート信号FDが出力さ
れる。この計測ビート信号FDはP偏光LPとS偏光L
Sとの干渉によるうなりに対応するもので、その周波数
fDは、|(fP+Δfd+Δfs)−(fS+Δf
d)|=|fP−fS+Δfs|であり、前記外乱によ
る周波数シフトΔfdは相殺される。The P-polarized light LP reflected on the back surface of the cantilever 26 and the S-polarized light LS reflected on the surface of the DUT 30.
Are incident on the non-polarizing beam splitter 12 following the optical paths opposite to the incident paths, transmitted through the non-polarizing beam splitter 12, received by the measurement optical sensor 36, and output the measurement beat signal FD. This measurement beat signal FD is P-polarized LP and S-polarized L
It corresponds to a beat due to interference with S, and its frequency fD is | (fP + Δfd + Δfs) − (fS + Δf
d) | = | fP−fS + Δfs |, and the frequency shift Δfd due to the disturbance is canceled.
【0023】なおこの時、片持ちばり26の背面上で反
射されたS偏光LSの反射光が測定用光センサに入射し
て測定ノイズとなることが懸念されるが、片持ちばりの
取り付け角度を光軸(Z軸)に対して多少傾けておくこ
とにより、片持ちばり26の背面からの反射光も光軸か
ら傾くため測定用光センサには入射しない。At this time, there is a concern that the reflected light of the S-polarized light LS reflected on the back surface of the cantilever 26 may enter the optical sensor for measurement and cause measurement noise. Is slightly inclined with respect to the optical axis (Z axis), the reflected light from the back surface of the cantilever beam 26 is also inclined with respect to the optical axis and does not enter the measurement optical sensor.
【0024】上記計測ビート信号FDおよび前記基準ビ
ート信号FBは測定回路50に供給され、計測ビート信
号FDの周波数fD(=|fP−fS+Δfs|)から
基準ビート信号FBの周波数fB(=|fP−fS|)
を減算することにより、被測定物30の表面の凹凸によ
る周波数シフトΔfsのみが取り出され、この周波数シ
フトΔfsを表わす信号が制御回路52へ供給される。
制御回路52は、例えばマイクロコンピュータにて構成
され、前記XY駆動装置58によりXYステージ44を
XY方向へ順次移動させつつ、測定回路50より供給さ
れる信号(Δfs)から下記の数1に基づいて各位置の
変位Zsを算出する。The measurement beat signal FD and the reference beat signal FB are supplied to the measuring circuit 50, and the frequency fD (= | fP-fS + Δfs |) of the measurement beat signal FD to the frequency fB (= | fP- of the reference beat signal FB). fS |)
By subtracting from, only the frequency shift Δfs due to the unevenness of the surface of the DUT 30 is extracted, and the signal representing this frequency shift Δfs is supplied to the control circuit 52.
The control circuit 52 is composed of, for example, a microcomputer, and while sequentially moving the XY stage 44 in the XY directions by the XY drive device 58, based on the following expression 1 from the signal (Δfs) supplied from the measurement circuit 50. The displacement Zs at each position is calculated.
【0025】XY走査面全面にわたって算出された変位
Zsは、表示器54によってプロットされ表面粗さが三
次元表示される。The displacement Zs calculated over the entire XY scanning plane is plotted by the display 54 and the surface roughness is three-dimensionally displayed.
【0026】[0026]
【数1】 [Equation 1]
【0027】以上、本発明の実施例を図面に基づいて詳
細に説明したが、本発明は他の態様で実施することもで
きる。Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention can be implemented in other modes.
【0028】例えば、前記実施例では単に片持ちばり2
6のたわみ量をヘテロダイン法を用いて検出するのみだ
ったが、制御回路52で得られた変位Zsをフィードバ
ック信号としてZ駆動装置56に与えることにより、片
持ちばり26のたわみ量を常に一定にして測定してもよ
い。For example, in the above embodiment, the cantilever 2 is simply used.
Although the deflection amount of 6 was only detected by using the heterodyne method, the deflection amount of the cantilever 26 is always made constant by giving the displacement Zs obtained by the control circuit 52 to the Z drive device 56 as a feedback signal. You may measure it.
【0029】また例えば、前記実施例では片持ちばり2
6の先端に探針28を取り付けてあったが、片持ちばり
26の先端を鋭利に尖らせて、片持ちばり26自身に探
針の機能を兼ねさせてもよい。Also, for example, in the above embodiment, the cantilever 2
Although the probe 28 is attached to the tip of 6, the tip of the cantilever 26 may be sharpened so that the cantilever 26 itself also has the function of the probe.
【0030】また、前記実施例では、レーザ光源装置3
0として直交2周波のゼーマンレーザが用いられていた
が、音響光学変調素子などを備えた周波数シフタを用い
て2つの直線偏光間に所望の周波数差を形成する形式の
レーザ光源装置が用いられてもよいのである。この場合
には、上記音響光学変調素子の駆動周波数信号から基準
ビート信号FBを検出することもできる。In the above embodiment, the laser light source device 3 is used.
A quadrature dual-frequency Zeeman laser was used as 0, but a laser light source device of a type that forms a desired frequency difference between two linearly polarized lights by using a frequency shifter including an acousto-optic modulator is used. Is good. In this case, the reference beat signal FB can also be detected from the drive frequency signal of the acousto-optic modulator.
【0031】また、例えばミラー20を半透鏡に置き替
え、その上部に顕微鏡鏡筒を設けて測定状態をモニタで
きるようにしたり、レーザ光源装置10と無偏光ビーム
スプリッタ12の間に光アイソレータを入れたりするな
ど、本発明は当業者の知識に基づいて種々の変更、改良
を加えた態様で実施することができる。Further, for example, the mirror 20 is replaced with a semi-transparent mirror, and a microscope lens barrel is provided above it so that the measurement state can be monitored, or an optical isolator is inserted between the laser light source device 10 and the non-polarizing beam splitter 12. The present invention can be implemented in various modified and improved modes based on the knowledge of those skilled in the art.
【0032】[0032]
【発明の効果】以上説明したことから明かなように、本
発明の原子間力顕微鏡を用いれば計測光と参照光の光路
差がないため外部振動等の外乱の影響を受けることなく
高精度な表面形状測定ができる。As is apparent from the above description, when the atomic force microscope of the present invention is used, since there is no optical path difference between the measurement light and the reference light, it is highly accurate without being affected by disturbance such as external vibration. The surface shape can be measured.
【図1】図1は本発明を具体化した一実施例の構成図で
ある。FIG. 1 is a configuration diagram of an embodiment embodying the present invention.
【図2】図2は図1に示す本発明を具体化した一実施例
における対物レンズ付近の構成図である。FIG. 2 is a configuration diagram in the vicinity of an objective lens in an embodiment embodying the present invention shown in FIG.
【図3】図3は従来の原子間力顕微鏡の構成図である。FIG. 3 is a configuration diagram of a conventional atomic force microscope.
【図4】図4は従来の原子間力顕微鏡の構成図である。FIG. 4 is a block diagram of a conventional atomic force microscope.
10 レーザ光源装置 12 ビームスプリッタ 14 検光子 16 基準用光センサ 18 ビームエキスパンダ 20 ミラー 22 二重焦点レンズ 24 対物レンズ 26 片持ちばり 28 探針 30 被測定物 32 支持体 34 検光子 36 測定用光センサ 40 Zステージ 42 圧電素子 44 XYステージ 50 測定回路 52 制御回路 54 表示器 56 Z駆動装置 58 XY駆動装置 10 Laser Light Source Device 12 Beam Splitter 14 Analyzer 16 Optical Reference Sensor 18 Beam Expander 20 Mirror 22 Dual Focus Lens 24 Objective Lens 26 Cantilever 28 Probe 30 Measured Object 32 Support 34 Analyzer 36 Measurement Light Sensor 40 Z stage 42 Piezoelectric element 44 XY stage 50 Measurement circuit 52 Control circuit 54 Indicator 56 Z drive device 58 XY drive device
Claims (1)
被測定物表面との間に原子間力を発生させるための探針
と、上記探針と被測定物表面との間に原子間力が発生可
能な距離内に接近させて支持する片持ちばりと、上記被
測定物を走査させる走査手段とを備え、原子間力により
生じる上記片持ちばりのたわみを光学的に検出する原子
間力顕微鏡において、 互いに偏波面が直交し、周波数が僅かに異なる2種類の
直線偏光を含むレーザ光を出力するレーザ光源装置と、 前記レーザ光源装置によって出力された2種類の直線偏
光のうちの一方を平行光、他方を収束光とさせる二重焦
点レンズを含み、一方の直線偏光を前記片持ちばりの背
面上に集光させるとともに、他方の直線偏光を平行光と
し、かつ前記被測定物の表面上に該一方の直線偏光の照
射径よりも十分大きい照射径にて照射する光学系と、 前記2種類の直線偏光の反射光を前記光学系によって干
渉させ、その干渉のビート周波数から前記片持ちばりの
たわみ量を検出する検出手段と、を備えることを特徴と
する原子間力顕微鏡。1. A probe for bringing atomic force close to the surface of the object to be measured to generate an atomic force between the surface of the object and the surface of the object to be measured, and an interatomic distance between the probe and the surface of the object to be measured. A cantilever beam that is supported within a distance where a force can be generated and supported, and a scanning unit that scans the object to be measured, and the interatomic distance that optically detects the deflection of the cantilever caused by the interatomic force In a force microscope, one of the two types of linearly polarized light output by the laser light source device, which outputs laser light containing two types of linearly polarized light whose polarization planes are orthogonal to each other and whose frequencies are slightly different Includes a bifocal lens for making the parallel light and the other the convergent light, and condensing one linearly polarized light on the back surface of the cantilever, and making the other linearly polarized light parallel light, and the object to be measured. Linear polarization of the one on the surface An optical system that irradiates with an irradiation diameter sufficiently larger than the irradiation diameter, and a detection that causes the reflected light of the two types of linearly polarized light to interfere with each other by the optical system and detects the deflection amount of the cantilever from the beat frequency of the interference. An atomic force microscope, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24150391A JP2998333B2 (en) | 1991-09-20 | 1991-09-20 | Atomic force microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24150391A JP2998333B2 (en) | 1991-09-20 | 1991-09-20 | Atomic force microscope |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0579834A true JPH0579834A (en) | 1993-03-30 |
JP2998333B2 JP2998333B2 (en) | 2000-01-11 |
Family
ID=17075297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24150391A Expired - Fee Related JP2998333B2 (en) | 1991-09-20 | 1991-09-20 | Atomic force microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2998333B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018352A1 (en) * | 1993-12-24 | 1995-07-06 | Forschungszentrum Jülich GmbH | Scanning force microscopy process and scanning force microscope with detector probe |
US6246652B1 (en) | 1997-12-05 | 2001-06-12 | Hitachi, Ltd. | Device using sensor for small rotation angle |
WO2009019513A1 (en) * | 2007-08-03 | 2009-02-12 | Infinitesima Ltd | Vibration compensation in probe microscopy |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4936541B2 (en) * | 2007-08-10 | 2012-05-23 | キヤノン株式会社 | Atomic force microscope |
JP5100248B2 (en) * | 2007-08-10 | 2012-12-19 | キヤノン株式会社 | Atomic force microscope |
-
1991
- 1991-09-20 JP JP24150391A patent/JP2998333B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995018352A1 (en) * | 1993-12-24 | 1995-07-06 | Forschungszentrum Jülich GmbH | Scanning force microscopy process and scanning force microscope with detector probe |
US5715054A (en) * | 1993-12-24 | 1998-02-03 | Forschungzentrum Julich Gmbh | Scanning force microscope with detector probe for the atomic resolution of a surface structure |
US6246652B1 (en) | 1997-12-05 | 2001-06-12 | Hitachi, Ltd. | Device using sensor for small rotation angle |
WO2009019513A1 (en) * | 2007-08-03 | 2009-02-12 | Infinitesima Ltd | Vibration compensation in probe microscopy |
US8220066B2 (en) | 2007-08-03 | 2012-07-10 | Infinitesima Ltd. | Vibration compensation in probe microscopy |
Also Published As
Publication number | Publication date |
---|---|
JP2998333B2 (en) | 2000-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940003918B1 (en) | Shape measuring instrument | |
US8345260B2 (en) | Method of detecting a movement of a measuring probe and measuring instrument | |
JPH03255904A (en) | Small displacement detecting device | |
JP3073268B2 (en) | Small displacement detection method | |
JPS60256079A (en) | Minute displacement measuring apparatus using semiconductor laser | |
US4764014A (en) | Interferometric measuring methods for surfaces | |
JP2998333B2 (en) | Atomic force microscope | |
JPS61221614A (en) | Measuring instrument for fine displacement | |
JPH0695114B2 (en) | Voltage detector | |
JPH05203431A (en) | Surface shape measuring instrument | |
Tiziani et al. | Scanning differential-heterodyne-interferometer with acousto-optic deflectors | |
JP4536873B2 (en) | Three-dimensional shape measuring method and apparatus | |
JP2949847B2 (en) | Optical surface roughness measuring device | |
JP3184914B2 (en) | Surface shape measuring method and surface shape measuring instrument | |
JP2004093452A (en) | Three-dimensional shape measuring device and method | |
JP2501738Y2 (en) | Optical surface roughness measuring device | |
JPS6199805A (en) | Step measuring instrument | |
JPH0712545A (en) | Interatomic-force-microscope detection apparatus by differential heterodyne interferometer using optical-fiber array | |
JPH10274513A (en) | Surface configuration measuring method and surface configuration measuring apparatus | |
JPH05312561A (en) | Interatomic force microscope | |
JP2009042123A (en) | Atomic force microscope | |
JP2009042124A (en) | Atomic force microscope | |
JPH08304516A (en) | Voltage measuring instrument | |
JPH04236377A (en) | Device for controlling height of probe of signal waveform measuring apparatus | |
JPH0743144A (en) | Three-dimensional contour measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20071105 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081105 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091105 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |