JPS63115017A - Optical vibrometer - Google Patents

Optical vibrometer

Info

Publication number
JPS63115017A
JPS63115017A JP26166986A JP26166986A JPS63115017A JP S63115017 A JPS63115017 A JP S63115017A JP 26166986 A JP26166986 A JP 26166986A JP 26166986 A JP26166986 A JP 26166986A JP S63115017 A JPS63115017 A JP S63115017A
Authority
JP
Japan
Prior art keywords
measured
support base
reflecting member
sensor
focus error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26166986A
Other languages
Japanese (ja)
Inventor
Eiichi Sato
栄一 佐藤
Sadao Shigetomi
重富 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP26166986A priority Critical patent/JPS63115017A/en
Publication of JPS63115017A publication Critical patent/JPS63115017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To measure fine vibrations of a body to be measured by providing a focus error sensor and a reflecting member and supporting one of them elastically. CONSTITUTION:The focus error sensor 22 is fixed on a support base 21 and the reflecting member 23 is provided to the support base 21 elastically through an elastic support member 24. Then when the body 26 to be measured is mounted on the support base 21, the support base 21 vibrates by receiving vibrations of the body 26 to be measured, but the support base 21 and support member 24 vibrate so that the sensor 22 and reflecting member 23 which differ in natural vibration frequency enter out-of-phase vibrations. The relative distance between the focus position of the sensor 22 and reflecting member 23, therefore, varies according to the vibrations of the body 26 to be measured, so that is detected by the sensor 22. Its detection signal is processed by a signal processing circuit 27 to know the vibration state of the body 26 to be measured. The sensor 22 converges light from a laser oscillator nearly on the surface of the reflecting member 23 by a lens system and its reflected light is measured to find fine deviation in the distance between the focus position of the lens and the surface of the reflecting member 23.

Description

【発明の詳細な説明】 [産業上の利用分野〕 この発明は、構造体の摂動解析、精密測定装置や精密加
工8i置などにおける振動の測定、超微動地震計などに
用いられる光学式振動計に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical vibration meter used for perturbation analysis of structures, measurement of vibration in precision measurement equipment and precision processing 8I equipment, ultra-micromotion seismometers, etc. Regarding.

[従来の技術] 従来、被測定物上に載置して被測定物の振動状態を検出
する光学式振動計としては、例えば、SIP社製の微動
針(古川束−「撮動および衝撃測定」昭和41年12月
20日発行、120頁)がある。このSIP微動計の概
略を第8図に示す。すなわち、支持台1内におもり2が
2枚の板バネ3により支持されて直線振動子を構成し、
このおもり2に設けられた円筒状に貫通した開口部4内
に0.15mm間隔で複数本の幅1.2μmのスリット
5がきざまれたガウス板6がはめこまれ、かつ支持台1
に取付けられた顕微17の対物レンズ8がこの開口部4
内に入りこんでスリット5を観察しうるようにしたもの
である。
[Prior Art] Conventionally, as an optical vibrometer that is placed on the object to be measured and detects the vibration state of the object to be measured, for example, a fine movement needle manufactured by SIP (Tsuka Furukawa - "Photography and Shock Measurement") has been used. ” (published December 20, 1966, 120 pages). FIG. 8 shows an outline of this SIP microtremometer. That is, a weight 2 is supported by two leaf springs 3 in a support base 1 to constitute a linear vibrator,
A Gauss plate 6 having a plurality of 1.2 μm wide slits 5 cut out at 0.15 mm intervals is fitted into the cylindrical opening 4 provided in the weight 2, and the support base 1
The objective lens 8 of the microscope 17 attached to the opening 4
The slit 5 can be observed by entering inside.

いま被測定物9が振動すると直線振動子とともにスリッ
ト5が振動するから、スリット5は対物レンズ8の反対
側に設けられた小型電球10からの光が通過して光の帯
として観察されその巾は直線撮動子の全振幅に相当する
分だけ拡がって見えるので、これを顕微鏡7の内の目盛
板〈1目盛2.57μm)で読み取ることにより被測定
物9の振動状態を測定するものである。なお板バネ11
はおもり2に接触してr!J擦減衰器の役割をはたして
いる。
Now, when the object to be measured 9 vibrates, the slit 5 vibrates together with the linear vibrator, so the light from the small light bulb 10 installed on the opposite side of the objective lens 8 passes through the slit 5 and is observed as a light band, whose width is appears to expand by an amount corresponding to the total amplitude of the linear sensor, and by reading this with a scale plate (1 scale: 2.57 μm) in the microscope 7, the vibration state of the object to be measured 9 can be measured. be. Note that leaf spring 11
touches weight 2 and r! It plays the role of a J friction attenuator.

[発明が解決しようとする問題点] だが、このような振動計は振動子の振幅を直接顕微鏡で
測定するものであるから、振幅が大きければ測定できる
が振幅の小さな撮動の測定はせいぜい0.5μmが限度
であり、それ以下の微動の測定ができないという問題点
があった。
[Problems to be solved by the invention] However, since such a vibrometer measures the amplitude of the vibrator directly using a microscope, it can measure large amplitudes, but measurements with small amplitudes are at most 0. There was a problem in that the limit was .5 μm, and microtremors smaller than that could not be measured.

この発明は、上述の問題点を克服し、極めて感度の高い
光学式振動計を提供することを目的とする。
The present invention aims to overcome the above-mentioned problems and provide an optical vibrometer with extremely high sensitivity.

[問題点を解決する手段および作用] 第1図(A>、(B)にこの発明の基本構成を示す。す
なわちこの発明の光学式振動計は、支持台21上にフォ
ーカスエラーセンサ22とこのフォーカスエラーセンサ
22または反射部材23の少なくともどちらか一方を支
持台21に対して弾性的に支持する弾性支持部材24.
25を設けたものである。第1図(A)は、フォーカス
エラーセンサ22を支持台21に対して固定的に設け、
反射部材23を弾性支持部材24を介して支持台21に
弾性的に設けた光学式振動計の例を示している。また第
1図(B)は、支持台21に対してフォーカスエラーセ
ンサ22を弾性支持部材25を介して弾性的に設け、反
射部材23を支持台21に固定的に設けた光学式振動計
の例を示している。もちろんフォーカスエラーセンサ2
2と反射部材23とが支持台21に対してそれぞれの弾
性支持部材24.25を介して弾性的に設置されていて
もよい。
[Means and effects for solving the problem] Figures 1A and 1B show the basic configuration of the present invention. That is, the optical vibrometer of the present invention includes a focus error sensor 22 and a focus error sensor 22 on a support base 21. An elastic support member 24 that elastically supports at least one of the focus error sensor 22 and the reflection member 23 with respect to the support base 21.
25. In FIG. 1(A), the focus error sensor 22 is fixedly provided to the support base 21,
An example of an optical vibrometer is shown in which a reflecting member 23 is elastically provided on a support base 21 via an elastic support member 24. FIG. 1(B) shows an optical vibrometer in which a focus error sensor 22 is elastically provided on a support base 21 via an elastic support member 25, and a reflection member 23 is fixedly provided on the support base 21. An example is shown. Of course focus error sensor 2
2 and the reflecting member 23 may be elastically installed with respect to the support base 21 via respective elastic supporting members 24 and 25.

いま、本発明の光学式振動計を被測定物26上に載置す
ると、被測定物26の振動を受けて支持台21が撮動す
るが、支持台21と弾性支持部材24.25とはその固
有撮動数が異なるからフォー力スエラーンサ22と反射
部材23とは位相がずれた振動をすることになる。した
がって、フォーカスエラーセンサ22の焦点位置と反射
部材23との相対的距離が被測定物26の振動に応じて
変動することになるから、これをフォーカスエラーセン
サ22によって検出し、この検出信号を信号処理回路2
7により処理して被測定物26の撮動状態を知ることが
できる。なお、被測定物26に対してこの光学式振動計
のX面を下にして載置すれば被測定面の垂直方向の振動
を検出することになり、Y面を下にして載置すれば被測
定面に平行な方向の振動を検出することになる。支持台
21と弾性支持部材24.25の固有撮動数をそれぞれ
どのように設定するかは、フォーカスエラーセンサ22
および反射部材23のどちらかを振動に対する基準位置
に設定するかにより選択される。
Now, when the optical vibrometer of the present invention is placed on the object to be measured 26, the support stand 21 will be moved by the vibration of the object to be measured, but the support stand 21 and the elastic support members 24 and 25 are Since their characteristic imaging numbers are different, the force error sensor 22 and the reflecting member 23 vibrate out of phase. Therefore, the relative distance between the focus position of the focus error sensor 22 and the reflecting member 23 changes in accordance with the vibration of the object to be measured 26, so this is detected by the focus error sensor 22 and this detection signal is used as a signal. Processing circuit 2
7, the imaging state of the object to be measured 26 can be known. Note that if this optical vibration meter is placed on the object to be measured 26 with its X-plane facing down, vibrations in the vertical direction of the surface to be measured will be detected; if it is placed with its Y-plane facing down, Vibration in a direction parallel to the surface to be measured is detected. The focus error sensor 22 determines how to set the specific number of images for the support base 21 and the elastic support members 24 and 25.
The selection is made depending on which of the reflecting member 23 and the reflecting member 23 is set as the reference position for vibration.

本発明に用いられるフォーカスエラーセンサ22は、レ
ーザ発振器からのレーザ光をレンズ系により測定面近傍
に収束させその反射光を測定することによりレンズの焦
点位置と測定表面との間の微小な距離のズレを求めるも
のであり、臨界角法、非点収差法、ナイフェツジ法、5
C00P法などの測定原理が用いられる。このフォーカ
スエラーセンサ22を用いることにより、測定の精度を
1c57〜16−と極めて高感度にすることができる。
The focus error sensor 22 used in the present invention converges laser light from a laser oscillator near the measurement surface using a lens system and measures the reflected light, thereby determining the minute distance between the focal position of the lens and the measurement surface. It is used to find the deviation, and the critical angle method, astigmatism method, Naifetsu method, 5
A measurement principle such as the C00P method is used. By using this focus error sensor 22, the measurement accuracy can be made extremely sensitive to 1c57-16-.

またリアルタイムの測定信号が得られるため、この信号
を信号処理回路27で処理することによって振動の振幅
だけでなく振動の位相や波形をリアルタイムで知ること
ができるから、微小振動による被測定物の撮動解析や検
出信号のフィードバックによる防諜台の撮動制御などが
可能である。
Furthermore, since a real-time measurement signal is obtained, by processing this signal in the signal processing circuit 27, it is possible to know not only the vibration amplitude but also the vibration phase and waveform in real time. It is possible to control the imaging of counter-intelligence units using dynamic analysis and feedback of detection signals.

以下にフォーカスエラーセンサ22に採用される各種の
測定原理の概要を説明する。
An outline of various measurement principles employed in the focus error sensor 22 will be explained below.

1)臨界角法(第2図) 28はレーザダイオード、29はコリメータレンズ、3
0は偏光ビームスプリッタ、31は4分の1波長板、3
2は対物レンズ、33は測定面、34はハーフミラ−1
35は臨界角プリズム、36は2分割ディテクタである
。レーザダイオード28、コリメータレンズ29から入
射される平行光束は対物レンズ32の焦点位置に集光さ
れているから、測定面33がこの焦点位置にある場合、
光束は逆進してそのままの平行性をたちだせるよう調整
しておく。測定面33が焦点位置より変位した場合反射
した光束は、変位量に応じて発散光束又は集束光束とな
る。
1) Critical angle method (Figure 2) 28 is a laser diode, 29 is a collimator lens, 3
0 is a polarizing beam splitter, 31 is a quarter wavelength plate, 3
2 is an objective lens, 33 is a measurement surface, and 34 is a half mirror 1
35 is a critical angle prism, and 36 is a two-split detector. Since the parallel light flux incident from the laser diode 28 and the collimator lens 29 is focused on the focal position of the objective lens 32, when the measurement surface 33 is at this focal position,
The light flux is adjusted so that it travels backwards and maintains the same parallelism. When the measurement surface 33 is displaced from the focal position, the reflected beam becomes a diverging beam or a converging beam depending on the amount of displacement.

臨界角プリズムへの光の入射角が変化し、それにより2
分割ディテクタに入射する光量が変化し変位量を電気信
号として検出できる。(特開昭56−7246号、特開
昭59−90007号)2)非点収差法(第3図) 38は@e−Jleレーザ、39は偏光ビームスプリッ
タ、4oは4分の1波長板、41は対物レンズ、42は
ハーフミラ−143は円筒レンズ、44は4分割ディテ
クタである。対物レンズ41の後方に円筒レンズ43を
配置し、測定面33からの焦点位置ずれを非点収差によ
る光線束の形状変化として4分割ディテクタによってと
らえる方法である。
The angle of incidence of light on the critical angle prism changes, so that 2
The amount of light incident on the split detector changes, and the amount of displacement can be detected as an electrical signal. (JP-A-56-7246, JP-A-59-90007) 2) Astigmatism method (Figure 3) 38 is @e-Jle laser, 39 is a polarizing beam splitter, 4o is a quarter wavelength plate , 41 is an objective lens, 42 is a half mirror, 143 is a cylindrical lens, and 44 is a four-part detector. In this method, a cylindrical lens 43 is arranged behind the objective lens 41, and a focal position shift from the measurement surface 33 is detected by a four-part detector as a change in the shape of the light beam due to astigmatism.

3)ナイフェツジ法(第4図) 45・は@e−Neレーザ、46はビームエキスパンダ
、47は偏光ビームスプリッタ、48は4分の1波長板
、4つは対物レンズ、50は波面分割ミラー、51は集
光レンズ、52は2分割ディテクタである。対物レンズ
49を通過した反射光の焦点位置にナイフェツジ(波面
分割ミラー50)を置いて、測定面が焦点位置からずれ
るとナイフェツジにより反射光束の片側がさえぎられて
2分割ディテクタ52に到達する光量に差を生ずる。こ
れにより変位量を検出する。
3) Naifezi method (Figure 4) 45. is @e-Ne laser, 46 is beam expander, 47 is polarizing beam splitter, 48 is quarter wavelength plate, 4 is objective lens, 50 is wavefront splitting mirror , 51 is a condenser lens, and 52 is a two-split detector. A knife (wavefront splitting mirror 50) is placed at the focal position of the reflected light that has passed through the objective lens 49, and when the measurement surface deviates from the focal position, one side of the reflected light flux is blocked by the knife and the amount of light reaching the two-split detector 52 is reduced. Make a difference. This detects the amount of displacement.

4)SCOOPI (15a> 53は半導体レーザダイオード、54.55は集光レン
ズ、56はディテクタである。測定面33からの反射光
をレーザダイオード53に戻し、自己カップリング効果
によって生じる雑音成分から微小変位を検出する方法で
ある。(特公昭513−51419号、特公昭57−5
8735号)本発明における弾性支持部材には、燐青銅
や石英ガラスなどにより形成された板バネ、ゴム材や鉛
、アルミニュームなどのヤング率の小さな金属材などに
よるブロック材などを用いることができる。このブロッ
ク材を用いる場合は、ブロック材の一面を支持台に固定
し、対向する他の面にフォーカスエラーセンサあるいは
反射部材を取付けることによって弾性的に支持するもの
である。
4) SCOOPI (15a> 53 is a semiconductor laser diode, 54.55 is a condensing lens, and 56 is a detector. The reflected light from the measurement surface 33 is returned to the laser diode 53, and the noise component generated by the self-coupling effect is minimized. This is a method of detecting displacement. (Special Publication No. 513-51419, Special Publication No. 57-5
No. 8735) As the elastic support member in the present invention, a plate spring made of phosphor bronze, quartz glass, etc., a block material made of a metal material with a small Young's modulus such as rubber material, lead, or aluminum, etc. can be used. . When using this block material, one side of the block material is fixed to a support base, and a focus error sensor or a reflecting member is attached to the other opposing surface to elastically support the block material.

また反射部材としては、アルミニューム鏡面やガラス板
にアルミニュームなどを蒸着したもの、シリコン板の研
磨面などを用いることが望ましい。
Further, as the reflecting member, it is desirable to use an aluminum mirror surface, a glass plate on which aluminum is vapor-deposited, a polished surface of a silicon plate, or the like.

[実施例] 第6図はこの発明の一実施例を示す平面図(A)および
そのA−8断面図(B)である。
[Embodiment] FIG. 6 is a plan view (A) and a sectional view (B) taken along line A-8 thereof, showing an embodiment of the present invention.

この実施例は、臨界角法によるフォーカスエラーセンサ
を支持台に固定し反射部材を弾性的に支持するようにし
た光学式撮勤計の一例を示すものである。支持台として
の箱状の支持枠61はその内部がフォーカスエラーセン
サ部62と相対撮動部63とに仕切られている。相対振
動部63内には支持枠61のX面に平行に弾性支持部材
としての板バネ64がその端部のみを支持枠61の側壁
に固定され、この板バネ64の中央部に反射部材として
のアルミニューム鏡面を有する鏡65が取付けられてい
る、そしてこの鏡65に対向する位置にフォーカスエラ
ーセンサの対物レンズ66がiff!されている。
This embodiment shows an example of an optical time meter in which a focus error sensor based on the critical angle method is fixed to a support base and a reflecting member is elastically supported. The inside of a box-shaped support frame 61 serving as a support base is partitioned into a focus error sensor section 62 and a relative imaging section 63. Inside the relative vibration part 63, a plate spring 64 as an elastic support member is fixed in parallel to the X plane of the support frame 61 with only its end fixed to the side wall of the support frame 61, and a reflection member is attached to the center of the plate spring 64. A mirror 65 having an aluminum mirror surface of is attached, and an objective lens 66 of a focus error sensor is mounted at a position opposite to this mirror 65. has been done.

次にフォーカスエラーセンサ部について説明する。波長
780r+mのレーザ光を発光するレーザダイオード6
7およびコリメータレンズ68が支持枠61の上部壁に
取付けられ、その光路上に、平行四辺形プリズム69の
一方の斜面に偏光膜を挾んで直角プリズム70を接合し
て形成された偏光ビームスプリッタ71が45″の角度
で設けられている。この偏光ビームスプリンタ71によ
り反射された光路上に4分の1波長板72と前述の対物
レンズ66が配置されている。なお対物レンズ66の焦
点位置近傍に前述の鏡65が配置されている。一方、対
物レンズ66の光軸の偏光ビームスプリッタ71を透過
した延長上に前記平行四辺形プリズム69の他方の斜面
に半透過反射面を挾んだ直角プリズム73を接合して形
成したハーフミラ−74がある。このハーフミラ−74
を透過および反射により2分されたそれぞれの光路上に
臨界角プリズム75.76と2分割受光素子77.78
がそれぞれ設けられている。
Next, the focus error sensor section will be explained. Laser diode 6 that emits laser light with a wavelength of 780r+m
7 and a collimator lens 68 are attached to the upper wall of the support frame 61, and on the optical path thereof, a polarizing beam splitter 71 is formed by joining a right angle prism 70 with a polarizing film interposed on one slope of a parallelogram prism 69. is provided at an angle of 45''.A quarter wavelength plate 72 and the aforementioned objective lens 66 are arranged on the optical path reflected by this polarizing beam splinter 71. On the other hand, on the extension of the optical axis of the objective lens 66 that has passed through the polarizing beam splitter 71, there is a right angle with a transflective surface sandwiched between the other slope of the parallelogram prism 69. There is a half mirror 74 formed by joining prisms 73. This half mirror 74
A critical angle prism 75.76 and a 2-split light receiving element 77.78 are placed on each optical path divided into two by transmission and reflection.
are provided for each.

以上のような構成において、レーザダイオード67より
出射されたレーザ光はコリメートレンズ68によって平
行光束に変換されP偏光で偏光ビームスプリッタ71に
入射される。(’i!光ビームスプリッタ71を反射し
た平行光束は4分の1波長板7・2を透過して円偏光の
光束に変換された後、対物レンズ66によってその焦点
位置に集光され165に入射される。鏡65からの反射
光は逆進して対物レンズ66および4分の1波長板72
を通り、S偏光となって偏光ビームスプリッタ71を透
過し、ハーフミラ−74に入射される。ハーフミラ−7
4に入射した光束は2分され、ハーフミラ−74を透過
した光束は臨界角プリズム75に内で複数回反射した後
2分割受光素子77に入射され光量が光軸の上下で別々
に検出される、一方ハーフミラー74を反射した光束は
同様に臨界角プリズム76を経て2分割受光素子78に
より光軸の左右で別々に検出される。これらの検出信号
を図示しない信号処理回路により処理して焦点位置から
の微小変位量がリアルタイムで求められる。
In the above configuration, the laser light emitted from the laser diode 67 is converted into a parallel light beam by the collimating lens 68, and is incident on the polarizing beam splitter 71 as P-polarized light. ('i! The parallel light beam reflected from the optical beam splitter 71 passes through the quarter-wave plate 7.2 and is converted into a circularly polarized light beam, and then is focused by the objective lens 66 at its focal position and becomes 165. The reflected light from the mirror 65 travels backwards to the objective lens 66 and the quarter-wave plate 72.
, becomes S-polarized light, passes through the polarizing beam splitter 71 , and enters the half mirror 74 . half mirror 7
The light beam incident on the optical axis 4 is divided into two parts, and the light beam transmitted through the half mirror 74 is reflected multiple times within the critical angle prism 75, and then enters the two-split light-receiving element 77, where the amount of light is detected separately on the upper and lower sides of the optical axis. On the other hand, the light beam reflected by the half mirror 74 similarly passes through the critical angle prism 76 and is detected separately on the left and right sides of the optical axis by the two-split light receiving element 78. These detection signals are processed by a signal processing circuit (not shown) to determine the amount of minute displacement from the focal position in real time.

このフォーカスエラーセンサの性能を調べるために、ボ
イスコイルにアルミニューム鏡面を取付けて光軸方向に
正弦振動させ、その変位を測定したところ、20KH2
の周波数応答性と1 nalの測定感度があることが実
証された。またアルミニューム鏡面を光軸方向に約10
μm移動させて変化量を測定した結果は、第7図に示し
たように、約2μmの範囲にわたって直線性を有するこ
とが判った。
In order to investigate the performance of this focus error sensor, we attached an aluminum mirror surface to the voice coil and caused it to vibrate sinusoidally in the direction of the optical axis, and measured its displacement.
It was demonstrated that it has a frequency response of 1 nal and a measurement sensitivity of 1 nal. In addition, the aluminum mirror surface is approximately 10 mm in the optical axis direction.
As shown in FIG. 7, the results of measuring the amount of change after moving the surface by μm showed that it had linearity over a range of approximately 2 μm.

この実施例の光学式襲動計を用いて作業台上の垂直撮動
を測定したところ最大振動幅2μmの測定値を得たが、
この作業台上に防諜台を載置してこの防諜台上の垂直撮
動を測定したところ最大振幅5nmの測定値を得た。こ
のように防諜台の性能測定にも有効であることが判る。
When the optical assault meter of this example was used to measure vertical imaging on a workbench, a maximum vibration width of 2 μm was obtained.
When a counter-intelligence stand was placed on this workbench and vertical imaging on the counter-intelligence stand was measured, a measured value with a maximum amplitude of 5 nm was obtained. In this way, it can be seen that it is also effective in measuring the performance of counterintelligence stations.

[発明の効果] この発明の光学式振動計によれば、極めて高感度でリア
ルタイムの微小撮動の検出測定ができる。
[Effects of the Invention] According to the optical vibrometer of the present invention, detection and measurement of minute imaging can be performed in real time with extremely high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、CB>はこの発明の基本構成を示す正面
図、第2〜5図はフォーカスエラーセンサに用いられる
各種の作動原理を説明するための概要図、第6図<A>
はこの発明の一実旋例を示す平面図、第6図(B)はそ
のA−8断面図、第7図はこの実施例に用いられたフォ
ーカスエラーセンサの特性を示す線図、第8図は光学式
振動計の従来例を示す正面部分断面図である。 21・・・支持台、22・・・フォーカスエラーセンサ
、23・・・反射部材、24.24・・・弾性支持部材
。 (A) (己) 第10 第2図 卒3日 第41] 千 第510 (B’1 第6図 褒(ぽ 第71fl 第81
1(A), CB> are front views showing the basic configuration of the present invention, FIGS. 2 to 5 are schematic diagrams for explaining various operating principles used in the focus error sensor, and FIG. 6 <A>
6(B) is a sectional view taken along the line A-8, FIG. 7 is a diagram showing the characteristics of the focus error sensor used in this embodiment, and FIG. The figure is a front partial sectional view showing a conventional example of an optical vibrometer. 21... Support stand, 22... Focus error sensor, 23... Reflective member, 24.24... Elastic support member. (A) (Self) 10th 2nd drawing 3rd day 41st] 510th 1000th (B'1 6th drawing award (Po 71st fl 81st)

Claims (1)

【特許請求の範囲】 被測定物上に載置してこの被測定物の振動状態を測定す
る光学式振動計において、 フォーカスエラーセンサと、 このフォーカスエラーセンサの焦点位置近傍に配置され
た反射部材と、 フォーカスエラーセンサおよび反射部材を支持する支持
台と、 フォーカスエラーセンサまたは反射部材の少なくともど
ちらか一方と支持台との間に配置された弾性支持部材と
からなることを特徴とする光学式振動計。
[Claims] An optical vibrometer that is placed on an object to be measured and measures the vibration state of the object, comprising: a focus error sensor; and a reflecting member disposed near the focal point of the focus error sensor. An optical vibration system comprising: a support base that supports the focus error sensor and the reflective member; and an elastic support member disposed between the support base and at least either the focus error sensor or the reflective member. Total.
JP26166986A 1986-10-31 1986-10-31 Optical vibrometer Pending JPS63115017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26166986A JPS63115017A (en) 1986-10-31 1986-10-31 Optical vibrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26166986A JPS63115017A (en) 1986-10-31 1986-10-31 Optical vibrometer

Publications (1)

Publication Number Publication Date
JPS63115017A true JPS63115017A (en) 1988-05-19

Family

ID=17365100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26166986A Pending JPS63115017A (en) 1986-10-31 1986-10-31 Optical vibrometer

Country Status (1)

Country Link
JP (1) JPS63115017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130094U (en) * 1989-03-30 1990-10-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130094U (en) * 1989-03-30 1990-10-26

Similar Documents

Publication Publication Date Title
US4576479A (en) Apparatus and method for investigation of a surface
JPH02259508A (en) Integrated interference measuring instrument
JPH05256647A (en) Inclination measuring device
US5164791A (en) Minute displacement detector using optical interferometry
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
US5315373A (en) Method of measuring a minute displacement
US4171910A (en) Retroreflectance measurement system
JPH0256604B2 (en)
US9062967B2 (en) Measurement apparatus for measuring a surface shape of an object based on an interference signal
JPH07113617A (en) Displacement gauge and displacement measuring method, and thickness gauge
US4105335A (en) Interferometric optical phase discrimination apparatus
JPS63115017A (en) Optical vibrometer
CN109839514B (en) High-precision optical accelerometer with self-zero-adjusting function
JPH07294231A (en) Optical surface roughness sensor
JPH06213623A (en) Optical displacement sensor
JP2592254B2 (en) Measuring device for displacement and displacement speed
JP2966950B2 (en) Sample displacement measuring device
JPH0211084B2 (en)
JPH07169071A (en) Optical pickup system for detection of focusing error
JPH0465612A (en) Optical method and instrument for measuring surface roughness
SU1272105A1 (en) Laser interferometer for measuring dynamic deformations of specimens
JPH03123805A (en) Interatomic force microscope
JPS60211304A (en) Measuring instrument for parallelism
JPH02259512A (en) Integrated interference measuring instrument
JPH074496Y2 (en) Non-contact displacement meter