JPH03120370A - Photo-cvd device - Google Patents

Photo-cvd device

Info

Publication number
JPH03120370A
JPH03120370A JP25492989A JP25492989A JPH03120370A JP H03120370 A JPH03120370 A JP H03120370A JP 25492989 A JP25492989 A JP 25492989A JP 25492989 A JP25492989 A JP 25492989A JP H03120370 A JPH03120370 A JP H03120370A
Authority
JP
Japan
Prior art keywords
light
substrate
light source
reaction chamber
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25492989A
Other languages
Japanese (ja)
Inventor
Mitsuo Nakajima
充雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25492989A priority Critical patent/JPH03120370A/en
Publication of JPH03120370A publication Critical patent/JPH03120370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To deposit a thin film on the surface of a substrate to be treated in uniform thickness by irradiating the surface of the substrate contained in a reaction chamber to be supplied with a raw gas by the light with the intensity distribution uniformized through a light-transmissive window. CONSTITUTION:A reaction vessel 10 is divided into the reaction chamber 12 and a light source chamber 13 through the lighttransmissive window 11. A substrate 21 to be treated is placed on a holder 22 contg. a heater 23 in the reaction chamber 12 and heated to a specified temp., the chamber is evacuated, and the raw gas is introduced. The light such as UV from the light source chamber 13 provided with the light source 31 and a reflector 32 is transmitted through the window 11 and injected on the substrate 21. Consequently, a thin film consisting of the reaction product of the raw gas is deposited on the substrate 21. In this photo-CVD device, a lens action to disperse or focus the light in accordance with the light intensity distribution is imparted to the window 11. As a result, the intensity distribution of the light irradiating the substrate 21 is uniformized, and a thin film is obtained in uniform thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光化学反応を利用して被処理基板上に薄膜を
堆積する光CVD装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a photo-CVD apparatus that deposits a thin film on a substrate to be processed using a photochemical reaction.

−X従来の技術) 近年、シラン(S i H4) * ジボラン(82H
6)あるいはホスフィン(PH3)等の原料ガスを光エ
ネルギーにより反応・分解させて薄膜を形成する光CV
D法が注目されている。この光CVD法は、従来の熱エ
ネルギーにより原料を分解する熱CVD法に比べ、より
低温で膜形成を行うことができる。また、プラズマによ
り原料ガスを分解するプラズマCVD法と比較して、光
CVD法は、ラジカル反応のみで膜形成が行えることか
ら薄膜形成下地基板に荷電粒子による損傷を与えない点
や、光が照射されている場所でのみ膜形成が起こるため
膜欠陥の原因となる粉体の発生が少ない点等で優れてお
り、高品質の薄膜を形成する方法として期待されている
-X conventional technology) In recent years, silane (S i H4) * diborane (82H
6) Or optical CV in which a raw material gas such as phosphine (PH3) is reacted and decomposed using light energy to form a thin film.
Method D is attracting attention. This photo-CVD method can form a film at a lower temperature than the conventional thermal CVD method in which raw materials are decomposed using thermal energy. In addition, compared to the plasma CVD method, which decomposes the raw material gas using plasma, the photo-CVD method can form a film using only radical reactions, so the substrate on which the thin film is formed is not damaged by charged particles, and the light irradiation method This method is excellent in that it generates less powder, which can cause film defects, because film formation occurs only where the film is exposed, and is expected to be a method for forming high-quality thin films.

第6図は、従来の光CVD装置を模式的に示した概略構
成図である。図中10は真空容器、11は仕切りとして
作用する光透過窓、14はOリング、12は反応室、1
3は光源室、21は被処理基板、22は支持台、23は
ヒータ、24は原料ガス供給系、25はガス排気系、3
1は低圧水銀ランプ等の光源、32は反射板を示してい
る。なお、光源室13内は窒素ガスによりパージされて
いる。この装置では、原料ガス供給系24及びガス排気
系25により反応室12内の圧力を所望の値に制御する
と共に、ヒータ23により被処理基板21の温度を所望
の値に制御する。そして、光源31を点灯しその光エネ
ルギーにより原料ガスを反応・分解することにより、被
処理基板21表面上に薄膜が堆積される。
FIG. 6 is a schematic configuration diagram schematically showing a conventional optical CVD apparatus. In the figure, 10 is a vacuum container, 11 is a light transmission window that acts as a partition, 14 is an O-ring, 12 is a reaction chamber, 1
3 is a light source chamber, 21 is a substrate to be processed, 22 is a support stand, 23 is a heater, 24 is a source gas supply system, 25 is a gas exhaust system, 3
1 is a light source such as a low-pressure mercury lamp, and 32 is a reflecting plate. Note that the inside of the light source chamber 13 is purged with nitrogen gas. In this apparatus, the pressure within the reaction chamber 12 is controlled to a desired value by a source gas supply system 24 and a gas exhaust system 25, and the temperature of the substrate to be processed 21 is controlled to a desired value by a heater 23. Then, a thin film is deposited on the surface of the substrate 21 to be processed by turning on the light source 31 and reacting and decomposing the source gas with the light energy.

例えば、原料ガスとしてシランを用いた場合、上記反応
により被処理基板21表面上にアモルファスシリコン膜
が堆積されることになる。
For example, when silane is used as the raw material gas, an amorphous silicon film is deposited on the surface of the substrate 21 to be processed by the above reaction.

しかしながら、このような光CVD装置の場合、光源に
は特有の光強度分布があるため、基板21表面上には−
様な光エネルギーが照射されず、形成される薄膜に膜厚
分布の不均一が発生する。膜厚分布を少なくする為に光
透過窓11に比べて大きな光源を使用するという方法が
考えられるが、これでは光CVD装置が大型化してしま
う問題があった。
However, in the case of such a photo-CVD apparatus, since the light source has a unique light intensity distribution, -
As a result, the thin film formed has uneven thickness distribution. In order to reduce the film thickness distribution, it is possible to use a light source larger than the light transmitting window 11, but this method has the problem of increasing the size of the photoCVD apparatus.

(発明が解決しようとする課題) 以上のように従来の光CVD装置には、被処理基板表面
上に−様な厚さでもって膜が形成されず、これがその後
のデバイス形成工程で形成でされるデバイスの品質に悪
影響を与えるという問題があった。
(Problems to be Solved by the Invention) As described above, in the conventional photoCVD apparatus, a film with a certain thickness cannot be formed on the surface of the substrate to be processed, and this film cannot be formed in the subsequent device forming process. There was a problem in that it had a negative impact on the quality of the devices used.

本発明は上記事情を考慮してなされたもので、その目的
とするところは被処理基板表面に−様な膜厚の薄膜を堆
積、することができる光CVD装置を提供することにあ
る。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a photo-CVD apparatus that can deposit a thin film with a thickness of -100 nm on the surface of a substrate to be processed.

[発明の構成] <R’XJを解決するための手段) 本発明に係わる光CVD装置は、光源と基板の間に光源
から照射される光の強度分布を均一化する手段を設けた
ことを特徴とする。
[Structure of the Invention] <Means for Solving R'XJ) The optical CVD apparatus according to the present invention is provided with a means for uniformizing the intensity distribution of light emitted from the light source between the light source and the substrate. Features.

具体的には例えば、光透過窓に、光強度分布に応じて光
を分散あるいは収束させるようなレンズ作用を持たせる
。あるいは、光透過窓に光強度分布を相殺するような透
過率特性を持たせるか、光透過窓とは別に同様の特性を
付加したフィルタを配置する。
Specifically, for example, the light transmitting window is provided with a lens function that disperses or converges light depending on the light intensity distribution. Alternatively, the light transmission window may be provided with a transmittance characteristic that cancels out the light intensity distribution, or a filter with similar characteristics may be arranged separately from the light transmission window.

(作 用) 光源からの光を、その強度分布を均一化して被処理基板
に照射することにより、−様な膜厚の薄膜を得ることが
できる。
(Function) By irradiating the substrate to be processed with light from a light source with a uniform intensity distribution, a thin film with a film thickness of - can be obtained.

(実施例) 実施例1 第1図は、本発明の第1の実施例に係わる光CVD装置
を模式的に示した概略構成図である。
(Example) Example 1 FIG. 1 is a schematic configuration diagram schematically showing an optical CVD apparatus according to a first example of the present invention.

図中10は八ツ容器であり、11は光透過窓である。こ
の光透過窓11は合成石英等からなり、中央部に凹レン
ズ、周辺部に凸レンズを有する構造となっている。真空
容器10は、この光透過窓11によって上下に仕切りら
れており、下側に反応室12が形成され上側に光源室1
3が形成されている。
In the figure, 10 is an eight container, and 11 is a light transmitting window. The light transmitting window 11 is made of synthetic quartz or the like, and has a structure having a concave lens in the center and a convex lens in the periphery. The vacuum container 10 is partitioned into upper and lower parts by the light transmission window 11, with a reaction chamber 12 formed on the lower side and a light source chamber 1 formed on the upper side.
3 is formed.

反応室12内にはガラスやシリコン等からなる被処理基
板21を載置する支持台22が収容されており、この支
持台22には基板21を加熱するためのヒータ23が設
けられている。反応室12内には原料ガス供給系24が
ら原料ガスとして例えばシラン、ジボラン、ホスフィン
あるいはアセチレン等が供給され、反応室12内のガス
はガス排気系25により排気される。
A support table 22 on which a substrate to be processed 21 made of glass, silicon, etc. is placed is housed in the reaction chamber 12, and a heater 23 for heating the substrate 21 is provided on the support table 22. A raw material gas such as silane, diborane, phosphine, or acetylene is supplied into the reaction chamber 12 by a raw material gas supply system 24, and the gas in the reaction chamber 12 is exhausted by a gas exhaust system 25.

一方、光源室13の上部には紫外線を発する低気圧水銀
ランプ等の光源31が収容されており、この光源31の
上方には反射板32が配置されている。そして、光源3
1から放射された光は直接光透過窓11を通過するか又
は反射板32で反射されて光透過窓11を通過して前記
反応室12内の被処理基板21上に照射されるようにな
っている。また、光源室13内はN2ガスにてパージで
きるようになっている。
On the other hand, a light source 31 such as a low-pressure mercury lamp that emits ultraviolet light is housed in the upper part of the light source chamber 13, and a reflecting plate 32 is disposed above the light source 31. And light source 3
The light emitted from 1 directly passes through the light transmission window 11 or is reflected by the reflection plate 32 and passes through the light transmission window 11 to be irradiated onto the substrate to be processed 21 in the reaction chamber 12. ing. Further, the inside of the light source chamber 13 can be purged with N2 gas.

第2図は、本実施例における光透過窓11の動作を説明
する概略構成図である。本実施例の光透過窓11は前述
のように複数のレンズ部を有する。
FIG. 2 is a schematic configuration diagram illustrating the operation of the light transmission window 11 in this embodiment. The light transmitting window 11 of this embodiment has a plurality of lens parts as described above.

即ち、光強度の弱い周辺部分は凸レンズとなっており、
照射光を集光させる。光強度の強い中央部分は凹レンズ
となっており、照射光を分散させる。
In other words, the peripheral area where the light intensity is weak is a convex lens,
Focuses the irradiated light. The central part, where the light intensity is strong, is a concave lens that disperses the irradiated light.

これにより被処理基板21面上に照射される単位面積、
単位時間当たりの光エネルギー(放射拡散度)を均一に
する。
As a result, the unit area irradiated onto the surface of the substrate 21 to be processed,
Uniform light energy (radiant diffusivity) per unit time.

この実施例により、被処理基板21面上に形成される薄
膜の膜厚分布を均一にすることが可能となった。
This embodiment makes it possible to make the thickness distribution of the thin film formed on the surface of the substrate 21 to be processed uniform.

実施例2 第3図は、第2の実施例を示す光CVD装置の光透過窓
11の概略構成図である。なお第1図と同一機能部分に
は同一符号を付し、詳しい説明は省略する。
Embodiment 2 FIG. 3 is a schematic diagram of a light transmission window 11 of a photo-CVD apparatus showing a second embodiment. Note that the same functional parts as in FIG. 1 are denoted by the same reference numerals, and detailed explanations will be omitted.

この実施例が先に説明した第1の実施例と異なる点は、
光透過窓11に複数のレンズ部を設ける代わりに光透過
窓11に、照射される光の強度分布に応じた光透過早分
布を持たせたことである。
This embodiment differs from the first embodiment described above as follows:
Instead of providing the light transmission window 11 with a plurality of lens parts, the light transmission window 11 is provided with a light transmission rate distribution corresponding to the intensity distribution of the irradiated light.

即ち、強度分布をもつ光が光透過窓11に照射されるに
際し、強度の強い部分の光が通過する箇所では光透過率
を低くして光透過窓11を通過する光エネルギーを減少
させる。また強度の弱い部分の光が通過する箇所では光
透過率を低下させず光透過窓11を通過する光エネルギ
ーを減少させないようにする。これによって被処理基板
21面上に照射される光の強度分布を均一にする。
That is, when light having an intensity distribution is irradiated onto the light transmitting window 11, the light transmittance is lowered at a portion where the light having a strong intensity passes through, thereby reducing the light energy passing through the light transmitting window 11. In addition, the light transmittance is not lowered in the portion where the light of weak intensity passes, and the light energy passing through the light transmitting window 11 is not reduced. This makes the intensity distribution of the light irradiated onto the surface of the substrate 21 to be processed uniform.

この実施例によっても、第1実施例同様に被処理基板2
1面上に形成される薄膜の膜厚分布を均一にすことがで
きる。
In this embodiment as well, the substrate to be processed 2 is
The thickness distribution of the thin film formed on one surface can be made uniform.

実施例3 第4図は、第3の実施例を示す光CVD装置の概略構成
図である。なお第1図と同一機能部分には同一符号を付
し、詳しい説明は省略する。
Embodiment 3 FIG. 4 is a schematic configuration diagram of a photo-CVD apparatus showing a third embodiment. Note that the same functional parts as in FIG. 1 are denoted by the same reference numerals, and detailed explanations will be omitted.

この実施例が先に説明した実施例1.2と異なる点を以
下に述べる。
The differences between this embodiment and the previously described embodiment 1.2 will be described below.

実施例1,2では、光透過窓11に光学的特性分布をも
たせることにより被処理基板21に照射さる光の強度を
均一にしたが、この実施例では、フィルタ50(平面図
を第5図に示す)を光源室13内または反応室12内に
光源31と被処理基板21との間に位置するように配置
する。フィルタ50には実施例1,2における光透過窓
11と同様の働きをさせる。その為に、フィルタ50に
は、照射される光の強度分布に応じて異なる大きさの開
口部を分散配置しである。このようなフィルタ50を設
ければ実施例1,2と同様の理由により被処理処理基板
11に照射される光の強度が均一になるので、膜厚の均
一な薄膜を得ることが可能である。
In Examples 1 and 2, the intensity of the light irradiated onto the substrate 21 to be processed was made uniform by giving the light transmission window 11 an optical characteristic distribution, but in this example, the filter 50 (the top view is shown in FIG. ) is placed in the light source chamber 13 or the reaction chamber 12 so as to be located between the light source 31 and the substrate 21 to be processed. The filter 50 has the same function as the light transmission window 11 in the first and second embodiments. For this purpose, the filter 50 is provided with apertures of different sizes distributed in accordance with the intensity distribution of the irradiated light. If such a filter 50 is provided, the intensity of light irradiated onto the substrate 11 to be processed becomes uniform for the same reason as in Examples 1 and 2, so it is possible to obtain a thin film with a uniform thickness. .

なお、本発明は、上記実施例に限定されるものではない
。例えば、第3実施例のフィルタ50として、第2実施
例の光透過窓のように光透過早分布を持たせたものを用
いてもよい。同様に第1の実施例で説明した光透過窓の
レンズ部を光透過窓とは別に設けてもよい。
Note that the present invention is not limited to the above embodiments. For example, as the filter 50 of the third embodiment, a filter having a light transmission rate distribution like the light transmission window of the second embodiment may be used. Similarly, the lens portion of the light transmission window described in the first embodiment may be provided separately from the light transmission window.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、装置を大型化するこ
となく、基板に照射される光強度分布を均一化して、基
板表面上に−様な厚さでもって薄膜を形成できる。その
結果従来より特性が良い、欠陥の少ない薄膜を得ること
ができ、後のデバイス形成工程で形成されるデバイスの
品質を大幅に向上させることができる。
As described above, according to the present invention, the light intensity distribution applied to the substrate can be made uniform, and a thin film can be formed with a uniform thickness on the substrate surface without increasing the size of the apparatus. As a result, it is possible to obtain a thin film with better properties and fewer defects than before, and it is possible to significantly improve the quality of devices formed in subsequent device forming steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例に係わる光CVD装置
を模式的に示した概略構成図。 第2図は、第1の実施例に係わる光透過窓11の動作を
説明する概略構成図。 第3図は、第2の実施例に係わる光透過窓11の概略構
成図。 第4図は、第3の実施例を示す光CVD装置の概略構成
図、 第5図は、第3の実施例に用いるフィルタを示す図。 第6図は、従来の光CVD装置を模式的に示した概略構
成図である。 10・・・真空容器、11・・・光透過窓、12・・・
反応室。 13・・・光源室、14・・・0リング、21・・・被
処理基板、22・・・支持台、23・・・ヒータ、24
・・・原料ガス供給系、25・・・ガス排気系、31・
・・光源、32・・・反射板、50・・・フィルタ。
FIG. 1 is a schematic configuration diagram schematically showing an optical CVD apparatus according to a first embodiment of the present invention. FIG. 2 is a schematic configuration diagram illustrating the operation of the light transmission window 11 according to the first embodiment. FIG. 3 is a schematic configuration diagram of the light transmission window 11 according to the second embodiment. FIG. 4 is a schematic configuration diagram of an optical CVD apparatus showing a third embodiment, and FIG. 5 is a diagram showing a filter used in the third embodiment. FIG. 6 is a schematic configuration diagram schematically showing a conventional optical CVD apparatus. 10... Vacuum container, 11... Light transmission window, 12...
reaction chamber. 13... Light source chamber, 14... 0 ring, 21... Substrate to be processed, 22... Support stand, 23... Heater, 24
... Raw material gas supply system, 25... Gas exhaust system, 31.
...Light source, 32...Reflector, 50...Filter.

Claims (1)

【特許請求の範囲】[Claims] 被処理基板が収容され薄膜形成に使用される原料ガスが
供給される反応室と、この反応室に光を入射するための
光源と、この光源からの光を前記基板上へ導入するため
に前記反応室に設けられた光透過窓とを有する光CVD
装置において、前記光源から前記光透過窓を通過して前
記反応室に収容されている基板面に照射される光の強度
分布を均一化する手段を有することを特徴とする光CV
D装置。
a reaction chamber that accommodates a substrate to be processed and is supplied with raw material gas used for thin film formation; a light source for inputting light into the reaction chamber; and a reaction chamber for introducing light from the light source onto the substrate. Optical CVD with a light-transmitting window provided in a reaction chamber
In the apparatus, the optical CV is characterized by having means for uniformizing the intensity distribution of light that passes through the light transmission window from the light source and is irradiated onto the surface of the substrate accommodated in the reaction chamber.
D device.
JP25492989A 1989-09-29 1989-09-29 Photo-cvd device Pending JPH03120370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25492989A JPH03120370A (en) 1989-09-29 1989-09-29 Photo-cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25492989A JPH03120370A (en) 1989-09-29 1989-09-29 Photo-cvd device

Publications (1)

Publication Number Publication Date
JPH03120370A true JPH03120370A (en) 1991-05-22

Family

ID=17271822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25492989A Pending JPH03120370A (en) 1989-09-29 1989-09-29 Photo-cvd device

Country Status (1)

Country Link
JP (1) JPH03120370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012628A (en) * 2010-06-29 2012-01-19 Hitachi High-Technologies Corp Substrate treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012628A (en) * 2010-06-29 2012-01-19 Hitachi High-Technologies Corp Substrate treatment apparatus

Similar Documents

Publication Publication Date Title
US4525382A (en) Photochemical vapor deposition apparatus
US4936940A (en) Equipment for surface treatment
JPH03120370A (en) Photo-cvd device
JPS63137174A (en) Device for forming functional deposited film by photochemical vapor growth method
JPH05267183A (en) Semiconductor manufacturing device
JPS61164640A (en) Optical cvd apparatus
JPH01152718A (en) Semiconductor manufacturing apparatus
JPS63317675A (en) Plasma vapor growth device
JPH02252234A (en) Photo assisted cvd equipment
JPH0430519A (en) Treating apparatus of surface of substrate
JPS6075328A (en) Process and device for photo gaseous phase reaction
JPH01123076A (en) Thin film forming method
JPS6298613A (en) Vapor growth method
JP2551753B2 (en) Photo CVD equipment
JPS62160713A (en) Photoexcitation film forming equipment
JPS59209643A (en) Photochemical vapor phase deposition device
JPH01205077A (en) Method for depositing thin film by photochemical vapor growth
JPS61263213A (en) Processor
JPS6152232B2 (en)
JPS6246515A (en) Thin film forming method
JPS61187325A (en) Thin film forming apparatus
JPH05347247A (en) Photochemical reaction device
JPS60121716A (en) Photo cvd method and device therefor
JPS63126229A (en) Processor
JPS62123711A (en) Film forming method