JPS62123711A - Film forming method - Google Patents

Film forming method

Info

Publication number
JPS62123711A
JPS62123711A JP26290085A JP26290085A JPS62123711A JP S62123711 A JPS62123711 A JP S62123711A JP 26290085 A JP26290085 A JP 26290085A JP 26290085 A JP26290085 A JP 26290085A JP S62123711 A JPS62123711 A JP S62123711A
Authority
JP
Japan
Prior art keywords
light
base material
film
mirrors
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26290085A
Other languages
Japanese (ja)
Inventor
Yasunori Ando
靖典 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP26290085A priority Critical patent/JPS62123711A/en
Publication of JPS62123711A publication Critical patent/JPS62123711A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the deposition speed of the film to be deposited on the surface of a base material by a method wherein a plurality of mirrors are provided on the circumferential part of the base material, a light is reflected by the mirrors, the light makes progress repeatedly along the surface of the base material, and a photochemical reaction is performed in the vicinity of the surface of the base material in a highly efficient manner. CONSTITUTION:When a film is going to be formed, the light 4 emitted from a light source 2 is introduced into a chamber 10 from the window 12 provided in the vacuum chamber 10, for example. The light 4 makes progress repeatedly in the vicinity of the surface of the base material along the surface by having the light 4 reflected from a plurality of plane mirrors. As a result, the number of the light 4 passing the part in the vicinity of the surface of the base material 6 can be increased markedly when compared with the method heretofore in use. Consequently, the decomposing reaction of the reactive gas molecule generated in the vicinity of the surface of the base material is increased, and the deposition speed of the film to be deposited on the surface of the base material can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光CVD法による膜形成方法に関し、特に
基材表面近傍での光化学反応を効率良く行わせる手段に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming a film by photo-CVD, and particularly to a means for efficiently carrying out a photochemical reaction near the surface of a substrate.

〔従来の技術〕[Conventional technology]

第3図および第4図は、それぞれ、従来の膜形成方法を
示す概略図である。光CVD法は、光源2として例えば
紫外レーザ(例えばKrFレーザ等)が用いられる。そ
して、基材6を収納し真空排気した真空容器(図示省略
)内に予め反応性ガスを導入し、その後光源2からの光
(この場合は紫外レーザ光)4を第3図のように基材6
と平行に、または第4図のように基材6の面を狙って照
射する。その際、照射された光4の光エネルギーを反応
性ガス分子が得て、分解反応を生ずる。あるいは、光エ
ネルギーにより基材6の表面が加熱され、この熱エネル
ギーにより吸着分子が分解反応を生ずる。その結果、基
材6の表面に反応性ガスの一部を成す原子から成る膜(
薄膜)が形成される。
FIGS. 3 and 4 are schematic diagrams showing conventional film forming methods, respectively. In the optical CVD method, for example, an ultraviolet laser (such as a KrF laser) is used as the light source 2. Then, a reactive gas is introduced in advance into a vacuum container (not shown) that houses the base material 6 and is evacuated, and then the light (in this case, ultraviolet laser light) 4 from the light source 2 is used as a base as shown in FIG. Material 6
The light is irradiated parallel to the surface of the base material 6, or as shown in FIG. At that time, the reactive gas molecules obtain the optical energy of the irradiated light 4, causing a decomposition reaction. Alternatively, the surface of the base material 6 is heated by light energy, and the adsorbed molecules undergo a decomposition reaction due to this thermal energy. As a result, a film (
A thin film) is formed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上記のような従来の方法においては、基材6
の表面近傍での光化学反応を効率良く行わせることはで
きず、そのため膜の堆積速度が著しく小さいという問題
がある。これは、光4に対する種々の気体分子の吸収係
数が著しく小さく、かつ減圧下での1回の光の通過では
光エネルギーの大半は気体分子に吸収されずに過ぎるか
らである。
However, in the conventional method as described above, the base material 6
There is a problem in that the photochemical reaction cannot be carried out efficiently near the surface of the film, and therefore the deposition rate of the film is extremely low. This is because the absorption coefficients of various gas molecules for the light 4 are extremely small, and in one pass of light under reduced pressure, most of the light energy is not absorbed by the gas molecules.

従って従来の方法で堆積速度を上げようとすると、光4
の強度を著しく増大させなければならず、そのようにし
ようとすると光a2等に別の問題が生じる。
Therefore, if you try to increase the deposition rate using the conventional method, the amount of light
It is necessary to significantly increase the intensity of the light a2, and if this is attempted, another problem arises for the light a2, etc.

そこでこの発明は、基材表面近傍での光化学反応を効率
良く行わせることができる膜形成方法を提供することを
目的とする。
Therefore, an object of the present invention is to provide a film forming method that can efficiently carry out a photochemical reaction near the surface of a base material.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の膜形成方法は、光CVD法により基材表面に
膜を形成する方法において、基材の周辺部に複数の鏡を
設け、光を当該鏡で反射させることによって基材表面に
沿って繰り返し進行させることを特徴とする。
The film forming method of the present invention is a method of forming a film on the surface of a substrate by a photo-CVD method, in which a plurality of mirrors are provided at the periphery of the substrate, and light is reflected by the mirrors to form a film along the surface of the substrate. It is characterized by repeated progress.

〔作用〕[Effect]

光を基材表面に沿って繰り返し進行させることによって
、基材表面近傍での反応性ガス分子の分解反応が増加す
る。即ち、光化学反応が効率良く行われる。
By repeatedly passing the light along the surface of the substrate, the decomposition reaction of reactive gas molecules near the surface of the substrate increases. That is, photochemical reactions are efficiently carried out.

〔実施例〕〔Example〕

第1図は、この発明に係る膜形成方法を実施する装置の
一例を示す概略横断面図である。この発明の方法は、従
来の第3図の方法に相当する。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for implementing the film forming method according to the present invention. The method of this invention corresponds to the conventional method shown in FIG.

真空容器10内に基材6を収納しており、当該基材6の
周辺部の適当箇所に複数の平面鏡8を内向きに配置して
いる。真空容器10内は、真空に排気されると共に、反
応性ガスが導入されるようになっている。
A base material 6 is housed in a vacuum container 10, and a plurality of plane mirrors 8 are arranged facing inward at appropriate locations around the base material 6. The inside of the vacuum container 10 is evacuated to a vacuum state, and a reactive gas is introduced therein.

膜形成に際しては、例えば真空容器10に設けた窓(例
えば石英窓)12から、光源2から出力された光4を真
空容器10内に導入して、当該光4を複数の平面鏡8で
反射させることによって基材6の表面近傍をその表面に
沿って(例えば平行に)繰り返し進行させる。
When forming a film, the light 4 output from the light source 2 is introduced into the vacuum container 10 through a window (for example, a quartz window) 12 provided in the vacuum container 10, and the light 4 is reflected by a plurality of plane mirrors 8. By doing this, the vicinity of the surface of the base material 6 is repeatedly advanced along the surface (for example, in parallel).

この場合、光源2としては、従来と同様に例えば、光4
として紫外レーザ光を出力する紫外レーザ、あるいは光
4として紫外光を出力する水銀ランプ等が採り得る。
In this case, as the light source 2, for example, the light 4
An ultraviolet laser that outputs ultraviolet laser light as the light 4 or a mercury lamp that outputs ultraviolet light as the light 4 can be used.

また光4の進行のさせ方や繰り返し回数等は、平面鏡8
の数や配置の仕方、更にはそれへの光4の入射のさせ方
等によって種々のものが採り得る。
In addition, the way the light 4 travels and the number of repetitions are determined by the plane mirror 8.
Various types can be adopted depending on the number and arrangement of the rays, and how the light 4 is incident on them.

上記のような方法によれば、光4が基材6の表面近傍を
通過する回数を、従来の1回の場合に比べて著しく増加
させることができる。その結果、基材6の表面近傍での
反応性ガス分子の分解反応が増加する。即ち、光化学反
応が効率良く行われる。これによって、低パワーの光4
の照射によっても大きな膜の堆積速度が得られる。
According to the method described above, the number of times the light 4 passes near the surface of the base material 6 can be significantly increased compared to the conventional case where it passes once. As a result, the decomposition reaction of reactive gas molecules near the surface of the base material 6 increases. That is, photochemical reactions are efficiently carried out. This allows low power light 4
A high film deposition rate can also be obtained by irradiation of .

更に、光4のルートを例えば図のように分散させること
によって基材6の表面上の光4の通過部の面積を広くす
ることもできるので、広範囲に亘って大きな堆積速度で
膜を形成することもできる。
Furthermore, by dispersing the route of the light 4 as shown in the figure, for example, the area of the passage of the light 4 on the surface of the base material 6 can be widened, so that a film can be formed over a wide range at a high deposition rate. You can also do that.

特にこのような方法によれば、光を走査する場合と違っ
て、光のパワー密度の低下が殆ど無く、かつ機構が簡単
であるという利点がある。
In particular, this method has the advantage that, unlike the case of scanning light, there is almost no reduction in the power density of light and the mechanism is simple.

尚、成膜の際には、ヒータ(図示省略)等で基材6を加
熱、例えば300〜700 ”C程度に加熱するのが好
ましい。そうすることによって、基材6の表面における
結晶成長を促進させることができるからである。
In addition, during film formation, it is preferable to heat the base material 6 with a heater (not shown) or the like, for example, to about 300 to 700"C. By doing so, crystal growth on the surface of the base material 6 is prevented. This is because it can be promoted.

また、成膜の際には、基材6を例えば図中矢印Aのよう
に(またはその逆に)回転させても良い。
Further, during film formation, the base material 6 may be rotated, for example, in the direction of arrow A in the figure (or vice versa).

そのようにすれば、膜質の均一性を向上させることがで
きる。
In this way, the uniformity of the film quality can be improved.

第2図は、この発明に係る膜形成方法を実施する装置の
他の例を示す概略平面図である。真空容器の図示は省略
している。第1図の実施例との相違点を主に説明すれば
、この実施例においては、基材6の両側に2枚の凹面鏡
14を、一方の凹面鏡14の表面が他方の凹面鏡14の
曲率半径の中心に来るように内向きに対向させている。
FIG. 2 is a schematic plan view showing another example of an apparatus for carrying out the film forming method according to the present invention. Illustration of the vacuum container is omitted. Mainly to explain the difference from the embodiment shown in FIG. 1, in this embodiment, two concave mirrors 14 are provided on both sides of the base material 6, and the surface of one concave mirror 14 has a radius of curvature of the other concave mirror 14. It is facing inward so that it is in the center.

膜形成に際しては、例えば一方の凹面鏡14に設けた切
欠き16を通して光4を導入し、その光を両方の凹面鏡
14で順次反射させることによって基材6の表面近傍を
その表面に沿って繰り返し進行させる。
When forming a film, for example, light 4 is introduced through a notch 16 provided in one of the concave mirrors 14, and the light is sequentially reflected by both concave mirrors 14 to repeatedly advance near the surface of the base material 6 along the surface. let

この場合も、凹面鏡14の曲率半径や両凹面鏡14の対
向距離、更にはそれへの光4の入射のさせ方等によって
、光4の進行のさせ方や繰り返し回数等を種々に選ぶこ
とができる。
In this case as well, the way the light 4 travels and the number of repetitions can be variously selected depending on the radius of curvature of the concave mirror 14, the facing distance between the biconcave mirrors 14, and how the light 4 is made incident thereon. .

また基材6の加熱、回転については第1図の場合と同様
である。
Further, heating and rotation of the base material 6 are the same as in the case of FIG. 1.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、基材表面近傍での光化
学反応が効率良く行われる。その結果、光のパワーを増
大させなくても基材表面への膜の堆積速度が向上する。
As described above, according to the present invention, the photochemical reaction near the surface of the base material is efficiently carried out. As a result, the rate of film deposition on the substrate surface is increased without increasing the power of light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る膜形成方法を実施する装置の
一例を示す概略横断面図である。第2図は、この発明に
係る膜形成方法を実施する装置の他の例を示す概略平面
図である。第3図および第4図は、それぞれ、従来の膜
形成方法を示す概略図である。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for implementing the film forming method according to the present invention. FIG. 2 is a schematic plan view showing another example of an apparatus for carrying out the film forming method according to the present invention. FIGS. 3 and 4 are schematic diagrams showing conventional film forming methods, respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)光CVD法により基材表面に膜を形成する方法に
おいて、基材の周辺部に複数の鏡を設け、光を当該鏡で
反射させることによって基材表面に沿って繰り返し進行
させることを特徴とする膜形成方法。
(1) In a method of forming a film on the surface of a substrate using the photo-CVD method, a plurality of mirrors are provided around the periphery of the substrate, and light is reflected by the mirrors so as to travel repeatedly along the surface of the substrate. Characteristic film formation method.
JP26290085A 1985-11-22 1985-11-22 Film forming method Pending JPS62123711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26290085A JPS62123711A (en) 1985-11-22 1985-11-22 Film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26290085A JPS62123711A (en) 1985-11-22 1985-11-22 Film forming method

Publications (1)

Publication Number Publication Date
JPS62123711A true JPS62123711A (en) 1987-06-05

Family

ID=17382172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26290085A Pending JPS62123711A (en) 1985-11-22 1985-11-22 Film forming method

Country Status (1)

Country Link
JP (1) JPS62123711A (en)

Similar Documents

Publication Publication Date Title
US4678536A (en) Method of photochemical surface treatment
US4716852A (en) Apparatus for thin film formation using photo-induced chemical reaction
JP2002517082A (en) Gas manifold and photochemistry for uniform gas distribution
EP0208966A1 (en) Apparatus for, and methods of, depositing a substance on a substrate
JPS62123711A (en) Film forming method
US5205870A (en) Vapor deposition apparatus
JPS63137174A (en) Device for forming functional deposited film by photochemical vapor growth method
JPS60128265A (en) Device for forming thin film in vapor phase
US4664057A (en) Photoprocessing apparatus including conical reflector
JPS59194425A (en) Photochemical vapor phase film forming apparatus
JPH0461074B2 (en)
JPS6012128A (en) Photochemical surface treating apparatus
JP2814998B2 (en) Method and apparatus for forming semiconductor element film
JPS61164640A (en) Optical cvd apparatus
JPS5961122A (en) Manufacture of semiconductor device
JPS62127472A (en) Apparatus for forming thin film
JPS614223A (en) Formation of bit pattern on thin-film device
JPS61196526A (en) Photochemical vapor deposition process and apparatus thereof
JPH1052636A (en) X-ray chemical reaction processing method
JPS6070722A (en) Laser cvd method and device thereof
JPS6152232B2 (en)
JPS61129814A (en) Manufacturing apparatus for semiconductor
JPS61248424A (en) Photochemical vapor deposition equipment
JPS61440A (en) Contamination preventing mechanism of light source in photo-reaction apparatus
JPS6273727A (en) Light exciting processor