JPH01123076A - Thin film forming method - Google Patents

Thin film forming method

Info

Publication number
JPH01123076A
JPH01123076A JP62279918A JP27991887A JPH01123076A JP H01123076 A JPH01123076 A JP H01123076A JP 62279918 A JP62279918 A JP 62279918A JP 27991887 A JP27991887 A JP 27991887A JP H01123076 A JPH01123076 A JP H01123076A
Authority
JP
Japan
Prior art keywords
thin film
gas
ultraviolet light
substrate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62279918A
Other languages
Japanese (ja)
Inventor
Toshinori Yagi
俊憲 八木
Yoshiyuki Goto
令幸 後藤
Haruhiko Nagai
治彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62279918A priority Critical patent/JPH01123076A/en
Publication of JPH01123076A publication Critical patent/JPH01123076A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:To form a thin film contg. impurities at a lesser extent with good adhesiveness by decomposing the reaction gas of a main material by UV light to form an active seed and decomposing a reaction gas, which is hardly decomposed by UV light, by X-rays, then bringing both into reaction with each other on a substrate. CONSTITUTION:The UV light is irradiated from a UV light generator 1 through a condenser lens 3 onto the substrate 5 in a reaction vessel 4. The reaction gas of the main material supplied from a reaction gas supplying device 8 is decomposed by the UV light to form the 1st active seed. The gaseous hydrogen or the like which is hardly decomposed by the UV light is introduced from a reaction gas supplying device 13 into a radical generator 15 where the hydrogen molecules in the reaction gas are excited by the X-rays generated from an X-ray generator 16 to form the 2nd active seed. Both the active seeds are brought into reaction on the substrate 5 to form the thin film such as diamond- like hard carbon film at a high speed on the substrate 5. The graphitic carbon deposited simultaneously is gasified by reaction with the hydrogen radicals and is thereby removed from the thin film. As a result, the high-quality thin film is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野j この発明は基板上に硬質炭:l/I膜等の薄膜を形成す
る薄膜形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thin film forming method for forming a thin film such as a hard carbon:l/I film on a substrate.

〔従来の技術J 従来のこの種の薄膜形成方法としては、例えば光化学気
相反応分利用する方法がある。第2図は、例えば特開昭
60−112697号公報にて公開された、前記従来方
法を実施するための装置のat、を示す模式的説明図で
ある。図において(1)は紫外光発生装置、(2)は該
紫外光発生装置(1)にて発せられた紫外光の光路を変
更するための反射鏡、(3)は該反射鏡(2)にて光路
変更された後の紫外光のエネルギ密度を調整するだめの
集光レンズである。また(4)は硬質炭素膜を形成すべ
き基板(5)を内部に配置する反応容器であり、該反応
容器(4)には、該容器(4)内へ反応ガスを供給する
だめの反応ガス供給装置(8)及び該容器(4)内から
反応ガスを系外へ排出するための排気装置(9)が付設
されている上、前記基板(5)の中央部に相当する部位
に11J記集光レンズ(3)Kてエネルギ密度が調整さ
れた後の紫外光を通過させて該容器(4)内へ導入する
ための光入射窓(10)が設けられ、しかも前記基板(
5)の下方に温度コントローラ(7)にて温度制御され
た基板(5)加熱用のヒータ(6)が配置されている。
[Prior Art J] As a conventional method for forming this type of thin film, there is, for example, a method using a photochemical vapor phase reaction. FIG. 2 is a schematic explanatory diagram showing an apparatus for carrying out the conventional method disclosed, for example, in Japanese Patent Laid-Open Publication No. 112697/1983. In the figure, (1) is an ultraviolet light generator, (2) is a reflector for changing the optical path of the ultraviolet light emitted by the ultraviolet light generator (1), and (3) is the reflector (2). This is a condensing lens used to adjust the energy density of ultraviolet light after the optical path has been changed at . Further, (4) is a reaction vessel in which a substrate (5) on which a hard carbon film is to be formed is disposed, and the reaction vessel (4) includes a reactor for supplying a reaction gas into the vessel (4). A gas supply device (8) and an exhaust device (9) for discharging the reaction gas from inside the container (4) to the outside of the system are attached. A light entrance window (10) is provided for passing the ultraviolet light after the energy density has been adjusted by the condensing lens (3) and introducing it into the container (4), and
A heater (6) for heating the substrate (5) whose temperature is controlled by a temperature controller (7) is arranged below the substrate (5).

かかる装置を用いて基板(5)上にダイヤモンド状の硬
質炭素からなる薄膜(硬質炭素膜)を形成する場合は、
紫外光発生装置(1)にて発せられた紫外光(及び真空
紫外光)、例えばアルゴンソツ素エキシマレーザ光が反
射鏡(2)にて光路変更せしめられた後、集光レンズ(
3)及び光入射窓(10)を経由せしめられて基板(5
)上KJll!光せしめられる。そして前記反応容器(
4)内へは反応ガス供給装置(8)によって前記膜の主
原料となる反応ガス例えば炭化水素ガスが供給されるが
、該反応ガスは前記紫外光によって光分解されて活性状
態の炭素原子が生成し、これが基板(5)上に堆積する
ことによって基板(5)上に前記硬質炭素膜が形成され
る。なお、基板(5)上に形成される硬質炭素膜の品質
は基板(5)の温度によって大きく左右されるので前記
ヒータ(6)を用いて基板(5)は最適温度に加熱され
る。また使用後の反応ガスは排気装置(9)によって排
気される。
When forming a diamond-shaped thin film of hard carbon (hard carbon film) on the substrate (5) using such an apparatus,
After the ultraviolet light (and vacuum ultraviolet light) emitted by the ultraviolet light generator (1), for example, the argon excimer laser beam, is changed in its optical path by the reflecting mirror (2), it is passed through the condenser lens (
3) and the substrate (5) through the light entrance window (10).
) Upper KJll! It is made to shine. And the reaction vessel (
4) A reactive gas, for example, a hydrocarbon gas, which is the main raw material of the film, is supplied into the interior by the reactive gas supply device (8), and the reactive gas is photolyzed by the ultraviolet light and carbon atoms in an active state are The hard carbon film is formed on the substrate (5) by being deposited on the substrate (5). Note that since the quality of the hard carbon film formed on the substrate (5) is greatly influenced by the temperature of the substrate (5), the substrate (5) is heated to an optimum temperature using the heater (6). Further, the used reaction gas is exhausted by an exhaust device (9).

〔発明が解決しようとする問題点J 然るに、第2図に示す装置を用いて基&(5)上に薄膜
を形成する場合は、炭化水素系ガスに紫外光を照射して
基板(5)上に堆積させるべき炭素原子を遊離させるも
のであるため、所望のダイヤモンド状炭素のみならず不
必要なグツファイト状炭素の析出も同時に記こり、所望
の膜質が得られないという問題点があった。
[Problem to be Solved by the Invention J] However, when forming a thin film on the substrate (5) using the apparatus shown in FIG. Since the carbon atoms to be deposited on the film are liberated, not only the desired diamond-like carbon but also unnecessary gutphite-like carbon are deposited at the same time, resulting in the problem that the desired film quality cannot be obtained.

この発明は上記のような問題点を解消するためになされ
たもので堆積速度の高速化が図れ、しかも得られる薄膜
中に存在する不純物の低減が図れるため高品質な薄膜形
成が可能となる薄膜形成方法を提供することを目的とす
る。
This invention was made to solve the above-mentioned problems, and it is possible to increase the deposition rate and reduce impurities present in the resulting thin film, thereby making it possible to form a high-quality thin film. The purpose is to provide a forming method.

c問題点を解決するための手段」 この発明に係る#膜形成方法は、2種以上の反応ガスの
うち薄膜の主原料となる反応ガスを基板上で紫外光を用
いて分解する一方、紫外光では分解が困難な反応ガスを
X線を用いて分解した上で基板上へ導き、更に該基板上
にて得られた2種以上の活性種を反応させることを特徴
としている。
The # film forming method according to the present invention decomposes a reactive gas, which is the main raw material of a thin film, out of two or more reactive gases on a substrate using ultraviolet light. The method is characterized in that a reactive gas that is difficult to decompose with light is decomposed using X-rays and then introduced onto a substrate, and then two or more active species obtained on the substrate are reacted.

そして紫外光を用いた分解によって得られた第1活性櫨
を基板上に堆積させて薄膜を形成するものである。
Then, the first activated oak obtained by decomposition using ultraviolet light is deposited on the substrate to form a thin film.

〔作用J この発明における薄膜形成方法を用いる場合は、前記両
活性種が基板上にて反応することとなる結果、前記第1
活性種の基板への堆積が促進され、基板上への薄膜形成
が高速にて行われるようになる。また前記第2活性種が
薄膜中の不純成分と反応して該不純成分が除去される結
果、基板上には不純成分の少ない高品質な薄膜が形成さ
れることとなる。
[Operation J] When using the thin film forming method of the present invention, both of the active species react on the substrate, and as a result, the first
Deposition of active species on the substrate is promoted, and thin film formation on the substrate can be performed at high speed. Furthermore, the second active species reacts with impurity components in the thin film and removes the impurity components, resulting in a high quality thin film containing few impurity components being formed on the substrate.

〔実施例) 以下この発明を図面に基づいて詳述する。第1図はこの
発明の一実施例による薄膜形成方法に使用する装置の構
成を示す模式的説明図である。
[Example] The present invention will be described in detail below based on the drawings. FIG. 1 is a schematic explanatory diagram showing the configuration of an apparatus used in a thin film forming method according to an embodiment of the present invention.

図において、(1)は紫外光発生装置、(3)は該紫外
光発生装置(1)にて発せられた紫外光のエネルギー密
度を調整するための集光レンズである。また(4)は、
硬質炭素膜を形成すべき基板(5)を内部に配置する反
応容器であり、該反応容器(4)内の基板(5)の下方
には温度コントローフ(7)にて湿度制御された基板加
熱用のヒータ(6)が配置されている。また(10)は
、前記集光レンズ(3)にてエネルギー密度が調整され
た後の紫外光を通過させて前記反応容器(4)内へ導入
するために該容器側部に設けられた光入射窓であり、該
光入射窓(10)より反応容器(4)内へ導入された紫
外光は、反応生成物の光入射窓(10)方向への拡散を
防止するだめの2リツ) (24)を経由した後、基板
(5)上に照射され、然る後に反応容器(4)の光入射
窓(10)設置位置と対向する位置に&けられた紫外光
用ダンパー(21)にて匙理されるようになっている。
In the figure, (1) is an ultraviolet light generator, and (3) is a condenser lens for adjusting the energy density of the ultraviolet light emitted by the ultraviolet light generator (1). Also, (4) is
This is a reaction vessel in which a substrate (5) on which a hard carbon film is to be formed is placed, and a substrate heating device with humidity controlled by a temperature controller (7) is placed below the substrate (5) in the reaction vessel (4). A heater (6) for this purpose is arranged. In addition, (10) is a light beam provided on the side of the reaction vessel (4) for passing the ultraviolet light whose energy density has been adjusted by the condensing lens (3) and introducing the ultraviolet light into the reaction vessel (4). The ultraviolet light introduced into the reaction vessel (4) from the light entrance window (10) is an entrance window, and the ultraviolet light is prevented from diffusing the reaction products in the direction of the light entrance window (10). 24), the ultraviolet light is irradiated onto the substrate (5), and then the ultraviolet light damper (21) is placed at a position opposite to the light incidence window (10) of the reaction vessel (4). It is supposed to be treated with a spoon.

また(8)は、反応容器(4)内へ薄膜の主原料となる
反応ガスを供給するだめの反応ガス供給装置であり、該
反応ガス供給装置(8)より供給される前記反応ガスは
流量コントローラ(11)にて流量調整された後、前記
反応容!44(4)内の基板(5)の斜上方に配された
ノズ/l/(12)より基板(5)上へ噴射されるよう
になっている。また(9)は、反応容器(4)内から反
応ガスを排気するための反応装置でるし、該排気装置(
9)にて反応容器(4)内から排気された反応ガスはガ
ス匙理装置(20)にて適宜匙理が施された後、系外へ
排出されるようになっている。また(13)は、反応を
活性化するための原料となる反応ガス供給装置であり、
該反応ガス供給装置(13)より供給される反応ガスは
、流量コントローラ(14)にて流量調整された後、前
記反応容器(4)に直結されたフジカル発生装置f (
15)に送入され、X線発生装置(16)から発生する
X線によって、前記反応ガスは分解され活性なフジ力p
となり、前記基板(5)上に導入される。また(17)
は前記光入射窓(10)内面に反応生成物が付着するの
を防止するだめのバージガスを前記反応容器(4)内へ
供給するだめのパージガス供給装置であり、該パージガ
ス供給装置(17)より供給される前記パージガスは、
流量コントローラ(18)にて流量調整された後、前記
反応容器(4)内へ(詳しくは前記スリット(24)の
上流側へ)供給されるようになっている。また(19)
は前記基板(5)上における表面反応を活性化させるた
めの赤外光発生装置であり、該赤外光発生装置(19)
より発する赤外光は前記反応容器(4)に設置された赤
外光透過窓(22)を介して前記反応容器(4)内に導
入され前記基板(5)上に照射される。そして前記基板
(5)上で反射された赤外光は反応容器(4)外に設け
られた赤外光用ダンパー(23)により処理され、る。
Further, (8) is a reaction gas supply device for supplying a reaction gas, which is the main raw material of the thin film, into the reaction vessel (4), and the reaction gas supplied from the reaction gas supply device (8) has a flow rate. After the flow rate is adjusted by the controller (11), the reaction volume! The liquid is sprayed onto the substrate (5) from a nozzle /l/(12) disposed obliquely above the substrate (5) in 44(4). Further, (9) is a reaction device for exhausting the reaction gas from inside the reaction vessel (4), and the exhaust device (
The reaction gas exhausted from the reaction vessel (4) in step 9) is appropriately processed in a gas processing device (20) and then discharged to the outside of the system. Further, (13) is a reaction gas supply device that serves as a raw material for activating the reaction,
The reaction gas supplied from the reaction gas supply device (13) is adjusted in flow rate by a flow rate controller (14), and then transferred to the physical generator f (
15), the reaction gas is decomposed by the X-rays generated from the X-ray generator (16), and the active Fuji force p
and is introduced onto the substrate (5). Also (17)
is a purge gas supply device for supplying a purge gas into the reaction vessel (4) to prevent reaction products from adhering to the inner surface of the light entrance window (10), and from the purge gas supply device (17) The purge gas supplied is
After the flow rate is adjusted by a flow rate controller (18), it is supplied into the reaction vessel (4) (specifically, to the upstream side of the slit (24)). Also (19)
is an infrared light generating device for activating a surface reaction on the substrate (5), and the infrared light generating device (19)
The infrared light emitted from the reaction vessel (4) is introduced into the reaction vessel (4) through an infrared light transmitting window (22) installed in the reaction vessel (4), and is irradiated onto the substrate (5). The infrared light reflected on the substrate (5) is processed by an infrared light damper (23) provided outside the reaction vessel (4).

かかる装置を用いて反応容器(4)内の基板(5)上に
ダイヤモンド状の硬質炭素からなる薄膜を形成する場合
、紫外光発生装置(1)から発せられた紫外光(及び真
空紫外光)、例えばアルゴンフッ素エキシマレーザ光が
集光レンズ(3)にて集光された後、光入射窓(10)
を経て反応容器(4)内の基板(5)上に集光照射され
る。そして該基板(5)上には、前記反応ガス供給装置
(8)より供給される薄膜の主原料となる反応ガス、例
えばアセチレン、エチレン、メタン、プロパン、アセト
ン、メチlし7/L/コール、エチルアルコ−μ等の炭
化水素系ガス又はそれらの混合ガスが流量コントローラ
(11)にて一定流量に調整されつつノズ/’ (12
)より噴射供給されるが、該反応ガスは前記紫外光によ
って分解され活性状態の炭素原′f(第1活性種)が生
成する。一方、前記紫外光による分解が困難な反応ガス
、具体的には水素ガスが反応ガス供給装置(13)から
供給され流量コントローラ(14)にて一定流量に調整
されつつラジカル発生装置(15)内へ導入されるが、
該ラジカル発生装置 (15)内ではX線発生装置(1
6)より発生するX線によって前記反応ガス中の水素分
子は、励起され、活性状態の水米原子即ち水素ラジオ/
I/(第2活性種)が多量に生成する。
When forming a thin film of diamond-shaped hard carbon on the substrate (5) in the reaction vessel (4) using such an apparatus, ultraviolet light (and vacuum ultraviolet light) emitted from the ultraviolet light generator (1) is used. For example, after the argon fluorine excimer laser light is focused by the condenser lens (3), the light entrance window (10)
The concentrated light is irradiated onto the substrate (5) in the reaction vessel (4) through the irradiation. Then, on the substrate (5), a reactive gas, which is the main raw material of the thin film, supplied from the reactive gas supply device (8), such as acetylene, ethylene, methane, propane, acetone, methyl, etc. , ethyl alcohol-μ, etc., or a mixture thereof is adjusted to a constant flow rate by a flow controller (11), and the nozzle /' (12
), but the reaction gas is decomposed by the ultraviolet light to produce active carbon atoms 'f (first active species). On the other hand, a reactive gas that is difficult to decompose by ultraviolet light, specifically hydrogen gas, is supplied from the reactive gas supply device (13) and is regulated at a constant flow rate by the flow rate controller (14) inside the radical generator (15). It will be introduced into
In the radical generator (15), an X-ray generator (1
6) The hydrogen molecules in the reaction gas are excited by the X-rays generated, and hydrogen atoms in an active state, that is, hydrogen radio/
A large amount of I/ (second active species) is produced.

そして該水素ラジカルは前記基板(5)上へ導入される
。然して基板(5)上には紫外光によって生成される活
性状態の炭素峨子と@記X線発生装置(16)より発す
るX線によって生成され基板(5)上へ導かれろ水素ラ
ジカルとが存在することになり、該基板(5)上で両者
が活発に反応し、該基板(5)上にはダイヤモンド状の
硬質炭素膜からなる薄膜が高速度にて形成される。また
同時に基板(5)上に析出するグラファイト状の炭素は
前記水素フジカルと反応してガス化し、前記薄膜から除
去される結果、得られる#膜は極めて高品質なものとな
る。なお前記薄膜の品質は基板(5)の温度によっても
大きく左右するため、ヒータ(6)を温度コントロー?
 (7) K テ′MJ御して基板(5)を所定温度I
CS持する。
The hydrogen radicals are then introduced onto the substrate (5). However, on the substrate (5), there are active carbon glucides generated by ultraviolet light and hydrogen radicals generated by the X-rays emitted from the X-ray generator (16) and guided onto the substrate (5). As a result, the two react actively on the substrate (5), and a thin diamond-shaped hard carbon film is formed on the substrate (5) at a high speed. At the same time, the graphite-like carbon deposited on the substrate (5) reacts with the hydrogen radicals, gasifies, and is removed from the thin film, resulting in the resulting # film having extremely high quality. Note that the quality of the thin film is greatly affected by the temperature of the substrate (5), so the temperature of the heater (6) may be controlled.
(7) Control the board (5) to a predetermined temperature I
I have CS.

また反応容器(4)内の反応生成物が光入射窓(10)
に付着すると、該光入射窓(10)における紫外光の透
過率が低下するため、前記反応生成物の光入射窓(10
)へのけ警を防止すべく、パージガス供給装置(17)
から供給されるパージガスが流量コントローラ(18)
にて一定流量に調整されつつ反応容器(4)内へ導入さ
れ、光入射窓(10)の内面に吹き付けられるようにな
っている。なお、上述のパージガスによって前記反応ガ
スが仏教されるという弊害が生じ得るが、該弊害は、反
応容器(4)内の適宜位置に設けられた前記スリブ) 
(24)によって可及的に少ないものとされる。
In addition, the reaction product in the reaction vessel (4) is exposed to the light entrance window (10).
If the reaction product adheres to the light entrance window (10), the transmittance of ultraviolet light in the light entrance window (10) will decrease.
), the purge gas supply device (17)
The purge gas supplied from the flow controller (18)
The liquid is introduced into the reaction vessel (4) while being adjusted to a constant flow rate, and is sprayed onto the inner surface of the light entrance window (10). It should be noted that the above-mentioned purge gas may have the disadvantage that the reaction gas is distorted;
(24) makes it as small as possible.

また基板(5)表面に2いて前記活性状態の炭素原子お
よび水素ラジカルとの反応を活性化するため、赤外光発
生装置(19)から発する赤外光たとえば炭酸ガスレー
ザ光は1反応容器(4)に設置された赤外光透過窓(2
2)を介して反応容器(4)内に導入され、基板(5)
表面に照射される。この結果、基板(5)表面における
反応が活性化され付着力の高い薄膜を得ることができる
In addition, in order to activate the reaction with the activated carbon atoms and hydrogen radicals on the surface of the substrate (5), infrared light, such as carbon dioxide laser light, emitted from the infrared light generator (19) is applied to one reaction vessel (4 ) installed infrared light transmitting window (2
2) into the reaction vessel (4), and the substrate (5)
irradiated onto the surface. As a result, the reaction on the surface of the substrate (5) is activated and a thin film with high adhesion can be obtained.

また上述の装置においては、反応容器(4)から出る紫
外光が紫外光用ダンパー(21)によって処理され、ま
た赤外光が赤外光用ダンパー(23)によって処理され
る。一方、使用後に排気装置(9)によって排気される
反応ガスがガス処理装置(20)によって処理されるな
ど、安全対策が施されている。
Further, in the above-mentioned apparatus, ultraviolet light emitted from the reaction vessel (4) is processed by the ultraviolet light damper (21), and infrared light is processed by the infrared light damper (23). On the other hand, safety measures are taken such that the reaction gas exhausted by the exhaust device (9) after use is treated by the gas treatment device (20).

なお、前記薄膜の主原料となる反応ガスを分解するのに
用いる紫外光は、前記アルゴンフッ素エキシマレーザを
用いて得る以外にも、クリプトンフッ素エキシマレーザ
、フッ素エキシマレーザ、アルゴンエキクマレーザ、ク
リプトンエキシマレーザ等のレーザを用いて得ることが
できる。また高出力YAGレーザの高調波又は色素レー
ザの高調波ガラスレーザの高調波等を用いることによっ
ても得ることができる。
The ultraviolet light used to decompose the reactive gas, which is the main raw material of the thin film, can be obtained not only by using the argon fluorine excimer laser but also by krypton fluorine excimer laser, fluorine excimer laser, argon excimer laser, and krypton excimer laser. It can be obtained using a laser such as a laser. It can also be obtained by using harmonics of a high-power YAG laser, harmonics of a dye laser, harmonics of a glass laser, or the like.

また基板表面を活性化するために用いる赤外光は、前記
炭酸ガスレーザ光を用いて得る以外にも、高出力YAG
レーザ、ガラスレーザ、赤外ランプ、ハロゲンランプ、
クリプトンランプ等のランプを用いて得ることができる
The infrared light used to activate the substrate surface can be obtained not only by using the carbon dioxide laser light but also by using high-power YAG laser light.
Lasers, glass lasers, infrared lamps, halogen lamps,
It can be obtained using a lamp such as a krypton lamp.

また前記?J膜の主原料となる反応ガスとしては、前記
炭化水素系ガス以外に、四塩化炭素、塩化メチル、りa
ロホルム、塩化ビニル、クロロメタン等の塩素系炭化物
のガス若しくはそれらの混合ガス、又ハメチルアミン、
ジメfルアミン、トリメチルアミン等のアミン系炭化物
のガス若しくはそれらの混合ガス等が考えられる。
Said again? In addition to the above-mentioned hydrocarbon gases, the reactive gases that are the main raw materials for the J membrane include carbon tetrachloride, methyl chloride, and ria.
Chlorinated carbide gases such as roform, vinyl chloride, chloromethane, or mixed gases thereof, and hamethylamine,
Possible gases include amine-based carbide gases such as dimefylamine and trimethylamine, or mixed gases thereof.

〔発明の効果] 以上のようにこの発明によれば、2種以上の反応ガスの
うち薄膜の主原料となる反応ガスを基板上で紫外光を用
いて分解し第1活性種を生成する一方、紫外光では分解
が困難な反応ガスをX線を用いて分解し、第2活性種を
生成した上で基板上へ導き、これら両活性種を反応させ
つつ、基板上へ第1活性種を堆積させるようKしたので
基板上への薄膜形成が高速にて行なわれ、基板上には不
純成分の少ない高品質な薄膜が基板と密着性よく形成さ
れることとなる。
[Effects of the Invention] As described above, according to the present invention, the reaction gas that is the main raw material of the thin film among two or more types of reaction gases is decomposed on the substrate using ultraviolet light, and the first active species is generated. , a reactive gas that is difficult to decompose with ultraviolet light is decomposed using X-rays, a second active species is generated, and the second active species is introduced onto the substrate, and while these two active species are reacted, the first active species is transferred onto the substrate. Since the K was used for deposition, the thin film can be formed on the substrate at high speed, and a high quality thin film with few impurity components is formed on the substrate with good adhesion to the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による薄膜形成方法に用い
る装置を示す模式的説明図、及び第2図は従来の薄膜形
成方法に用いる装置を示す模式的説明図である。 (1)・・・紫外光発生装置、(4)・・・反応容器、
(5)・・・基板、(8)・・・反応ガス供給装置、(
13)・・・反応ガス供給装置、(15)・・・ラジカ
ル発生装置、(16)・・・X線発生装置、(19)・
・・赤外光発生装置 なお、図中、同一符号は同一、又は相当部分を示す。 l゛v外充企生昶1   /f:ラジカル発生装置4、
i売容器    /A : X線受主装置j : K 
*i         /9 :4F) flit@z
と/j:Z+之ηブ働例U 第2図
FIG. 1 is a schematic explanatory diagram showing an apparatus used in a thin film forming method according to an embodiment of the present invention, and FIG. 2 is a schematic explanatory diagram showing an apparatus used in a conventional thin film forming method. (1)...Ultraviolet light generator, (4)...Reaction container,
(5)...Substrate, (8)...Reaction gas supply device, (
13) Reaction gas supply device, (15) Radical generator, (16) X-ray generator, (19)
...Infrared light generator In the figures, the same reference numerals indicate the same or equivalent parts. l゛v External Planning Show 1 /f: Radical generator 4,
i Sales container /A: X-ray receiver device j: K
*i/9:4F) flit@z
and/j: Z+之η example U Figure 2

Claims (1)

【特許請求の範囲】 (1)反応容器へ2種以上の反応ガスを供給し、前記反
応ガスのうちの薄膜の主原料となる反応ガスを基板上に
て紫外光を用いて分解して第1活性種を生成させる一方
、前記反応ガスのうちの紫外光による分解が困難な反応
ガスをX線を用いて分解して第2種活性種を生成させた
後、該第2活性種を基板上へ導き、前記両活性種を反応
させつつ基板上に前記第1活性種を堆積させて薄膜を形
成することを特徴とする薄膜形成方法。 (2)薄膜の主原料となる反応ガスを分解するのに用い
る紫外光は、アルゴンフッ素エキシマレーザ、クリプト
ンフッ素エキシマレーザ、フッ素エキシマレーザ、アル
ゴンエキシマレーザ、クリプトンエキシマレーザのいず
れかのエキシマレーザを用いることによつて得られた紫
外光である特許請求の範囲第1項記載の薄膜形成方法。 (3)薄膜の主原料となる反応ガスを分解するのに用い
る紫外光は、高出力YAGレーザの高調波を用いること
によつて得られた紫外光である特許請求の範囲第1項記
載の薄膜形成方法。 (4)薄膜の主原料となる反応ガスを分解するのに用い
る紫外光は、色素レーザの高調波を用いることによって
得られた紫外光である特許請求の範囲第1項記載の薄膜
形成方法。(5)薄膜の主原料となる反応ガスを分解す
るために用いる紫外光は、ガラスレーザの高調波を用い
ることによつて得られた紫外光である特許請求の範囲第
1項記載の薄膜形成方法。 (6)基板表面に赤外光を照射し、上記基板表面を活性
化することを特徴とする特許請求の範囲第1項ないし第
5項のいずれかに記載の薄膜形成方法。 (7)基板表面を活性化させるための赤外光は、炭酸ガ
スレーザを用いることによつて得られた赤外光であるこ
とを特徴とする特許請求の範囲第6項記載の薄膜形成方
法。 (8)基板表面を活性化させるための赤外光は、高出力
YAGレーザを用いることによつて得られた赤外光であ
ることを特徴とする特許請求の範囲第6項記載の薄膜形
成方法。 (9)基板表面を活性化させるための赤外光は、ガラス
レーザを用いることによって得られた赤外光であること
を特徴とする特許請求の範囲第6項記載の薄膜形成方法
。 (10)基板表面を活性化させるための赤外光は、赤外
ランプ、ハロゲンランプ、クリプトンランプのいずれか
のランプを用いることによって得られた赤外光である特
許請求の範囲第6項記載の薄膜形成方法。 (11)2種以上の反応ガスが炭化水素系ガスと水素ガ
スとからなり、炭化水素系ガスを紫外光を用いて分解す
る一方、水素ガスをX線を用いて分解し、基板上に硬質
炭素膜を形成する特許請求の範囲第1項ないし第10項
のいずれかに記載の薄膜形成方法。 (12)炭化水素系ガスがアセチレン、エチレン、メタ
ン、プロパン、アセトン、メチルアルコール及びエチル
アルコールのうちのいずれかのガス又はそれらから選ば
れた複数種のガスの混合ガスである特許請求の範囲第1
1項記載の薄膜形成方法。 (13)2種以上の反応ガスが塩素系炭化物のガスと水
素ガスとからなり、塩素系炭化物のガスを紫外光を用い
て分解する一方、水素ガスをX線を用いて分解し、基板
上に硬質炭素膜を形成する特許請求の範囲第1項ないし
第10項のいずれかに記載の薄膜形成方法。(14)塩
素系炭化物のガスが四塩化炭素、塩化メチル、クロロホ
ルム、塩化ビニル及びクロロメタンのうちのいずれかの
ガス又はそれらから選ばれた複数種のガスの混合ガスで
ある特許請求の範囲第13項記載の薄膜形成方法。 (15)2種以上の反応ガスがアミン系炭化物のガスと
水素ガスとからなり、アミン系炭化物のガスを紫外光を
用いて分解する一方、水素ガスをX線を用いて分解し、
基板上に硬質炭素膜を形成する特許請求の範囲第1項な
いし第10項のいずれかに記載の薄膜形成方法。 (16)アミン系炭化物のガスがメチルアミン、ジメチ
ルアミン及びトリメチルアミンのうちのいずれかのガス
又はそれらから選ばれた複数種のガスの混合ガスである
特許請求の範囲第15項記載の薄膜形成方法。
[Scope of Claims] (1) Two or more types of reaction gases are supplied to a reaction vessel, and among the reaction gases, the reaction gas that is the main raw material for the thin film is decomposed on the substrate using ultraviolet light. While generating one active species, a reactive gas that is difficult to decompose with ultraviolet light among the reactive gases is decomposed using X-rays to generate a second active species, and then the second active species is attached to a substrate. 1. A method for forming a thin film, comprising depositing the first active species on a substrate while causing both active species to react with each other to form a thin film. (2) The ultraviolet light used to decompose the reactive gas, which is the main raw material of the thin film, is an excimer laser such as argon fluorine excimer laser, krypton fluorine excimer laser, fluorine excimer laser, argon excimer laser, or krypton excimer laser. The method of forming a thin film according to claim 1, wherein the ultraviolet light is obtained by: (3) The ultraviolet light used to decompose the reactive gas that is the main raw material of the thin film is ultraviolet light obtained by using harmonics of a high-power YAG laser. Thin film formation method. (4) The thin film forming method according to claim 1, wherein the ultraviolet light used to decompose the reactive gas that is the main raw material of the thin film is ultraviolet light obtained by using harmonics of a dye laser. (5) Thin film formation according to claim 1, wherein the ultraviolet light used to decompose the reactive gas that is the main raw material of the thin film is ultraviolet light obtained by using harmonics of a glass laser. Method. (6) The thin film forming method according to any one of claims 1 to 5, characterized in that the substrate surface is activated by irradiating infrared light onto the substrate surface. (7) The thin film forming method according to claim 6, wherein the infrared light for activating the substrate surface is infrared light obtained by using a carbon dioxide laser. (8) Thin film formation according to claim 6, wherein the infrared light for activating the substrate surface is infrared light obtained by using a high-power YAG laser. Method. (9) The thin film forming method according to claim 6, wherein the infrared light for activating the substrate surface is infrared light obtained by using a glass laser. (10) The infrared light for activating the substrate surface is infrared light obtained by using any one of an infrared lamp, a halogen lamp, and a krypton lamp. thin film formation method. (11) The two or more reaction gases consist of a hydrocarbon gas and a hydrogen gas, and while the hydrocarbon gas is decomposed using ultraviolet light, the hydrogen gas is decomposed using A thin film forming method according to any one of claims 1 to 10, which forms a carbon film. (12) Claim 1, wherein the hydrocarbon gas is any one of acetylene, ethylene, methane, propane, acetone, methyl alcohol, and ethyl alcohol, or a mixture of multiple gases selected from these. 1
The method for forming a thin film according to item 1. (13) The two or more reaction gases are composed of chlorine-based carbide gas and hydrogen gas, and while the chlorine-based carbide gas is decomposed using ultraviolet light, the hydrogen gas is decomposed using X-rays, and the A thin film forming method according to any one of claims 1 to 10, wherein a hard carbon film is formed on a thin film. (14) Claim 1, wherein the chlorine-based carbide gas is any one of carbon tetrachloride, methyl chloride, chloroform, vinyl chloride, and chloromethane, or a mixture of multiple gases selected from them. The method for forming a thin film according to item 13. (15) the two or more reactive gases are composed of an amine-based carbide gas and hydrogen gas, the amine-based carbide gas is decomposed using ultraviolet light, and the hydrogen gas is decomposed using X-rays;
A thin film forming method according to any one of claims 1 to 10, which comprises forming a hard carbon film on a substrate. (16) The thin film forming method according to claim 15, wherein the amine-based carbide gas is any one of methylamine, dimethylamine, and trimethylamine, or a mixed gas of multiple types of gases selected from them. .
JP62279918A 1987-11-05 1987-11-05 Thin film forming method Pending JPH01123076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62279918A JPH01123076A (en) 1987-11-05 1987-11-05 Thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279918A JPH01123076A (en) 1987-11-05 1987-11-05 Thin film forming method

Publications (1)

Publication Number Publication Date
JPH01123076A true JPH01123076A (en) 1989-05-16

Family

ID=17617724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279918A Pending JPH01123076A (en) 1987-11-05 1987-11-05 Thin film forming method

Country Status (1)

Country Link
JP (1) JPH01123076A (en)

Similar Documents

Publication Publication Date Title
US5154945A (en) Methods using lasers to produce deposition of diamond thin films on substrates
JPH01123076A (en) Thin film forming method
JPS63137174A (en) Device for forming functional deposited film by photochemical vapor growth method
JPS6328865A (en) Hard carbon film manufacturing device
JPH0480116B2 (en)
JPH0351675B2 (en)
JPH0217940A (en) Formation of membrane
JPS63260132A (en) Surface modification apparatus
JPS60209248A (en) Photochemical reaction device
JPS59208065A (en) Depositing method of metal by laser
JPH01147071A (en) Formation of thin film
JPH01172576A (en) Method for heating substrate
JPH01244609A (en) Production of semiconductor thin film
JPH03120370A (en) Photo-cvd device
JPS6328864A (en) Method for synthesizing hard carbon film
JPS60236215A (en) Laser cvd method
JPS61224318A (en) Device and method for formation of vapor-phase thin film
JPH06199595A (en) Method for synthesizing diamond
JPS6318077A (en) Method and apparatus for synthesizing hard carbon film
JPS6052013A (en) Photo-cvd device
JPS61164640A (en) Optical cvd apparatus
JPS6156280A (en) Film forming method
JPS6274078A (en) Vapor growth device
JPH03271372A (en) Method for forming oxide thin film using excimer laser
JPS5940523A (en) Manufacture of semiconductor thin film