JPH03120036A - Manufacture of fiber-reinforced composite material - Google Patents

Manufacture of fiber-reinforced composite material

Info

Publication number
JPH03120036A
JPH03120036A JP1259130A JP25913089A JPH03120036A JP H03120036 A JPH03120036 A JP H03120036A JP 1259130 A JP1259130 A JP 1259130A JP 25913089 A JP25913089 A JP 25913089A JP H03120036 A JPH03120036 A JP H03120036A
Authority
JP
Japan
Prior art keywords
fiber
resin
composite material
mold
matrix resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1259130A
Other languages
Japanese (ja)
Other versions
JPH0712644B2 (en
Inventor
Atsushi Fujimoto
淳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1259130A priority Critical patent/JPH0712644B2/en
Publication of JPH03120036A publication Critical patent/JPH03120036A/en
Publication of JPH0712644B2 publication Critical patent/JPH0712644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain large vibration attenuating characteristic by laminating resin-immersed sheet or matlike reinforcing fiber and viscoelastic material in a mold, and curing it. CONSTITUTION:A sheet or mat-shaped reinforcing material is laid and aligned in a mold of a desired shape, laminated while immersing with matrix resin. When the laminate reaches a suitable thickness, a viscoelastic material is provided partly or on the whole surface of the reinforcing material, the reinforcing material is then again laid and aligned, and laminated while immersing with matrix resin. This steps are repeated, cured, removed from the mold, and shaped. Here, as the matrix resin, epoxy resin (uncured state) mixed with amine curing agent is used. As the viscoelastic material, a polyolefin sheet 2 is employed. A CFRP layer 1 made of carbon fiber and epoxy resin and the sheet 2 have a laminated integral structure. Thus, large vibration attenuating characteristic is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、人工衛星等宇宙構造物、OA機器、自動車・
レジャー用品などの構造体に用いて振動・騒音の低減を
実現する繊維強化複合材料の作製方法に関するものであ
る。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable to space structures such as artificial satellites, OA equipment, automobiles, etc.
The present invention relates to a method for producing a fiber-reinforced composite material that can be used in structures such as leisure goods to reduce vibration and noise.

(従来の技術) CFRPなとの繊維強化複合材料は、カーボンやガラス
繊維などの無機繊維又はアラミド繊維などの有機繊維を
エポキシ樹脂、ポリイミド樹脂、ポリエーテルエーテル
ケトン樹脂などの樹脂で固型化したものである。
(Prior technology) Fiber-reinforced composite materials such as CFRP are made by solidifying inorganic fibers such as carbon and glass fibers or organic fibers such as aramid fibers with resins such as epoxy resin, polyimide resin, and polyether ether ketone resin. It is something.

繊維強化複合材料は、従来の金属系構造材料に比較して
軽量・高強度である、繊維配向角を制御することにより
所望の機械特性を実現できる点で優れている。このため
、強く軽量化が要求される宇宙構造物・航空機・自動車
レジャー用品などの構造材料に巾広く用いられるように
なった。
Fiber-reinforced composite materials are superior in that they are lighter and stronger than conventional metal-based structural materials, and desired mechanical properties can be achieved by controlling the fiber orientation angle. For this reason, it has come to be widely used as a structural material for space structures, aircraft, automobile leisure goods, etc., which strongly require weight reduction.

(発明が解決しようとする課題) この種の複合材料で作製した構造体の用途の拡大に伴い
、構造体の振動が問題となっている。
(Problems to be Solved by the Invention) As the uses of structures made of this type of composite material expand, vibration of the structures has become a problem.

繊維強化複合材料は、軽量であり、従来の金属構造材料
と同程度の小さな振動減衰特性(損失係数rl=0.0
01〜0.01)をもつため、振動を生じ易い。また、
構造物を一体成型で作製することが多く、従来の金属構
造材料とは異なり、接続部での摩擦による振動減衰(構
造減衰)を期待できない。このため、人工衛星などの宇
宙構造物では、構造体の振動による搭載機器の故障、ア
ンテナの位置精度の低下などが生じている。このため、
繊維強化複合材料の振動減衰特性の増加は、重要な課題
となっている。
Fiber-reinforced composite materials are lightweight and have low vibration damping properties (loss coefficient rl = 0.0) comparable to conventional metal structural materials.
01 to 0.01), vibrations are likely to occur. Also,
Structures are often manufactured by integral molding, and unlike conventional metal structural materials, vibration damping (structural damping) due to friction at connections cannot be expected. For this reason, in space structures such as artificial satellites, vibrations of the structure cause failures of onboard equipment and a decrease in antenna position accuracy. For this reason,
Increasing the vibration damping properties of fiber reinforced composite materials has become an important issue.

これらの問題を解決する目的で、マトリックス樹脂の振
動減衰を増加させて複合材料の振動減衰を増加させる手
法が検討されている。これは、マトリックス樹脂にポリ
エチレングリコール・ポリプロピレングリコール・液状
ゴムなどの可どう性付与剤を添加し、振動減衰特性を増
加させた樹脂を用いて複合材料を作製する手法である。
In order to solve these problems, methods are being considered to increase the vibration damping of composite materials by increasing the vibration damping of matrix resins. This is a method of creating a composite material using a resin that has increased vibration damping properties by adding a ductility imparting agent such as polyethylene glycol, polypropylene glycol, or liquid rubber to a matrix resin.

しかし可どう性付与剤の添加により樹脂の振動減衰特性
を数十倍程度に改善できるものの、複合材料の振動減衰
特性は数倍程度の増加しか得られず、また大きな剛性の
低下をともなうので効果的ではない。本発明は前記問題
点を解決するものであり、その目的とするところは大き
な振動減衰特性を有する繊維強化複合材料を提供するこ
とにある。
However, although the vibration damping properties of the resin can be improved by several tens of times by adding a ductility agent, the vibration damping properties of the composite material can only be increased by several times, and this is accompanied by a large decrease in rigidity. Not the point. The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a fiber-reinforced composite material with high vibration damping properties.

(課題を解決するための手段) 本発明は、カーボンやガラス繊維などの無機強化繊維又
はアラミド繊維などの有機強化繊維からなるシート又は
マット状強化材を型の上に敷き並べてエポキシ樹脂や不
飽和ポリエステル樹脂などのマトリックス樹脂を含浸さ
せながら積み重ねる工程、又は予めマトリックス樹脂を
含浸させた前記強化材を型の上に敷き並べて積み重ねる
工程と前記マトリックス樹脂を含浸させた強化材の一部
または全面に粘弾性材料を設ける工程からなることを特
徴とする繊維強化複合材料の作製方法を提供することに
ある。
(Means for Solving the Problems) The present invention provides sheet or mat-like reinforcing materials made of inorganic reinforcing fibers such as carbon or glass fibers or organic reinforcing fibers such as aramid fibers, and epoxy resin or unsaturated A process of stacking the reinforcing material while impregnating it with a matrix resin such as polyester resin, or a process of laying and stacking the reinforcing material impregnated with the matrix resin in advance on a mold, and a process of stacking the reinforcing material impregnated with the matrix resin in part or all of the matrix resin. An object of the present invention is to provide a method for producing a fiber-reinforced composite material, which is characterized by comprising a step of providing an elastic material.

(作用) 本発明の作製方法では、樹脂を含浸したシート又はマッ
ト状強化繊材と粘弾性材料を型に積み重ね硬化させるた
め、カーボンやガラス繊維などの無機強化繊維又はアラ
ミド繊維などの有機強化繊維と樹脂からなる複合材料層
と粘弾性層が一体化した繊維強化複合材料を実現できる
。前記複合材料は、層間の粘弾性材料の振動減衰効果に
より大きな振動減衰特性を有する。
(Function) In the production method of the present invention, a resin-impregnated sheet or mat-like reinforcing fiber material and a viscoelastic material are stacked and cured in a mold, so inorganic reinforcing fibers such as carbon and glass fibers or organic reinforcing fibers such as aramid fibers are used. It is possible to realize a fiber-reinforced composite material in which a composite material layer consisting of a resin and a viscoelastic layer are integrated. The composite material has great vibration damping properties due to the vibration damping effect of the viscoelastic material between the layers.

強化繊維に含浸する樹脂としては、ジグリシジルエーテ
ルビスフェノールAやポリグリシジルエーテル化ノボラ
ックなどの多官能エポキシ樹脂と硬化剤とを組み合わせ
たエポキシ樹脂、付加硬化型ポリイミド、縮合型ポリイ
ミド、不飽和ポリエステル樹脂およびポリエーテルエー
テルケドンなどの熱可塑性樹脂が好適である。また、粘
弾性材料としては、未硬化物や半硬化物(Bステージ状
)および硬化物、ポリオレフィンやポリエーテルなどの
熱可塑性エラストマーシート、シリコーンゴムシートな
ど公知のものが使用できる。
Examples of resins to be impregnated into the reinforcing fibers include epoxy resins made by combining polyfunctional epoxy resins such as diglycidyl ether bisphenol A and polyglycidyl etherified novolacs with curing agents, addition-curing polyimides, condensed polyimides, unsaturated polyester resins, and Thermoplastic resins such as polyetheretherkedone are preferred. Further, as the viscoelastic material, known materials such as uncured materials, semi-cured materials (B-stage), cured materials, thermoplastic elastomer sheets such as polyolefin and polyether, and silicone rubber sheets can be used.

(実施例) 以下に本発明の実施例を図によって説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明繊維強化複合材料の作製方法のフローを
示す。所望の形状の型に、シートやマット形状の強化材
を敷き並ベマトリックス樹脂を含浸しながら積層する。
FIG. 1 shows the flow of the method for producing the fiber-reinforced composite material of the present invention. A sheet or mat-shaped reinforcing material is laid out in a mold of the desired shape and laminated while being impregnated with Bematrix resin.

積層が適当な厚みに達した時点で、粘弾性材を強化材の
一部または全面に設ける。その後再び、強化材を敷き並
ベマトリックス樹脂を含浸しながら積層を行う。以上の
工程を要求される構成が実現されるまで繰り返した後、
硬化させ、脱型および整形を行う。
Once the laminate has reached a suitable thickness, the viscoelastic material is applied to some or all of the reinforcement. After that, the reinforcing material is laid down and laminated again while impregnated with Bematrix resin. After repeating the above steps until the required configuration is achieved,
After curing, demolding and shaping are performed.

本実施例では、マトリックス樹脂を含浸していない強化
材を用いたが、予め強化繊維にマトリックス樹脂を含浸
した、例えばプリプレグシートなどを用いても良い。
In this embodiment, a reinforcing material not impregnated with a matrix resin was used, but it is also possible to use, for example, a prepreg sheet in which reinforcing fibers are impregnated with a matrix resin in advance.

第2図に第1図実施例の作製方法を用いて作製した構造
物の断面を示す。実施例は、カーボン繊維のランダム配
向マットを図の様なお椀形状の型に敷き並べ、作製した
ものである。マトリックス樹脂にはアミン系の硬化剤を
混合したエポキシ樹脂(未硬化状態)を、また粘弾性材
料にはポリオレフィンシート使用した。図より明らかな
様に、カーボン繊維とエポキシ樹脂からなるCFRP層
1とポリオレフィンシート2が積層一体出した構造をも
つ。
FIG. 2 shows a cross section of a structure manufactured using the manufacturing method of the embodiment shown in FIG. In this example, randomly oriented carbon fiber mats were laid out in a bowl-shaped mold as shown in the figure. An epoxy resin (uncured) mixed with an amine curing agent was used as the matrix resin, and a polyolefin sheet was used as the viscoelastic material. As is clear from the figure, it has a structure in which a CFRP layer 1 made of carbon fiber and epoxy resin and a polyolefin sheet 2 are laminated and integrally formed.

第3図に、実施例の複合材料の損失係数と周波数の関係
を示す。複合材料試験片に曲げ振動を加え測定した。図
中実線は実施例の複合材料の特性、破線は、従来の作製
方法で作製した繊維強化複合材料の特性である。いずれ
も固有振動数での自由減衰カーブより損失係数を求めた
。図により明らかな通り、本発明の作製方法による複合
材料は、従来のものに比較して、大きな振動減衰特性が
得られている。
FIG. 3 shows the relationship between the loss coefficient and frequency of the composite material of the example. Bending vibration was applied to the composite material test piece and measured. In the figure, the solid line shows the properties of the composite material of the example, and the broken line shows the properties of the fiber-reinforced composite material produced by the conventional production method. In both cases, the loss coefficient was determined from the free damping curve at the natural frequency. As is clear from the figure, the composite material produced by the manufacturing method of the present invention has greater vibration damping characteristics than the conventional material.

(発明の効果) 以上のように本発明によれば、振動減衰特性の大きな繊
維強化複合材料を実現することが可能となり、人工衛星
などの宇宙構造物における搭載機器の故障やアンテナの
位置精度の低下、自動車などの騒音問題を解決できる効
果を有するものである。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize a fiber-reinforced composite material with high vibration damping characteristics, which can prevent failures of on-board equipment in space structures such as artificial satellites, and reduce antenna position accuracy. It has the effect of solving the noise problem caused by automobiles, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を作製方法のフロー図、第2図
は実施例の作製方法を用いて作製した複合材料の断面図
、第3図は複合材料の損失係数を示す図である。
Figure 1 is a flow diagram of a method for manufacturing an example of the present invention, Figure 2 is a cross-sectional view of a composite material manufactured using the manufacturing method of the example, and Figure 3 is a diagram showing the loss factor of the composite material. .

Claims (1)

【特許請求の範囲】[Claims] 無機強化繊維又は有機強化繊維からなるシート又はマッ
ト状強化材を型の上に敷き並べてマトリックス樹脂を含
浸させながら積み重ねる工程、又は予めマトリックス樹
脂を含浸させた前記強化材を型の上に敷き並べて積み重
ねる工程と、前記マトリックス樹脂を含浸させた強化材
の一部または全面に粘弾性材料を設ける工程からなるこ
とを特徴とする繊維強化複合材料の作製方法。
A process of laying sheets or mat-like reinforcing materials made of inorganic reinforcing fibers or organic reinforcing fibers on a mold and stacking them while impregnating them with a matrix resin, or laying the reinforcing materials pre-impregnated with a matrix resin on a mold and stacking them side by side. A method for producing a fiber-reinforced composite material, comprising the steps of: and a step of providing a viscoelastic material on a part or the entire surface of the reinforcing material impregnated with the matrix resin.
JP1259130A 1989-10-03 1989-10-03 Method for producing fiber-reinforced composite material Expired - Lifetime JPH0712644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1259130A JPH0712644B2 (en) 1989-10-03 1989-10-03 Method for producing fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1259130A JPH0712644B2 (en) 1989-10-03 1989-10-03 Method for producing fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JPH03120036A true JPH03120036A (en) 1991-05-22
JPH0712644B2 JPH0712644B2 (en) 1995-02-15

Family

ID=17329736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1259130A Expired - Lifetime JPH0712644B2 (en) 1989-10-03 1989-10-03 Method for producing fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH0712644B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704287A2 (en) * 1994-08-31 1996-04-03 Christoph Dr.-Ing. Freist Method for manufacturing a damping panel and panel made therefrom
JP2012514546A (en) * 2009-01-06 2012-06-28 サイテク・テクノロジー・コーポレーシヨン Structural composites with improved acoustic and vibration damping properties

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469340A (en) * 1987-09-09 1989-03-15 Sumitomo Chemical Co High vibration damping fiber reinforced plastic

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469340A (en) * 1987-09-09 1989-03-15 Sumitomo Chemical Co High vibration damping fiber reinforced plastic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704287A2 (en) * 1994-08-31 1996-04-03 Christoph Dr.-Ing. Freist Method for manufacturing a damping panel and panel made therefrom
EP0704287A3 (en) * 1994-08-31 1997-07-09 Cww Gerko Akustik Gmbh & Co Kg Method for manufacturing a damping panel and panel made therefrom
JP2012514546A (en) * 2009-01-06 2012-06-28 サイテク・テクノロジー・コーポレーシヨン Structural composites with improved acoustic and vibration damping properties

Also Published As

Publication number Publication date
JPH0712644B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US6048488A (en) One-step resin transfer molding of multifunctional composites consisting of multiple resins
US5871604A (en) Forming fiber reinforced composite product
US6458309B1 (en) Method for fabricating an advanced composite aerostructure article having an integral co-cured fly away hollow mandrel
US4323623A (en) Composite plastic structure and method for producing same
EP0370148A1 (en) Impact resistent composites
KR20010075455A (en) Hollow Structure of Fiber-Reinforced Resin and Method of Manufacturing The Same
GB2401346A (en) Composite material for acoustic or mechanical damping
US10611328B2 (en) Composite material structural member and method of manufacturing the composite material structural member
US20100323150A1 (en) Method for producing a sandwich component having a honeycomb core
JPH03166921A (en) Preparation of fiber reinforced composite material
JPH084280Y2 (en) Fiber reinforced composite cylindrical shell
JPH03120036A (en) Manufacture of fiber-reinforced composite material
KR101932635B1 (en) Composite material article manufacturing method
Reuterlöv Cost effective infusion of sandwich composites for marine applications
JPH0558395A (en) Thrust tube
JPH02169633A (en) Fiber-reinforced composite material
JPH03120035A (en) Manufacture of fiber-reinforced composite material
JPH02209234A (en) Preparation of fiber reinforced composite material
JPH01204735A (en) Fiber reinforced composite material
JPH02209235A (en) Preparation of fiber reinforced composite material
JPH04125136A (en) Fiber reinforced composite material
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
US10800070B2 (en) Mould tools
WO2018173322A1 (en) Fiber-reinforced composite
JPH02169634A (en) Prepreg sheet of fiber-reinforced composite material