WO2018173322A1 - Fiber-reinforced composite - Google Patents

Fiber-reinforced composite Download PDF

Info

Publication number
WO2018173322A1
WO2018173322A1 PCT/JP2017/032309 JP2017032309W WO2018173322A1 WO 2018173322 A1 WO2018173322 A1 WO 2018173322A1 JP 2017032309 W JP2017032309 W JP 2017032309W WO 2018173322 A1 WO2018173322 A1 WO 2018173322A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite
fiber reinforced
fiber
resin layer
Prior art date
Application number
PCT/JP2017/032309
Other languages
French (fr)
Japanese (ja)
Inventor
洋一郎 福永
真章 中村
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Publication of WO2018173322A1 publication Critical patent/WO2018173322A1/en

Links

Images

Definitions

  • the present invention relates to a fiber reinforced composite comprising a fiber reinforced resin and a foamed resin.
  • FRP fiber reinforced resin
  • a resin plastic
  • reinforcing fibers such as carbon fiber and glass fiber
  • FRP is lightweight and has excellent rigidity, and thus has become an indispensable component in various fields such as aircraft, automobiles, ships, and buildings.
  • a fiber reinforced resin including a first fiber reinforced resin layer, a second fiber reinforced resin layer, and a foamed resin layer formed between the first and second fiber reinforced resin layers.
  • a complex has been proposed (see, for example, Patent Document 1). According to this technique, since the fiber reinforced composite is provided with the foamed resin layer that is lighter than the fiber reinforced resin (FRP), further weight reduction can be achieved.
  • the end face of the foamed resin layer is exposed as it is at the end face of the fiber-reinforced composite of Patent Document 1.
  • a fiber reinforced resin layer is newly arranged in parallel to further strengthen the end including the end face of the fiber reinforced composite, there is a difference in strength between the fiber reinforced resin layer and the foamed resin layer. As a result, it is assumed that stress concentrates on this boundary portion.
  • the present invention has been made in view of the above problems, and the object of the present invention is to reduce stress concentration at these boundaries even if a fiber reinforced resin is formed adjacent to the end of the foamed resin layer. It is to provide a fiber reinforced composite that can be used.
  • a fiber reinforced composite according to the present invention is a foamed resin formed between a first fiber reinforced resin layer, a second fiber reinforced resin layer, and the first and second fiber reinforced resin layers.
  • the second composite part is provided.
  • a portion adjacent to the composite portion is a high-density layer having a higher density than other portions of the foamed resin layer.
  • the fiber reinforced composite since the foamed resin layer is formed between the first and second fiber reinforced resin layers in the first composite part, the fiber reinforced composite can be further reduced in weight and fiber reinforced. The impact absorbability of the composite can be increased.
  • the portion adjacent to the second composite portion of the foamed resin layer is a high-density layer having a higher density than other portions of the foamed resin layer, the density of the other portions of the foamed resin layer is reduced. In comparison, the density of the high-density layer is close to the density of the fiber reinforced resin of the second composite part. As a result, even if the fiber reinforced resin of the second composite portion is integrally formed adjacent to the end portion of the foamed resin layer, the difference in strength between them becomes small, so that stress concentration at these boundaries can be reduced. it can.
  • the layer thickness of the high-density layer is thinner than the layer thickness of other portions of the foamed resin layer.
  • the part (edge) where the high-density layer of the foamed resin layer contacts the second composite part Part) can be made smaller. For this reason, the interface between the high-density layer and the second composite portion can be reduced, and peeling of these can be suppressed.
  • the layer thickness of the high-density layer is thinner as it approaches the second composite part. According to this aspect, since the layer thickness of the high-density layer becomes thinner as it approaches the second composite part, it is difficult to form a step or the like in the high-density layer, and stress concentration in the high-density layer can be reduced. it can.
  • the density of the high-density layer increases as the density approaches the second composite part.
  • the strength of the high-density layer approaches the strength of the second composite part as it approaches the second composite part.
  • the second composite portion includes a first continuous layer in which at least a part of the first fiber reinforced resin layer is continuous, and a second continuous in which at least a part of the second fiber reinforced resin layer is continuous. Including layers.
  • the second composite part since the second composite part has the first and second continuous layers continuous to the first and second fiber reinforced resin layers, respectively, the second composite part is provided between the first composite part and the second composite part. Strength can be increased.
  • a third fiber reinforced resin layer is further laminated on the second composite portion between the first continuous layer and the second continuous layer. ing.
  • strength of a 2nd composite part can be raised more. As a result, machining such as drilling a through hole in the second composite portion can be easily performed.
  • the second composite part has a stacked structure in which the first continuous layer and the second continuous layer are bonded and stacked.
  • the entire second composite part is made a continuous part to the first composite part. Can do. Thereby, the intensity
  • the second composite part is formed at the end of the fiber-reinforced composite. According to this aspect, since the second composite part is formed at the end of the fiber reinforced composite, the strength of the end of the fiber reinforced composite is increased, and the foamed resin layer is formed at the other part. Therefore, the weight of the fiber reinforced composite can be reduced and the shock absorption can be improved.
  • the second composite part is formed on the periphery of the fiber reinforced composite so as to surround the first composite part. According to this aspect, since the second composite part is formed so as to surround the first composite part, the overall strength of the fiber-reinforced composite can be increased. Moreover, since the foamed resin layer is formed in parts other than a peripheral part, the weight reduction of a fiber reinforced composite body can be achieved and shock absorption can be improved.
  • the stress concentration at these boundaries can be reduced.
  • FIG. 2 is a cross-sectional view taken along line AA of the fiber reinforced composite shown in FIG. (A) is a sectional view taken along line BB of the fiber reinforced composite shown in FIG. 1, and (b) is a sectional view taken along line CC of the fiber reinforced composite shown in FIG. is there. It is a figure for demonstrating the manufacturing method of the fiber reinforced composite shown in FIG. (A)-(c) is principal part sectional drawing which showed the modification of the fiber reinforced composite_body
  • FIG. 7 is a cross-sectional view taken along line DD of the fiber reinforced composite shown in FIG. 6. It is a figure for demonstrating the manufacturing method of the fiber reinforced composite shown in FIG. It is the typical perspective view which showed the modification of the fiber reinforced composite_body
  • complex shown in FIG. (A)-(c) is principal part sectional drawing which showed the modification of the fiber reinforced composite_body
  • complex shown in FIG. (A) is typical sectional drawing for demonstrating the principal part of the fiber reinforced composite which concerns on 3rd Embodiment
  • (b) is the principal part of the fiber reinforced composite which concerns on the reference example of (a). It is a typical sectional view for explaining. It is a cross-sectional photograph of the fiber reinforced composite which concerns on an Example.
  • the fiber reinforced composite 1 has a flat plate shape and includes a first composite part 10 and a second composite part 20.
  • the second composite part 20 is formed at both ends of the fiber reinforced composite 1, and the first composite part 10 is formed integrally with each second composite part 20 between them.
  • the first and second composite parts 10 and 20 have substantially the same thickness.
  • the fiber reinforced composite 1 has a flat plate shape, but may be a curved shape or a twisted shape, and the shape is not particularly limited.
  • the first and second composite parts 10 and 20 have substantially the same thickness. For example, there is no stress concentration between the first composite part 10 and the second composite part 20. For example, these thicknesses may be different.
  • the first composite unit 10 includes a first fiber reinforced resin layer 11, a second fiber reinforced resin layer 12, and first and second fiber reinforced resin layers 11, 12. And a foamed resin layer 13 formed therebetween.
  • the second composite portion 20 is a portion made of a fiber reinforced resin, adjacent to the end portion 13a of the foamed resin layer 13, and made of a fiber reinforced resin.
  • a plurality of fiber reinforced resin layers are laminated. It is the laminated structure made.
  • the first composite portion 10 is a foamed resin formed between the first fiber reinforced resin layer 11, the second fiber reinforced resin layer 12, and the first and second fiber reinforced resin layers 11 and 12.
  • Layer 13 The first and second fiber reinforced resin layers 11 and 12 include outer layers 11a and 12a corresponding to the outer skin of the fiber reinforced composite 1, and inner layers 11b and 12b corresponding to the inner sides thereof, , All are made of fiber reinforced resin (FRP).
  • FRP fiber reinforced resin
  • the second composite portion 20 is formed adjacent to the end portion 13a of the foamed resin layer 13 and is made of a fiber reinforced resin.
  • the second composite portion 20 includes a first continuous layer 21 continuous with the outer layer 11 a that is at least a part of the first fiber reinforced resin layer 11, and an outer layer 12 a that is at least a part of the second fiber reinforced resin layer 12.
  • a continuous second continuous layer 22 thereby, since the 2nd composite part 20 has the 1st and 2nd continuous layers 21 and 22 which followed the outer layers 11a and 12a of the 1st and 2nd fiber reinforced resin layers 11 and 12, respectively, the 1st composite The strength between the part 10 and the second composite part 20 can be increased.
  • the first continuous layer 21 of the second composite portion 20 is preferably a layer in which a base material (for example, a woven base material) constituting the reinforcing fibers of the first fiber reinforced resin layer 11 is continuous.
  • the 2nd continuous layer 22 of the 2nd composite part 20 is a layer with which the base material (for example, textile base material) which comprises the reinforced fiber of the 2nd fiber reinforced resin layer 12 was continuous. Thereby, the intensity
  • a third fiber reinforced resin layer 23 is further laminated between the first continuous layer 21 and the second continuous layer 22.
  • the third fiber reinforced resin layer is a layer in which a plurality of fiber reinforced resin layers are laminated.
  • the fiber reinforced resin of the first composite part 10 and the second composite part 20 is composed of a reinforced fiber and a synthetic resin (matrix resin) that bonds the reinforced fibers together.
  • Reinforcing fibers include glass fibers, carbon fibers, silicon carbide fibers, alumina fibers, tyrano fibers, basalt fibers, ceramic fibers and other inorganic fibers; stainless steel fibers and steel fibers; aramid fibers, polyethylene fibers, polyparaphenylene Organic fibers such as benzoxador (PBO) fibers; or boron fibers.
  • Reinforcing fibers may be used alone or in combination of two or more. Among these, carbon fiber, glass fiber, or aramid fiber is preferable, and carbon fiber is more preferable. These reinforcing fibers have excellent mechanical strength despite being lightweight.
  • the reinforcing fiber may be either a long fiber or a short fiber, but is preferably used as a reinforcing fiber substrate processed into a desired shape.
  • the reinforcing fiber base material include woven fabrics, knitted fabrics, nonwoven fabrics, or face materials formed by binding (stitching) fiber bundles (strands) obtained by aligning reinforcing fibers in one direction with yarns. .
  • the weaving method include plain weave, twill weave and satin weave.
  • the fiber reinforced base material may be used without laminating only one fiber reinforced base material, or a plurality of fiber reinforced base materials may be laminated and used as a laminated fiber reinforced base material.
  • Synthetic resin is a resin that is impregnated into reinforcing fibers and bonds the reinforcing fibers together.
  • the reinforcing fibers can be bonded and integrated by the impregnated synthetic resin.
  • the synthetic resin impregnated into the reinforcing fibers may be either a thermosetting resin or a thermoplastic resin, but more preferably a thermosetting resin.
  • the thermosetting resin is not particularly limited.
  • thermosetting resin may be used independently or 2 or more types may be used together. Of these, epoxy resins or vinyl ester resins are preferable. According to these synthetic resins, a fiber reinforced resin excellent in elasticity can be formed, and the impact resistance of the resulting fiber reinforced composite 1 can be improved. Further, the thermosetting resin may contain additives such as a curing agent and a curing accelerator. The fiber reinforced resin may be molded by a sheet molding compound (SMC).
  • SMC sheet molding compound
  • the content of the thermosetting resin in the fiber reinforced resin is preferably 20 to 70% by weight, more preferably 30 to 60% by weight. If the content of the thermosetting resin is too small, the binding property between the reinforcing fibers and the adhesion between the first and second fiber reinforced resin layers 11 and 12 and the foamed resin layer 13 become insufficient, and the first and first There is a possibility that the mechanical strength of the two fiber reinforced resin layers 11 and 12 and the impact resistance of the fiber reinforced composite 1 cannot be sufficiently improved. Moreover, when there is too much content of a thermosetting resin, the mechanical strength of the 1st and 2nd fiber reinforced resin layers 11 and 12 will fall, and the impact resistance of the fiber reinforced composite 1 will fully be improved. You may not be able to.
  • the foamed resin layer 13 constituting the fiber reinforced composite 1 contains a foamed synthetic resin.
  • the synthetic resin preferably has a polar group such as a cyano group, a hydroxy group (hydroxyl group), a carbonyl group, an amino group, an epoxy group, a halogen atom, an oxo group, or a phenyl group.
  • a synthetic resin having a polar group the foamed resin layer 13 including this and the first and second fiber reinforced resin layers 11 and 12 can be firmly integrated. Thereby, when an impact is applied to the fiber reinforced composite 1, the peeling between the foamed resin layer 13 and the first and second fiber reinforced resin layers 11 and 12 is reduced, so that the impact resistance of the fiber reinforced composite 1 is increased. This can be further improved.
  • the synthetic resin used for the foamed resin layer 13 include polycarbonate resins, acrylic resins, thermoplastic polyester resins, polymethacrylimide resins, polystyrene resins, polyamide resins, and polypropylene resins. Can be mentioned.
  • a synthetic resin may be used independently or 2 or more types may be used together.
  • a thermoplastic polyester-type resin or a polyamide-type resin is preferable, and a thermoplastic polyester type
  • a portion (end portion 13 a) adjacent to the second composite portion 20 is a high-density layer 13 b having a higher density than other portions of the foamed resin layer 13. . More specifically, the density of the high-density layer 13 b increases as the second composite portion 20 is approached.
  • the density of the high-density layer 13b is preferably in the range of 0.2 to 0.9 g / cm 3 , and the other portions of the foamed resin layer 13 are assumed to be 0.00 on the premise that the density of the high-density layer 13b is high. It is preferably in the range of 05 to 0.3 g / cm 3 .
  • the density of the high-density layer in the present specification refers to a value measured according to JIS K7222: 2005 “Foamed plastics and rubbers—Measurement of apparent density”.
  • the density of the high density layer 13b is higher than that of the other parts of the foamed resin layer 13. Close to the density of fiber reinforced resin. Thereby, even if the fiber reinforced resin of the second composite portion 20 is integrally formed adjacent to the end portion of the foamed resin layer 13, the strength difference between them becomes small, so that the stress concentration at these boundaries is reduced. be able to.
  • the density of the high-density layer 13b increases as it approaches the second composite part 20, and therefore the strength of the high-density layer 13b increases as the second composite part 20 approaches.
  • the strength of the composite part 20 is approached.
  • the layer thickness of the high-density layer 13b is thinner than the layer thickness of the other part of the foamed resin layer 13. More specifically, the layer thickness of the high-density layer 13b becomes thinner as the second composite portion 20 is approached.
  • a resin reservoir 15 is formed in the first fiber reinforced resin layer adjacent to the high density layer 13b.
  • the resin reservoir 15 is formed of either the above-described fiber reinforced resin or synthetic resin, and can be selected depending on the material of the insert material 15 ′ described later.
  • the high-density layer 13b of the foamed resin layer 13 contacts the second composite portion 20.
  • the part (end part) to perform can be made small. For this reason, the interface between the high-density layer 13b and the second composite portion 20 can be reduced, and peeling of these can be suppressed.
  • the layer thickness of the high-density layer 13b becomes thinner as it approaches the second composite portion 20, it is difficult to form a step or the like in the high-density layer 13b, and stress concentration in the foamed resin layer 13 is reduced. can do. Furthermore, by providing the resin reservoir 15, it is possible to avoid the formation of voids in the fiber reinforced composite 1.
  • the width (length in the direction perpendicular to the thickness direction of the layer) b of the high-density layer 13b is more preferably 5 to 20 mm, and the other layers except for the high-density layer 13b
  • the thickness (that is, the maximum thickness of the high-density layer 13b) t is more preferably 1 to 20 mm, and t / b is more preferably in the range of 5 to 20 mm.
  • t / T which is a ratio of the thickness t of the other portion excluding the high density layer 13b and the thickness T of each layer of the first and second fiber reinforced resins, is in the range of 0.5 to 0.225. More preferably. By satisfying this range, it is possible to further ensure the impact absorbability of the fiber reinforced composite 1 while ensuring the rigidity of the fiber reinforced composite 1.
  • FIG. 4 is a figure for demonstrating the manufacturing method of the fiber reinforced composite 1 shown in FIG.
  • corresponding fiber reinforced resin sheets 11 b ′ and 12 b ′ corresponding to the inner layers 11 b and 12 b of the fiber reinforced composite 1 are prepared, and a foamed resin sheet 13 ′ preliminarily foamed therebetween is prepared.
  • a laminated body 10 ′ sandwiching the film is formed.
  • the stacked body 10 ′ is disposed between the upper mold 51 and the lower mold 52.
  • a fiber reinforced resin block 23 ′ in which a plurality of fiber reinforced resin sheets are stacked is disposed at a position adjacent to the foamed resin sheet 13 ′ of the laminated body 10 ′.
  • the insert material 15 ′ is disposed between the laminate 10 ′ and the fiber reinforced resin block 23 ′.
  • the insert material 15 ′ may be made of the same type of synthetic resin as the resin of the fiber reinforced resin sheet, or may be a fiber reinforced resin obtained by impregnating a reinforced fiber with a synthetic resin.
  • fiber reinforced resin sheets 11a 'and 12a' corresponding to the outer layers 11a and 12a and the continuous layers 21 and 22 are laminated so as to cover them.
  • the lower mold 52 is heated while being pressurized. Moreover, on the assumption that the heating temperature at this time is equal to or higher than the temperature at which the foamed resin sheet 13 'is foamed, when the synthetic resin of the fiber reinforced resin sheet is a thermoplastic resin, the heating temperature is equal to or higher than the softening point temperature. is there. On the other hand, when the synthetic resin of the fiber reinforced resin sheet is a thermosetting resin, the temperature is equal to or higher than the curing point temperature.
  • the foamed resin sheet 13 ′ is foamed to a predetermined thickness, and the end portion 13 a ′ of the foamed resin sheet 13 ′ is pressed against the insert material 15 ′. Thereby, foaming of the end portion 13a ′ of the foamed resin sheet 13 ′ is suppressed, and the portion of the foamed resin layer 13 adjacent to the second composite portion 20 has a higher density than other portions of the foamed resin layer 13. Is formed as a high-density layer 13b. The density of the high-density layer 13b increases as the second composite portion 20 is approached.
  • the layer thickness of the high-density layer 13 b is made thinner than the layer thickness of other portions of the foamed resin layer 13.
  • the layer thickness of the high-density layer 13b can be reduced as the second composite portion 20 is approached.
  • FIGS. 5 (a) to 5 (c) are main part sectional views showing a modification of the fiber reinforced composite 1 shown in FIG.
  • the layer thickness of the high-density layer 13 b is changed to the second composite portion 20 by tilting the interface on one side (the first fiber reinforced resin layer 11 side) of the high-density layer 13 b of the foamed resin layer 13. As it approached, it became thinner.
  • the layer thickness of the high-density layer 13b may become thinner as the second composite unit 20 is approached.
  • the high-density layer 13b having such a shape can be molded by disposing the insert material 15 'on both sides between the laminate 10' and the fiber reinforced resin block 23 '.
  • the thickness of the high-density layer 13b may be made substantially uniform by denting one side of the foamed resin layer 13, and as shown in FIG. By denting both sides of the foamed resin layer 13, the thickness of the high-density layer 13b may be made substantially uniform.
  • FIG. 6 is a schematic perspective view for explaining the structure of the fiber reinforced composite 1A according to the second embodiment of the present invention
  • FIG. 7 shows the fiber reinforced composite shown in FIG. FIG. 2 is a cross-sectional view taken along the line DD of 1A.
  • the same structure as 1st Embodiment attaches
  • the fiber-reinforced composite body 1A according to the second embodiment has a three-dimensional shape (plate shape).
  • the bottom part 1a and the rising part 1b of the fiber reinforced composite 1A are formed by the first composite part 10, and the second composite part 20 is formed so as to surround the first composite part 10. That is, in the present embodiment, the ring-shaped second composite portion 20 is formed on the peripheral edge portion 1c of the fiber-reinforced composite body 1A.
  • the fiber reinforced composite 1A has a plate shape, but may be, for example, a cup shape, a flat plate shape, a bottomed cylindrical shape, or a dome shape, and around the first composite portion 10. If the 2nd composite part 20 is formed so that it may surround, the shape in particular will not be limited.
  • the 2nd composite part 20 is formed so that the circumference
  • the second composite part 20 is formed so as to surround the first composite part 10, it is possible to prevent moisture from entering the foamed resin layer 13. Furthermore, since the foamed resin layer 13 of the first composite part 10 is formed at a part other than the peripheral part 1c, the weight of the fiber-reinforced composite 1A can be reduced and the shock absorption can be enhanced.
  • the second composite part 20 has a laminated structure in which a first continuous layer 21 and a second continuous layer 22 are joined and laminated.
  • the entire second composite unit 20 can be a continuous part of the first composite unit 10.
  • strength between the 1st composite part 10 and the 2nd composite part 20 can be raised.
  • the foamed resin layer 13 has a high density layer in which the portion adjacent to the second composite portion 20 has a higher density than the other portions of the foamed resin layer 13. Since it is 13b, stress concentration between the first composite part 10 and the second composite part 20 can be avoided.
  • the density of the high-density layer 13b increases as it approaches the second composite portion 20, and the layer thickness of the high-density layer 13b is thinner than the thickness of the other part of the foamed resin layer 13, and As it gets closer to the second composite part 20, it becomes thinner. Thereby, the effect similar to the effect demonstrated in 1st Embodiment can be anticipated.
  • FIG. 8 is a figure for demonstrating the manufacturing method of 1 A of fiber reinforced composites shown in FIG.
  • corresponding fiber reinforced resin sheets 11 ′ and 12 ′ corresponding to the first and second fiber reinforced resin layers 11 and 12 of the fiber reinforced composite 1A are prepared, and pre-foamed between them.
  • a laminated body 10 ′ sandwiching the foamed resin sheet 13 ′ is molded.
  • the laminated body 10 ′ is disposed between the upper mold 51 ⁇ / b> A and the lower mold 52 ⁇ / b> A, and heated while pressurizing them with the upper mold 51 ⁇ / b> A and the lower mold 52 ⁇ / b> A. Moreover, the heating temperature at this time is the same as the temperature demonstrated in 1st Embodiment.
  • the foamed resin sheet 13 ′ is foamed to a predetermined thickness.
  • the foamed resin sheet 13 ′ is foamed as compared with other parts. It is suppressed.
  • the density of the part adjacent to the 2nd composite part 20 becomes high compared with the density of the other part of the foamed resin layer 13, and this part is shape
  • the density of the high-density layer 13b increases as the second composite portion 20 is approached.
  • the layer thickness of the high-density layer 13b can be made thinner than the layer thickness of the other part of the foamed resin layer 13, The layer thickness of the high-density layer 13b can be reduced as the second composite portion 20 is approached.
  • FIG. 9 is a schematic perspective view showing a modification of the fiber-reinforced composite 1A shown in FIG.
  • the fiber reinforced composite 1 ⁇ / b> A includes a bottom 1 a and a peripheral edge 1 c of the fiber reinforced composite 1 ⁇ / b> A formed by the second composite parts 20 ⁇ / b> A and 20 ⁇ / b> B, and a rising part 1 b formed by the first composite part 10. Is formed.
  • An opening 1d is formed in the bottom 1a.
  • a disk-shaped second composite portion 20A is formed so as to surround the bottom side of the first composite portion 10 of the rising portion 1b of the fiber reinforced composite 1A, and the rising of the fiber reinforced composite 1A.
  • the ring-shaped second composite part 20B is formed so as to surround the opening side of the first composite part 10 of the part 1b.
  • FIGS. 10 (a) to 10 (c) are cross-sectional views of main parts showing a modification of the fiber reinforced composite 1A shown in FIG.
  • the layer thickness of the high-density layer 13b is set to the second composite portion 20 by inclining the interface on one side (the first fiber reinforced resin layer 11 side) of the high-density layer 13b of the foamed resin layer 13. As it approached, it became thinner.
  • the layer thickness of the high-density layer 13b may become thinner as the second composite unit 20 is approached.
  • the thickness of the high-density layer 13b may be made substantially uniform by denting one side of the foamed resin layer 13, and as shown in FIG. By denting both sides of the foamed resin layer 13, the thickness of the high-density layer 13b may be made substantially uniform.
  • Fig.11 (a) is typical sectional drawing for demonstrating the principal part of the fiber reinforced composite_body
  • FIG.11 (b) concerns on the reference example of Fig.11 (a).
  • It is typical sectional drawing for demonstrating the principal part of the fiber reinforced composite_body
  • This embodiment is different from the first embodiment in that an end covering layer 12c and a continuous layer 12d are further provided.
  • an end covering layer 12c that covers the end surface of the first composite portion 10 is formed continuously with the inner layer 12b of the second fiber reinforced resin layer 12, and is continuously formed with the end covering layer 12c.
  • stacked as a part of 2 composite part 20 is further formed.
  • the woven base material is formed continuously with the end covering layer 12c and the continuous layer 12d.
  • the end portion covering layer 12c is formed at a position separating the first and second composite portions 10 and 20, and the reinforcing fibers of the end portion covering layer 12 are oriented along these adjacent end faces. According to this embodiment, since the end portion covering layer 12c and the continuous layer 12d are formed continuously to the inner layer 12b of the second fiber reinforced resin layer 12, the first composite portion 10 and the second composite portion 20 are formed. It is possible to increase the bonding strength.
  • the end cover layer 12c covers the end face of the first composite part 10, and the reinforcing fibers of the end cover layer 12c are oriented on the end face of the first composite part 10. It is possible to suppress the foamed resin layer 13 from being impregnated with the synthetic resin of the three-fiber reinforced resin layer 23. As a result, the synthetic resin of the third fiber reinforced resin layer 23 is impregnated in the foamed resin layer 13, thereby suppressing the formation of dents on the surface of the fiber reinforced composite 1 ⁇ / b> B.
  • the high density layer 13b is formed on the foamed resin layer 13, but as shown in FIG. 11B, the high density layer 13b is not provided, and the end covering layer 12c is provided. May be formed. Even in this case, it is possible to suppress the formation of a dent on the surface of the fiber-reinforced composite 1B during manufacturing, and to increase the bonding strength between the first composite part 10 and the second composite part 20.
  • the fiber reinforced composite shown in FIG. 1 was manufactured according to the manufacturing method described with reference to FIG. First, a fiber reinforced resin sheet (prepreg) in which an uncured epoxy resin is impregnated on a carbon fiber woven base material corresponding to the inner layer of the fiber reinforced composite is prepared, and a foamed resin pre-foamed between them.
  • seat polyyester-type resin foam sheet
  • a fiber reinforced resin plate in which a plurality of fiber reinforced resin sheets similar to those described above are laminated is disposed at a position adjacent to the foamed resin sheet of this laminate.
  • an insert material made of fiber reinforced resin was disposed between the laminate and the fiber reinforced resin plate.
  • a fiber reinforced resin sheet for the skin was laminated so as to cover them.
  • the density of the foamed resin layer with the layer thickness becoming thinner and the density of the other part of the foamed resin layer were measured as approaching the second composite part.
  • the density of the foamed resin layer whose layer thickness is thin becomes higher than the density of the other part of the foamed resin layer, and the thin foamed resin layer becomes higher as it approaches the second composite part. It was found that a high density layer was formed.
  • the structure according to the first embodiment shown in FIGS. 2 and 5 may be applied to the structure according to the second embodiment shown in FIGS. 7 and 10, and the second embodiment shown in FIGS.
  • Such a structure may be applied to the structure according to the first embodiment shown in FIGS.

Abstract

Provided is a fiber-reinforced composite whereby, despite a fiber-reinforced resin being formed adjacent to an end part of a foamed resin layer therein, stress concentration at the boundary between the fiber-reinforced resin and the foamed resin layer can be reduced. The present invention is provided with a first fiber-reinforced resin layer 11, a second fiber-reinforced resin layer 12, a first composite part 10 having a foamed resin layer 13 formed between the first and second fiber-reinforced resin layers 11, 12, and a second composite part 20 comprising a fiber-reinforced resin and being formed adjacent to an end part 13a of the foamed resin layer 13, a portion of the foamed resin layer 13 that is adjacent to the second composite part 20 being configured as a high-density layer 13b having a high density relative to the other portion of the foamed resin layer 13.

Description

繊維強化複合体Fiber reinforced composite
 本発明は、繊維強化樹脂と発泡樹脂とを備えた繊維強化複合体に関する。 The present invention relates to a fiber reinforced composite comprising a fiber reinforced resin and a foamed resin.
 炭素繊維やガラス繊維などの強化繊維により、樹脂(プラスチック)を強化した繊維強化樹脂(FRP)が知られている。近年、FRPは、軽量で且つ優れた剛性を有していることから、航空機、自動車、船舶、および建築物などの様々な分野において、欠かせない構成部材となっている。 A fiber reinforced resin (FRP) in which a resin (plastic) is reinforced by reinforcing fibers such as carbon fiber and glass fiber is known. In recent years, FRP is lightweight and has excellent rigidity, and thus has become an indispensable component in various fields such as aircraft, automobiles, ships, and buildings.
 航空機、自動車、および船舶などの乗り物には、地球環境への負荷低減のために燃費向上が必要とされており、そのためFRPにも更なる軽量化が求められている。このような点を鑑みて、たとえば、第1繊維強化樹脂層と、第2繊維強化樹脂層と、第1および第2繊維強化樹脂層の間に形成された発泡樹脂層とを備えた繊維強化複合体が提案されている(例えば、特許文献1参照)。この技術によれば、繊維強化複合体に、繊維強化樹脂(FRP)よりも軽量の発泡樹脂層を備えるため、さらなる軽量化を図ることができる。 Vehicles such as airplanes, automobiles, and ships are required to improve fuel efficiency in order to reduce the load on the global environment, and therefore, further weight reduction is required for FRP. In view of such a point, for example, a fiber reinforced resin including a first fiber reinforced resin layer, a second fiber reinforced resin layer, and a foamed resin layer formed between the first and second fiber reinforced resin layers. A complex has been proposed (see, for example, Patent Document 1). According to this technique, since the fiber reinforced composite is provided with the foamed resin layer that is lighter than the fiber reinforced resin (FRP), further weight reduction can be achieved.
特開2016-49766号公報JP 2016-49766 Gazette
 ところで、特許文献1の繊維強化複合体の端面は、発泡樹脂層の端面がそのまま露出している。ここで、たとえば、繊維強化複合体の端面を含む端部をさらに強化しようと、繊維強化樹脂層を新たに並設した場合、この繊維強化樹脂層と、発泡樹脂層との間の強度差が起因して、この境界部分に応力が集中することが想定される。 Incidentally, the end face of the foamed resin layer is exposed as it is at the end face of the fiber-reinforced composite of Patent Document 1. Here, for example, when a fiber reinforced resin layer is newly arranged in parallel to further strengthen the end including the end face of the fiber reinforced composite, there is a difference in strength between the fiber reinforced resin layer and the foamed resin layer. As a result, it is assumed that stress concentrates on this boundary portion.
 本発明は、前記課題を鑑みてなされたものであり、その目的とするところは、発泡樹脂層の端部に隣接して繊維強化樹脂を形成したとしても、これらの境界における応力集中を低減することができる繊維強化複合体を提供することにある。 The present invention has been made in view of the above problems, and the object of the present invention is to reduce stress concentration at these boundaries even if a fiber reinforced resin is formed adjacent to the end of the foamed resin layer. It is to provide a fiber reinforced composite that can be used.
 前記課題を鑑みて、本発明に係る繊維強化複合体は、第1繊維強化樹脂層と、第2繊維強化樹脂層と、前記第1および第2繊維強化樹脂層の間に形成された発泡樹脂層を有した第1複合部と、前記発泡樹脂層の端部に隣接して形成され、繊維強化樹脂からなる第2複合部と、を備えており、前記発泡樹脂層のうち、前記第2複合部に隣接した部分が、前記発泡樹脂層の他の部分に比べて密度が高い高密度層となっていることを特徴とする。 In view of the above problems, a fiber reinforced composite according to the present invention is a foamed resin formed between a first fiber reinforced resin layer, a second fiber reinforced resin layer, and the first and second fiber reinforced resin layers. A first composite part having a layer, and a second composite part formed adjacent to an end of the foamed resin layer and made of a fiber reinforced resin. Of the foamed resin layer, the second composite part is provided. A portion adjacent to the composite portion is a high-density layer having a higher density than other portions of the foamed resin layer.
 本発明によれば、第1複合部は、第1および第2繊維強化樹脂層の間に発泡樹脂層が形成されているので、繊維強化複合体をより軽量化することができるとともに、繊維強化複合体の衝撃吸収性を高めることができる。 According to the present invention, since the foamed resin layer is formed between the first and second fiber reinforced resin layers in the first composite part, the fiber reinforced composite can be further reduced in weight and fiber reinforced. The impact absorbability of the composite can be increased.
 さらに、発泡樹脂層のうち、第2複合部に隣接した部分が、発泡樹脂層の他の部分に比べて密度が高い高密度層となっているので、発泡樹脂層の他の部分の密度に比べて、高密度層の密度は、第2複合部の繊維強化樹脂の密度に近い。これにより、発泡樹脂層の端部に隣接して第2複合部の繊維強化樹脂を一体的に形成したとしても、これらの強度差は小さくなるため、これらの境界における応力集中を低減することができる。 Furthermore, since the portion adjacent to the second composite portion of the foamed resin layer is a high-density layer having a higher density than other portions of the foamed resin layer, the density of the other portions of the foamed resin layer is reduced. In comparison, the density of the high-density layer is close to the density of the fiber reinforced resin of the second composite part. As a result, even if the fiber reinforced resin of the second composite portion is integrally formed adjacent to the end portion of the foamed resin layer, the difference in strength between them becomes small, so that stress concentration at these boundaries can be reduced. it can.
 より好ましい態様としては、前記高密度層の層厚みは、前記発泡樹脂層の他の部分の層厚みよりも薄くなっている。この態様によれば、高密度層の層厚みが、発泡樹脂層の他の部分の層厚みよりも薄くなっているので、発泡樹脂層の高密度層が第2複合部に接触する部分(端部)を、小さくすることができる。このため、高密度層と第2複合部との界面を小さくし、これらの剥がれを抑えることができる。 In a more preferred embodiment, the layer thickness of the high-density layer is thinner than the layer thickness of other portions of the foamed resin layer. According to this aspect, since the layer thickness of the high-density layer is thinner than the layer thickness of the other part of the foamed resin layer, the part (edge) where the high-density layer of the foamed resin layer contacts the second composite part Part) can be made smaller. For this reason, the interface between the high-density layer and the second composite portion can be reduced, and peeling of these can be suppressed.
 より好ましい態様としては、前記高密度層の層厚みは、前記第2複合部に近づくに従って、薄くなっている。この態様によれば、高密度層の層厚みが、第2複合部に近づくに従って薄くなっているため、高密度層に段差等が形成され難くなり、高密度層における応力集中を低減することができる。 As a more preferred embodiment, the layer thickness of the high-density layer is thinner as it approaches the second composite part. According to this aspect, since the layer thickness of the high-density layer becomes thinner as it approaches the second composite part, it is difficult to form a step or the like in the high-density layer, and stress concentration in the high-density layer can be reduced. it can.
 より好ましい態様としては、前記高密度層の密度は、前記第2複合部に近づくに従って、高くなっている。この態様によれば、高密度層の密度が、第2複合部に近づくに従って、高くなるため、高密度層の強度が、第2複合部に近づくに従って、第2複合部の強度に近づく。これにより、発泡樹脂層と、第2複合部との強度差が起因となった応力集中を低減することができるばかりでなく、高密度層とその他の発泡樹脂層との境界における強度差が起因となった応力集中も回避することができる。 As a more preferable aspect, the density of the high-density layer increases as the density approaches the second composite part. According to this aspect, since the density of the high-density layer becomes higher as it approaches the second composite part, the strength of the high-density layer approaches the strength of the second composite part as it approaches the second composite part. As a result, not only can the stress concentration caused by the strength difference between the foamed resin layer and the second composite part be reduced, but also the strength difference at the boundary between the high-density layer and the other foamed resin layer. It is possible to avoid stress concentration.
 さらに好ましい態様としては、前記第2複合部は、前記第1繊維強化樹脂層の少なくとも一部が連続した第1連続層と、前記第2繊維強化樹脂層の少なくとも一部が連続した第2連続層とを含む。この態様によれば、第2複合部は、第1および第2繊維強化樹脂層のそれぞれに連続した第1および第2連続層を有するため、第1複合部と第2複合部との間の強度を高めることができる。 As a more preferable aspect, the second composite portion includes a first continuous layer in which at least a part of the first fiber reinforced resin layer is continuous, and a second continuous in which at least a part of the second fiber reinforced resin layer is continuous. Including layers. According to this aspect, since the second composite part has the first and second continuous layers continuous to the first and second fiber reinforced resin layers, respectively, the second composite part is provided between the first composite part and the second composite part. Strength can be increased.
 第1および第2連続層を有したさらに好ましい態様としては、前記第2複合部には、前記第1連続層と前記第2連続層との間に、第3繊維強化樹脂層がさらに積層されている。本発明によれば、第1連続層と第2連続層との間に、第3繊維強化樹脂層が形成されているため、第2複合部の強度をより高めることができる。これにより、第2複合部に貫通孔を穿設する等の機械加工等を簡単に行うことができる。 As a further preferred aspect having the first and second continuous layers, a third fiber reinforced resin layer is further laminated on the second composite portion between the first continuous layer and the second continuous layer. ing. According to this invention, since the 3rd fiber reinforced resin layer is formed between the 1st continuous layer and the 2nd continuous layer, the intensity | strength of a 2nd composite part can be raised more. As a result, machining such as drilling a through hole in the second composite portion can be easily performed.
 第1および第2連続層を有した別の好ましい態様としては、前記第2複合部は、前記第1連続層と前記第2連続層とが接合して積層された積層構造である。この態様によれば、第2複合部は、第1および第2連続層が接合して積層された積層構造であるため、第2複合部全体を、第1複合部に連続した部分にすることができる。これにより、第1複合部と第2複合部との間の強度を高めることができる。 As another preferable aspect having the first and second continuous layers, the second composite part has a stacked structure in which the first continuous layer and the second continuous layer are bonded and stacked. According to this aspect, since the second composite part has a laminated structure in which the first and second continuous layers are joined and laminated, the entire second composite part is made a continuous part to the first composite part. Can do. Thereby, the intensity | strength between a 1st composite part and a 2nd composite part can be raised.
 さらに好ましい態様としては、前記繊維強化複合体の端部に、前記第2複合部が形成されている。この態様によれば、繊維強化複合体の端部に、第2複合部が形成されているため、繊維強化複合体の端部の強度を高めるとともに、その他の部分には、発泡樹脂層が形成されているため、繊維強化複合体の軽量化を図り、衝撃吸収性を高めることができる。 As a further preferred aspect, the second composite part is formed at the end of the fiber-reinforced composite. According to this aspect, since the second composite part is formed at the end of the fiber reinforced composite, the strength of the end of the fiber reinforced composite is increased, and the foamed resin layer is formed at the other part. Therefore, the weight of the fiber reinforced composite can be reduced and the shock absorption can be improved.
 さらに別の好ましい態様としては、前記繊維強化複合体の周縁部に、前記第1複合部の周りを囲うように、前記第2複合部が形成されている。この態様によれば、第2複合部が第1複合部の周りを囲うように形成されているため、繊維強化複合体の全体の強度を高めることができる。また、周縁部以外の部分には、発泡樹脂層が形成されているため、繊維強化複合体の軽量化を図り、衝撃吸収性を高めることができる。 As yet another preferred embodiment, the second composite part is formed on the periphery of the fiber reinforced composite so as to surround the first composite part. According to this aspect, since the second composite part is formed so as to surround the first composite part, the overall strength of the fiber-reinforced composite can be increased. Moreover, since the foamed resin layer is formed in parts other than a peripheral part, the weight reduction of a fiber reinforced composite body can be achieved and shock absorption can be improved.
 本発明に係る繊維強化複合体によれば、発泡樹脂層の端部に隣接して繊維強化樹脂を形成したとしても、これらの境界における応力集中を低減することができる。 According to the fiber reinforced composite according to the present invention, even if the fiber reinforced resin is formed adjacent to the end of the foamed resin layer, the stress concentration at these boundaries can be reduced.
本発明の第1実施形態に係る繊維強化複合体の構造を説明するための模式的斜視図である。It is a typical perspective view for demonstrating the structure of the fiber reinforced composite_body | complex which concerns on 1st Embodiment of this invention. 図1に示す繊維強化複合体のA-A線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line AA of the fiber reinforced composite shown in FIG. (a)は、図1に示す繊維強化複合体のB-B線に沿った断面図であり、(b)は、図1に示す繊維強化複合体のC-C線に沿った断面図である。(A) is a sectional view taken along line BB of the fiber reinforced composite shown in FIG. 1, and (b) is a sectional view taken along line CC of the fiber reinforced composite shown in FIG. is there. 図1に示す繊維強化複合体の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the fiber reinforced composite shown in FIG. (a)~(c)は、図1に示す繊維強化複合体の変形例を示した要部断面図である。(A)-(c) is principal part sectional drawing which showed the modification of the fiber reinforced composite_body | complex shown in FIG. 本発明の第2実施形態に係る繊維強化複合体の構造を説明するための模式的斜視図である。It is a typical perspective view for demonstrating the structure of the fiber reinforced composite_body | complex which concerns on 2nd Embodiment of this invention. 図6に示す繊維強化複合体のD-D線に沿った断面図である。FIG. 7 is a cross-sectional view taken along line DD of the fiber reinforced composite shown in FIG. 6. 図7に示す繊維強化複合体の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the fiber reinforced composite shown in FIG. 図6に示す繊維強化複合体の変形例を示した模式的斜視図である。It is the typical perspective view which showed the modification of the fiber reinforced composite_body | complex shown in FIG. (a)~(c)は、図7に示す繊維強化複合体の変形例を示した要部断面図である。(A)-(c) is principal part sectional drawing which showed the modification of the fiber reinforced composite_body | complex shown in FIG. (a)は、第3実施形態に係る繊維強化複合体の要部を説明するための模式的断面図であり、(b)は、(a)の参考例に係る繊維強化複合体の要部を説明するための模式的断面図である。(A) is typical sectional drawing for demonstrating the principal part of the fiber reinforced composite which concerns on 3rd Embodiment, (b) is the principal part of the fiber reinforced composite which concerns on the reference example of (a). It is a typical sectional view for explaining. 実施例に係る繊維強化複合体の断面写真である。It is a cross-sectional photograph of the fiber reinforced composite which concerns on an Example.
 以下の本発明に係る第1および第2実施形態に係る繊維強化複合体を、図1~図9を参照しながら説明する。 The fiber-reinforced composites according to the first and second embodiments according to the present invention will be described with reference to FIGS.
〔第1実施形態〕
1.繊維強化複合体1について
 図1に示すように、第1実施形態に係る繊維強化複合体1は、平板状の形状であり、第1複合部10と第2複合部20とを備えている。第2複合部20は、繊維強化複合体1の両端部に形成されており、これらの間に、第1複合部10が各第2複合部20と一体的に形成されている。本実施形態では、第1および第2複合部10、20は、略同じ厚みである。なお、本実施形態では、繊維強化複合体1は、平板状であるが、たとえば、これが湾曲した形状、捩じれた形状であってもよく、特にその形状は限定されない。また、本実施形態では、第1および第2複合部10、20は、略同じ厚みであるが、たとえば、第1複合部10と第2複合部20との間で、応力集中がしないのであれば、これらの厚みが異なる厚みであってもよい。
[First Embodiment]
1. About Fiber Reinforced Composite 1 As shown in FIG. 1, the fiber reinforced composite 1 according to the first embodiment has a flat plate shape and includes a first composite part 10 and a second composite part 20. The second composite part 20 is formed at both ends of the fiber reinforced composite 1, and the first composite part 10 is formed integrally with each second composite part 20 between them. In the present embodiment, the first and second composite parts 10 and 20 have substantially the same thickness. In the present embodiment, the fiber reinforced composite 1 has a flat plate shape, but may be a curved shape or a twisted shape, and the shape is not particularly limited. In the present embodiment, the first and second composite parts 10 and 20 have substantially the same thickness. For example, there is no stress concentration between the first composite part 10 and the second composite part 20. For example, these thicknesses may be different.
 図2および図3(a)に示すように、第1複合部10は、第1繊維強化樹脂層11と、第2繊維強化樹脂層12と、第1および第2繊維強化樹脂層11、12の間に形成された発泡樹脂層13と、を有した積層構造である。第2複合部20は、発泡樹脂層13の端部13aに隣接して、これに接触するように形成され、繊維強化樹脂からなる部分であり、本実施形態では複数の繊維強化樹脂層が積層された積層構造である。 As shown in FIG. 2 and FIG. 3A, the first composite unit 10 includes a first fiber reinforced resin layer 11, a second fiber reinforced resin layer 12, and first and second fiber reinforced resin layers 11, 12. And a foamed resin layer 13 formed therebetween. The second composite portion 20 is a portion made of a fiber reinforced resin, adjacent to the end portion 13a of the foamed resin layer 13, and made of a fiber reinforced resin. In the present embodiment, a plurality of fiber reinforced resin layers are laminated. It is the laminated structure made.
 第1複合部10は、上述したように、第1繊維強化樹脂層11と、第2繊維強化樹脂層12と、第1および第2繊維強化樹脂層11、12の間に形成された発泡樹脂層13とを備えている。第1および第2繊維強化樹脂層11、12は、繊維強化複合体1の外皮に相当する外側層11a、12aと、その内側に相当する内側層11b、12bと、を備えており、これらは、すべて、繊維強化樹脂(FRP)で構成されている。 As described above, the first composite portion 10 is a foamed resin formed between the first fiber reinforced resin layer 11, the second fiber reinforced resin layer 12, and the first and second fiber reinforced resin layers 11 and 12. Layer 13. The first and second fiber reinforced resin layers 11 and 12 include outer layers 11a and 12a corresponding to the outer skin of the fiber reinforced composite 1, and inner layers 11b and 12b corresponding to the inner sides thereof, , All are made of fiber reinforced resin (FRP).
 図2および図3(b)に示すように、第2複合部20は、発泡樹脂層13の端部13aに隣接して形成され、繊維強化樹脂からなる。第2複合部20は、第1繊維強化樹脂層11の少なくとも一部である外側層11aに連続した第1連続層21と、第2繊維強化樹脂層12の少なくとも一部である外側層12aに連続した第2連続層22とを含む。これにより、第2複合部20は、第1および第2繊維強化樹脂層11、12の外側層11a、12aのそれぞれに連続した第1および第2連続層21、22を有するため、第1複合部10と第2複合部20との間の強度を高めることができる。 2 and 3B, the second composite portion 20 is formed adjacent to the end portion 13a of the foamed resin layer 13 and is made of a fiber reinforced resin. The second composite portion 20 includes a first continuous layer 21 continuous with the outer layer 11 a that is at least a part of the first fiber reinforced resin layer 11, and an outer layer 12 a that is at least a part of the second fiber reinforced resin layer 12. A continuous second continuous layer 22. Thereby, since the 2nd composite part 20 has the 1st and 2nd continuous layers 21 and 22 which followed the outer layers 11a and 12a of the 1st and 2nd fiber reinforced resin layers 11 and 12, respectively, the 1st composite The strength between the part 10 and the second composite part 20 can be increased.
 特に、第2複合部20の第1連続層21は、第1繊維強化樹脂層11の強化繊維を構成する基材(例えば織物基材)が連続した層であることが好ましい。同様に、第2複合部20の第2連続層22は、第2繊維強化樹脂層12の強化繊維を構成する基材(例えば織物基材)が連続した層であることが好ましい。これにより、第1複合部10と第2複合部20との間の強度をより一層高めることができる。 In particular, the first continuous layer 21 of the second composite portion 20 is preferably a layer in which a base material (for example, a woven base material) constituting the reinforcing fibers of the first fiber reinforced resin layer 11 is continuous. Similarly, it is preferable that the 2nd continuous layer 22 of the 2nd composite part 20 is a layer with which the base material (for example, textile base material) which comprises the reinforced fiber of the 2nd fiber reinforced resin layer 12 was continuous. Thereby, the intensity | strength between the 1st composite part 10 and the 2nd composite part 20 can be raised further.
 第2複合部20には、第1連続層21と第2連続層22との間に、第3繊維強化樹脂層23がさらに積層されている。第3繊維強化樹脂層は、複数の繊維強化樹脂層が積層された層である。このように、第1連続層21と第2連続層22との間に、第3繊維強化樹脂層23が形成されているため、第2複合部20の強度をより一層高めることができる。これにより、第2複合部20に貫通孔を穿設する等の機械加工を簡単に行うことができる。 In the second composite part 20, a third fiber reinforced resin layer 23 is further laminated between the first continuous layer 21 and the second continuous layer 22. The third fiber reinforced resin layer is a layer in which a plurality of fiber reinforced resin layers are laminated. Thus, since the 3rd fiber reinforced resin layer 23 is formed between the 1st continuous layer 21 and the 2nd continuous layer 22, the intensity | strength of the 2nd composite part 20 can be raised further. Accordingly, machining such as drilling a through hole in the second composite portion 20 can be easily performed.
 ここで、第1複合部10および第2複合部20の繊維強化樹脂は、強化繊維と、強化繊維同士を結合する合成樹脂(マトリクス樹脂)で構成されている。強化繊維としては、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維;ステンレス繊維やスチール繊維などの金属繊維;アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維;またはボロン繊維などが挙げられる。強化繊維は、一種単独で用いられてもよく、二種以上が併用されてもよい。なかでも、炭素繊維、ガラス繊維、またはアラミド繊維が好ましく、炭素繊維がより好ましい。これらの強化繊維は、軽量であるにも関わらず優れた機械的強度を有している。 Here, the fiber reinforced resin of the first composite part 10 and the second composite part 20 is composed of a reinforced fiber and a synthetic resin (matrix resin) that bonds the reinforced fibers together. Reinforcing fibers include glass fibers, carbon fibers, silicon carbide fibers, alumina fibers, tyrano fibers, basalt fibers, ceramic fibers and other inorganic fibers; stainless steel fibers and steel fibers; aramid fibers, polyethylene fibers, polyparaphenylene Organic fibers such as benzoxador (PBO) fibers; or boron fibers. Reinforcing fibers may be used alone or in combination of two or more. Among these, carbon fiber, glass fiber, or aramid fiber is preferable, and carbon fiber is more preferable. These reinforcing fibers have excellent mechanical strength despite being lightweight.
 強化繊維は、長繊維または短繊維のいずれであってもよいが、所望の形状に加工された強化繊維基材として用いられることが好ましい。強化繊維基材としては、強化繊維を用いてなる織物、編物、不織布、または強化繊維を一方向に引き揃えた繊維束(ストランド)を糸で結束(縫合)してなる面材などが挙げられる。織物の織り方としては、平織、綾織、朱子織などが挙げられる。繊維強化基材は、一枚の繊維強化基材のみを積層せずに用いてもよく、複数枚の繊維強化基材を積層して積層繊維強化基材として用いてもよい。 The reinforcing fiber may be either a long fiber or a short fiber, but is preferably used as a reinforcing fiber substrate processed into a desired shape. Examples of the reinforcing fiber base material include woven fabrics, knitted fabrics, nonwoven fabrics, or face materials formed by binding (stitching) fiber bundles (strands) obtained by aligning reinforcing fibers in one direction with yarns. . Examples of the weaving method include plain weave, twill weave and satin weave. The fiber reinforced base material may be used without laminating only one fiber reinforced base material, or a plurality of fiber reinforced base materials may be laminated and used as a laminated fiber reinforced base material.
 合成樹脂は、強化繊維に含浸されて、強化繊維同士を結合する樹脂である。含浸させた合成樹脂によって、強化繊維同士を結着一体化させることができる。強化繊維に含浸させる合成樹脂は、熱硬化性樹脂または熱可塑性樹脂のいずれの樹脂であってもよいが、より好ましくは、熱硬化性樹脂である。熱硬化性樹脂としては、特に限定されず、例えば、エポキシ系樹脂、不飽和ポリエステル系樹脂、フェノール系樹脂、メラミン系樹脂、ポリウレタン系樹脂、シリコン系樹脂、マレイミド系樹脂、ビニルエステル系樹脂、シアン酸エステル系樹脂、またはマレイミド系樹脂とシアン酸エステル系樹脂を予備重合した樹脂などが挙げられる。熱硬化性樹脂は、単独で用いられても二種以上が併用されてもよい。なかでも、エポキシ系樹脂、またはビニルエステル系樹脂が好ましい。これらの合成樹脂によれば、弾性に優れた繊維強化樹脂を形成することができ、得られる繊維強化複合体1の耐衝撃性を向上させることができる。また、熱硬化性樹脂には、硬化剤、硬化促進剤などの添加剤が含有されていてもよい。繊維強化樹脂は、シート・モールディング・コンパウンド(SMC)により成形されてもよい。 Synthetic resin is a resin that is impregnated into reinforcing fibers and bonds the reinforcing fibers together. The reinforcing fibers can be bonded and integrated by the impregnated synthetic resin. The synthetic resin impregnated into the reinforcing fibers may be either a thermosetting resin or a thermoplastic resin, but more preferably a thermosetting resin. The thermosetting resin is not particularly limited. For example, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicon resin, maleimide resin, vinyl ester resin, cyanide. Examples thereof include acid ester resins, or resins obtained by prepolymerizing maleimide resins and cyanate ester resins. A thermosetting resin may be used independently or 2 or more types may be used together. Of these, epoxy resins or vinyl ester resins are preferable. According to these synthetic resins, a fiber reinforced resin excellent in elasticity can be formed, and the impact resistance of the resulting fiber reinforced composite 1 can be improved. Further, the thermosetting resin may contain additives such as a curing agent and a curing accelerator. The fiber reinforced resin may be molded by a sheet molding compound (SMC).
 繊維強化樹脂における熱硬化性樹脂の含有量は、20~70重量%が好ましく、30~60重量%がより好ましい。熱硬化性樹脂の含有量が少な過ぎると、強化繊維同士の結着性や第1および第2繊維強化樹脂層11、12と発泡樹脂層13との接着性が不十分となり、第1および第2繊維強化樹脂層11、12の機械的強度や繊維強化複合体1の耐衝撃性を十分に向上することができないおそれがある。また、熱硬化性樹脂の含有量が多過ぎると、第1および第2繊維強化樹脂層11、12の機械的強度が低下して、繊維強化複合体1の耐衝撃性を十分に向上させることができないおそれがある。 The content of the thermosetting resin in the fiber reinforced resin is preferably 20 to 70% by weight, more preferably 30 to 60% by weight. If the content of the thermosetting resin is too small, the binding property between the reinforcing fibers and the adhesion between the first and second fiber reinforced resin layers 11 and 12 and the foamed resin layer 13 become insufficient, and the first and first There is a possibility that the mechanical strength of the two fiber reinforced resin layers 11 and 12 and the impact resistance of the fiber reinforced composite 1 cannot be sufficiently improved. Moreover, when there is too much content of a thermosetting resin, the mechanical strength of the 1st and 2nd fiber reinforced resin layers 11 and 12 will fall, and the impact resistance of the fiber reinforced composite 1 will fully be improved. You may not be able to.
 繊維強化複合体1を構成する発泡樹脂層13は、素材として発泡した合成樹脂を含んでいる。合成樹脂は、シアノ基、ヒドロキシ基(水酸基)、カルボニル基、アミノ基、エポキシ基、ハロゲン原子、オキソ基、またはフェニル基などの極性基を有していることが好ましい。極性基を有している合成樹脂を用いることによって、これを含む発泡樹脂層13と第1および第2繊維強化樹脂層11、12とを強固に一体化させることができる。これにより、繊維強化複合体1に衝撃が加わった際に発泡樹脂層13と第1および第2繊維強化樹脂層11、12との剥離を低減させて、繊維強化複合体1の耐衝撃性をより向上させることが可能となる。 The foamed resin layer 13 constituting the fiber reinforced composite 1 contains a foamed synthetic resin. The synthetic resin preferably has a polar group such as a cyano group, a hydroxy group (hydroxyl group), a carbonyl group, an amino group, an epoxy group, a halogen atom, an oxo group, or a phenyl group. By using a synthetic resin having a polar group, the foamed resin layer 13 including this and the first and second fiber reinforced resin layers 11 and 12 can be firmly integrated. Thereby, when an impact is applied to the fiber reinforced composite 1, the peeling between the foamed resin layer 13 and the first and second fiber reinforced resin layers 11 and 12 is reduced, so that the impact resistance of the fiber reinforced composite 1 is increased. This can be further improved.
 発泡樹脂層13に用いられる合成樹脂として、具体的には、ポリカーボネート系樹脂、アクリル系樹脂、熱可塑性ポリエステル系樹脂、ポリメタクリルイミド系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、またはポリプロピレン系樹脂などが挙げられる。なお、合成樹脂は、単独で用いられても二種以上が併用されてもよい。なかでも、発泡樹脂層13と、第1および第2繊維強化樹脂層11、12とをより強固に一体化することができることから、熱可塑性ポリエステル系樹脂またはポリアミド系樹脂が好ましく、熱可塑性ポリエステル系樹脂がより好ましい。 Specific examples of the synthetic resin used for the foamed resin layer 13 include polycarbonate resins, acrylic resins, thermoplastic polyester resins, polymethacrylimide resins, polystyrene resins, polyamide resins, and polypropylene resins. Can be mentioned. In addition, a synthetic resin may be used independently or 2 or more types may be used together. Especially, since the foamed resin layer 13 and the 1st and 2nd fiber reinforced resin layers 11 and 12 can be integrated more firmly, a thermoplastic polyester-type resin or a polyamide-type resin is preferable, and a thermoplastic polyester type | system | group is preferable. A resin is more preferable.
 本実施形態では、発泡樹脂層13には、第2複合部20に隣接した部分(端部13a)は、発泡樹脂層13の他の部分に比べて密度が高い高密度層13bとなっている。より具体的には、高密度層13bの密度は、第2複合部20に近づくに従って、高くなっている。高密度層13bの密度は0.2~0.9g/cmの範囲にあることが好ましく、発泡樹脂層13の他の部分は、高密度層13bの密度が高いことを前提として、0.05~0.3g/cmの範囲にあることが好ましい。なお、本明細書でいう高密度層の密度は、JIS K7222:2005「発泡プラスチック及びゴム-見掛け密度の測定」に準拠して測定される値をいう。 In the present embodiment, in the foamed resin layer 13, a portion (end portion 13 a) adjacent to the second composite portion 20 is a high-density layer 13 b having a higher density than other portions of the foamed resin layer 13. . More specifically, the density of the high-density layer 13 b increases as the second composite portion 20 is approached. The density of the high-density layer 13b is preferably in the range of 0.2 to 0.9 g / cm 3 , and the other portions of the foamed resin layer 13 are assumed to be 0.00 on the premise that the density of the high-density layer 13b is high. It is preferably in the range of 05 to 0.3 g / cm 3 . The density of the high-density layer in the present specification refers to a value measured according to JIS K7222: 2005 “Foamed plastics and rubbers—Measurement of apparent density”.
 このように、発泡樹脂層13には、高密度層13bが形成されているので、発泡樹脂層13の他の部分の密度に比べて、高密度層13bの密度は、第2複合部20の繊維強化樹脂の密度に近い。これにより、発泡樹脂層13の端部に隣接して第2複合部20の繊維強化樹脂を一体的に形成したとしても、これらの強度差は小さくなるため、これらの境界における応力集中を低減することができる。 Thus, since the high density layer 13b is formed in the foamed resin layer 13, the density of the high density layer 13b is higher than that of the other parts of the foamed resin layer 13. Close to the density of fiber reinforced resin. Thereby, even if the fiber reinforced resin of the second composite portion 20 is integrally formed adjacent to the end portion of the foamed resin layer 13, the strength difference between them becomes small, so that the stress concentration at these boundaries is reduced. be able to.
 これに加えて、本実施形態では、高密度層13bの密度が、第2複合部20に近づくに従って、高くなるため、高密度層13bの強度が、第2複合部20に近づくに従って、第2複合部20の強度に近づく。このようにして、発泡樹脂層13と、第2複合部20との強度差が起因となった応力集中を低減することができるばかりでなく、高密度層13b内における強度差が起因となった応力集中も回避することができる。 In addition to this, in the present embodiment, the density of the high-density layer 13b increases as it approaches the second composite part 20, and therefore the strength of the high-density layer 13b increases as the second composite part 20 approaches. The strength of the composite part 20 is approached. Thus, not only can the stress concentration caused by the strength difference between the foamed resin layer 13 and the second composite portion 20 be reduced, but also the strength difference in the high-density layer 13b. Stress concentration can also be avoided.
 また、本実施形態では、高密度層13bの層厚みは、発泡樹脂層13の他の部分の層厚みよりも薄くなっている。より具体的には、高密度層13bの層厚みは、第2複合部20に近づくに従って、薄くなっている。さらに、高密度層13bに隣接する第1繊維強化樹脂層には、樹脂溜り部15が形成されている。この樹脂溜り部15は、上述した繊維強化樹脂または合成樹脂のいずれかにより形成され、後述するインサート材15’の素材により、選択することができる。 Further, in the present embodiment, the layer thickness of the high-density layer 13b is thinner than the layer thickness of the other part of the foamed resin layer 13. More specifically, the layer thickness of the high-density layer 13b becomes thinner as the second composite portion 20 is approached. Further, a resin reservoir 15 is formed in the first fiber reinforced resin layer adjacent to the high density layer 13b. The resin reservoir 15 is formed of either the above-described fiber reinforced resin or synthetic resin, and can be selected depending on the material of the insert material 15 ′ described later.
 本実施形態では、高密度層13bの層厚みは、発泡樹脂層13の他の部分の層厚みよりも薄くなっているので、発泡樹脂層13の高密度層13bが第2複合部20に接触する部分(端部)を小さくすることができる。このため、高密度層13bと第2複合部20との界面を小さくし、これらの剥がれを抑えることができる。 In the present embodiment, since the layer thickness of the high-density layer 13b is thinner than the layer thickness of other portions of the foamed resin layer 13, the high-density layer 13b of the foamed resin layer 13 contacts the second composite portion 20. The part (end part) to perform can be made small. For this reason, the interface between the high-density layer 13b and the second composite portion 20 can be reduced, and peeling of these can be suppressed.
 これに加えて、高密度層13bの層厚みが、第2複合部20に近づくに従って薄くなっているため、高密度層13bに段差等が形成され難くなり、発泡樹脂層13における応力集中を低減することができる。さらに、樹脂溜り部15を設けることにより、繊維強化複合体1にボイドが形成されることを回避することができる。 In addition, since the layer thickness of the high-density layer 13b becomes thinner as it approaches the second composite portion 20, it is difficult to form a step or the like in the high-density layer 13b, and stress concentration in the foamed resin layer 13 is reduced. can do. Furthermore, by providing the resin reservoir 15, it is possible to avoid the formation of voids in the fiber reinforced composite 1.
 ここで、高密度層13bの幅(層の厚さ方向に対して直交する方向の長さ)bは、5~20mmであることがより好ましく、高密度層13bを除く他の部分の層の厚み(すなわち高密度層13bの層の最大厚み)tは、1~20mmであることがより好ましく、t/bは、5~20mmの範囲にあることがより好ましい。この範囲を満たすことにより、発泡樹脂層13の端部13aに隣接して繊維強化樹脂を一体的に形成したとしても、これらの境界における応力集中を低減することができる。 Here, the width (length in the direction perpendicular to the thickness direction of the layer) b of the high-density layer 13b is more preferably 5 to 20 mm, and the other layers except for the high-density layer 13b The thickness (that is, the maximum thickness of the high-density layer 13b) t is more preferably 1 to 20 mm, and t / b is more preferably in the range of 5 to 20 mm. By satisfying this range, even if the fiber reinforced resin is integrally formed adjacent to the end portion 13a of the foamed resin layer 13, the stress concentration at these boundaries can be reduced.
 さらに、高密度層13bを除く他の部分の層の厚みtと、第1および第2繊維強化樹脂の各層の厚みTとの比であるt/Tは、0.5~0.225の範囲にあることがより好ましい。この範囲を満たすことにより、繊維強化複合体1の剛性を確保しつつ、繊維強化複合体1の衝撃吸収性をより確保することができる。 Further, t / T, which is a ratio of the thickness t of the other portion excluding the high density layer 13b and the thickness T of each layer of the first and second fiber reinforced resins, is in the range of 0.5 to 0.225. More preferably. By satisfying this range, it is possible to further ensure the impact absorbability of the fiber reinforced composite 1 while ensuring the rigidity of the fiber reinforced composite 1.
2.繊維強化複合体1の製造方法について
 図4は、図1に示す繊維強化複合体1の製造方法を説明するための図である。図4に示すように、繊維強化複合体1の内側層11b、12bに相当する相当する繊維強化樹脂シート11b’、12b’を準備し、これらの間に、予備発泡させた発泡樹脂シート13’を挟み込んだ積層体10’を成形する。次に、積層体10’を上型51と下型52との間に配置する。
2. About the manufacturing method of the fiber reinforced composite 1 FIG. 4: is a figure for demonstrating the manufacturing method of the fiber reinforced composite 1 shown in FIG. As shown in FIG. 4, corresponding fiber reinforced resin sheets 11 b ′ and 12 b ′ corresponding to the inner layers 11 b and 12 b of the fiber reinforced composite 1 are prepared, and a foamed resin sheet 13 ′ preliminarily foamed therebetween is prepared. A laminated body 10 ′ sandwiching the film is formed. Next, the stacked body 10 ′ is disposed between the upper mold 51 and the lower mold 52.
 次に、積層体10’の発泡樹脂シート13’に隣接した位置に、複数の繊維強化樹脂シートを積層した繊維強化樹脂ブロック23’を配置する。次に、積層体10’と繊維強化樹脂ブロック23’の間に、インサート材15’を配置する。インサート材15’は、繊維強化樹脂シートの樹脂と同じ種類の合成樹脂からなってもよく、強化繊維に合成樹脂を含浸した繊維強化樹脂であってもよい。次に、これらを覆うように、外側層11a、12aおよび連続層21、22に相当する繊維強化樹脂シート11a’、12a’を積層する。 Next, a fiber reinforced resin block 23 ′ in which a plurality of fiber reinforced resin sheets are stacked is disposed at a position adjacent to the foamed resin sheet 13 ′ of the laminated body 10 ′. Next, the insert material 15 ′ is disposed between the laminate 10 ′ and the fiber reinforced resin block 23 ′. The insert material 15 ′ may be made of the same type of synthetic resin as the resin of the fiber reinforced resin sheet, or may be a fiber reinforced resin obtained by impregnating a reinforced fiber with a synthetic resin. Next, fiber reinforced resin sheets 11a 'and 12a' corresponding to the outer layers 11a and 12a and the continuous layers 21 and 22 are laminated so as to cover them.
 そして、上型51と下型52との間に、繊維強化樹脂シート11a’、12a’に覆われた積層体10’、繊維強化樹脂ブロック23’、インサート材15’を配置し、上型51と下型52とでこれらを加圧しながら、加熱する。また、この時の加熱温度は、発泡樹脂シート13’が発泡する温度以上であることを前提に、繊維強化樹脂シートの合成樹脂が、熱可塑性樹脂である場合には、この軟化点温度以上である。一方、繊維強化樹脂シートの合成樹脂が、熱硬化性樹脂である場合には、硬化点温度以上である。 And between the upper mold | type 51 and the lower mold | type 52, the laminated body 10 'covered with the fiber reinforced resin sheet 11a' and 12a ', the fiber reinforced resin block 23', and insert material 15 'is arrange | positioned, and the upper mold | type 51 is arranged. The lower mold 52 is heated while being pressurized. Moreover, on the assumption that the heating temperature at this time is equal to or higher than the temperature at which the foamed resin sheet 13 'is foamed, when the synthetic resin of the fiber reinforced resin sheet is a thermoplastic resin, the heating temperature is equal to or higher than the softening point temperature. is there. On the other hand, when the synthetic resin of the fiber reinforced resin sheet is a thermosetting resin, the temperature is equal to or higher than the curing point temperature.
 型締めにより、発泡樹脂シート13’は、所定の厚みまで発泡し、発泡樹脂シート13’の端部13a’はインサート材15’に押圧される。これにより、発泡樹脂シート13’の端部13a’の発泡が抑制され、発泡樹脂層13には、第2複合部20に隣接した部分が、発泡樹脂層13の他の部分に比べて高い密度となる高密度層13bとして成形される。高密度層13bの密度は、第2複合部20に近づくに従って、高くなる。 By the mold clamping, the foamed resin sheet 13 ′ is foamed to a predetermined thickness, and the end portion 13 a ′ of the foamed resin sheet 13 ′ is pressed against the insert material 15 ′. Thereby, foaming of the end portion 13a ′ of the foamed resin sheet 13 ′ is suppressed, and the portion of the foamed resin layer 13 adjacent to the second composite portion 20 has a higher density than other portions of the foamed resin layer 13. Is formed as a high-density layer 13b. The density of the high-density layer 13b increases as the second composite portion 20 is approached.
 さらに、インサート材15’が、押圧により、発泡樹脂シート13’の端部13a’を変形させるので、高密度層13bの層厚みを、発泡樹脂層13の他の部分の層厚みよりも薄くすることができ、高密度層13bの層厚みを、第2複合部20に近づくに従って、薄くすることができる。 Furthermore, since the insert material 15 ′ deforms the end portion 13 a ′ of the foamed resin sheet 13 ′ by pressing, the layer thickness of the high-density layer 13 b is made thinner than the layer thickness of other portions of the foamed resin layer 13. The layer thickness of the high-density layer 13b can be reduced as the second composite portion 20 is approached.
3.その他の変形例
 図5(a)~図5(c)は、図1に示す繊維強化複合体1の変形例を示した要部断面図である。たとえば、図2では、発泡樹脂層13の高密度層13bの一方側(第1繊維強化樹脂層11側)の界面を傾斜させることにより、高密度層13bの層厚みが、第2複合部20に近づくに従って、薄くなっていた。
3. Other Modifications FIGS. 5 (a) to 5 (c) are main part sectional views showing a modification of the fiber reinforced composite 1 shown in FIG. For example, in FIG. 2, the layer thickness of the high-density layer 13 b is changed to the second composite portion 20 by tilting the interface on one side (the first fiber reinforced resin layer 11 side) of the high-density layer 13 b of the foamed resin layer 13. As it approached, it became thinner.
 しかしながら、図5(a)に示すように、発泡樹脂層13の高密度層13bの両方(第1繊維強化樹脂層11側および第2繊維強化樹脂層12側)の界面を傾斜させることにより、高密度層13bの層厚みが、第2複合部20に近づくに従って、薄くなっていてもよい。このような形状の高密度層13bは、積層体10’と繊維強化樹脂ブロック23’間の両側にインサート材15’を配置することにより、成形することができる。 However, as shown in FIG. 5 (a), by inclining the interface of both the high-density layer 13b of the foamed resin layer 13 (the first fiber reinforced resin layer 11 side and the second fiber reinforced resin layer 12 side), The layer thickness of the high-density layer 13b may become thinner as the second composite unit 20 is approached. The high-density layer 13b having such a shape can be molded by disposing the insert material 15 'on both sides between the laminate 10' and the fiber reinforced resin block 23 '.
 さらに、図5(b)に示すように、発泡樹脂層13の一方側を凹ませることにより、高密度層13bの層厚みを略均一にしてもよく、図5(c)に示すように、発泡樹脂層13の両側を凹ませることにより、高密度層13bの層厚みを略均一にしてもよい。 Furthermore, as shown in FIG. 5B, the thickness of the high-density layer 13b may be made substantially uniform by denting one side of the foamed resin layer 13, and as shown in FIG. By denting both sides of the foamed resin layer 13, the thickness of the high-density layer 13b may be made substantially uniform.
〔第2実施形態〕
1.繊維強化複合体1Aについて
 図6は、本発明の第2実施形態に係る繊維強化複合体1Aの構造を説明するための模式的斜視図であり、図7は、図6に示す繊維強化複合体1AのD-D線に沿った断面図である。なお、第1実施形態と同じ構成は、同じ符号を付して詳細な説明を省略する。
[Second Embodiment]
1. About Fiber Reinforced Composite 1A FIG. 6 is a schematic perspective view for explaining the structure of the fiber reinforced composite 1A according to the second embodiment of the present invention, and FIG. 7 shows the fiber reinforced composite shown in FIG. FIG. 2 is a cross-sectional view taken along the line DD of 1A. In addition, the same structure as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits detailed description.
 本実施形態では、第2実施形態に係る繊維強化複合体1Aは、立体形状(プレート状)である。繊維強化複合体1Aの底部1aおよび立ち上がり部1bが、第1複合部10により形成されており、第1複合部10の周りを囲うように、第2複合部20が形成されている。すなわち、本実施形態では、繊維強化複合体1Aの周縁部1cに、リング状の第2複合部20が形成されている。なお、本実施形態では、繊維強化複合体1Aは、プレート状であるが、たとえば、カップ状、平板状、底有筒状、またはドーム状などであってもよく、第1複合部10の周りを囲うように、第2複合部20が形成されているのであれば、特にその形状は限定されるものではない。 In the present embodiment, the fiber-reinforced composite body 1A according to the second embodiment has a three-dimensional shape (plate shape). The bottom part 1a and the rising part 1b of the fiber reinforced composite 1A are formed by the first composite part 10, and the second composite part 20 is formed so as to surround the first composite part 10. That is, in the present embodiment, the ring-shaped second composite portion 20 is formed on the peripheral edge portion 1c of the fiber-reinforced composite body 1A. In the present embodiment, the fiber reinforced composite 1A has a plate shape, but may be, for example, a cup shape, a flat plate shape, a bottomed cylindrical shape, or a dome shape, and around the first composite portion 10. If the 2nd composite part 20 is formed so that it may surround, the shape in particular will not be limited.
 このように、第2複合部20が第1複合部10の周りを囲うように形成されているため、繊維強化複合体1Aの周縁部1cの強度を高めることにより、繊維強化複合体1A全体の強度を高めることができる。また、第2複合部20が第1複合部10の周りを囲うように形成されているため、発泡樹脂層13に水分が侵入することを回避することができる。さらに、周縁部1c以外の部分には、第1複合部10の発泡樹脂層13が形成されているため、繊維強化複合体1Aの軽量化を図り、衝撃吸収性を高めることができる。 Thus, since the 2nd composite part 20 is formed so that the circumference | surroundings of the 1st composite part 10 may be enclosed, by raising the intensity | strength of the peripheral part 1c of the fiber reinforced composite 1A, the fiber reinforced composite 1A whole is increased. Strength can be increased. Further, since the second composite part 20 is formed so as to surround the first composite part 10, it is possible to prevent moisture from entering the foamed resin layer 13. Furthermore, since the foamed resin layer 13 of the first composite part 10 is formed at a part other than the peripheral part 1c, the weight of the fiber-reinforced composite 1A can be reduced and the shock absorption can be enhanced.
 ここで、図7に示すように、第2複合部20は、第1連続層21と第2連続層22とが接合して積層された積層構造である。このため、第1実施形態とは異なり、第2複合部20全体を、第1複合部10に連続した部分にすることができる。これにより、第1複合部10と第2複合部20との間の強度を高めることができる。さらに、本実施形態では、第1実施形態と同様に、発泡樹脂層13には、第2複合部20に隣接した部分が、発泡樹脂層13の他の部分に比べて密度が高い高密度層13bとなっているため、第1複合部10と第2複合部20との間の応力集中を回避することができる。 Here, as shown in FIG. 7, the second composite part 20 has a laminated structure in which a first continuous layer 21 and a second continuous layer 22 are joined and laminated. For this reason, unlike the first embodiment, the entire second composite unit 20 can be a continuous part of the first composite unit 10. Thereby, the intensity | strength between the 1st composite part 10 and the 2nd composite part 20 can be raised. Further, in the present embodiment, as in the first embodiment, the foamed resin layer 13 has a high density layer in which the portion adjacent to the second composite portion 20 has a higher density than the other portions of the foamed resin layer 13. Since it is 13b, stress concentration between the first composite part 10 and the second composite part 20 can be avoided.
 なお、高密度層13bの密度は、第2複合部20に近づくに従って、高くなっており、高密度層13bの層厚みは、発泡樹脂層13の他の部分の層厚みよりも薄く、かつ、第2複合部20に近づくに従って、薄くなっている。これにより、第1実施形態で説明した効果と同様の効果を期待することができる。 Note that the density of the high-density layer 13b increases as it approaches the second composite portion 20, and the layer thickness of the high-density layer 13b is thinner than the thickness of the other part of the foamed resin layer 13, and As it gets closer to the second composite part 20, it becomes thinner. Thereby, the effect similar to the effect demonstrated in 1st Embodiment can be anticipated.
2.繊維強化複合体1Aの製造方法について
 図8は、図7に示す繊維強化複合体1Aの製造方法を説明するための図である。図8に示すように、繊維強化複合体1Aの第1および第2繊維強化樹脂層11、12に相当する相当する繊維強化樹脂シート11’、12’を準備し、これらの間に予備発泡させた発泡樹脂シート13’を挟み込んだ積層体10’を成形する。
2. About the manufacturing method of 1 A of fiber reinforced composites FIG. 8: is a figure for demonstrating the manufacturing method of 1 A of fiber reinforced composites shown in FIG. As shown in FIG. 8, corresponding fiber reinforced resin sheets 11 ′ and 12 ′ corresponding to the first and second fiber reinforced resin layers 11 and 12 of the fiber reinforced composite 1A are prepared, and pre-foamed between them. A laminated body 10 ′ sandwiching the foamed resin sheet 13 ′ is molded.
 そして、上型51Aと下型52Aとの間に、積層体10’を配置し、上型51Aと下型52Aとでこれらを加圧しながら、加熱する。また、この時の加熱温度は、第1実施形態で説明した温度と同様である。 Then, the laminated body 10 ′ is disposed between the upper mold 51 </ b> A and the lower mold 52 </ b> A, and heated while pressurizing them with the upper mold 51 </ b> A and the lower mold 52 </ b> A. Moreover, the heating temperature at this time is the same as the temperature demonstrated in 1st Embodiment.
 型締めにより、発泡樹脂シート13’は、所定の厚みまで発泡するが、発泡樹脂シート13’の端部13a’は、上型51Aにより押圧されているので、他の部分に比べて、発泡が抑制される。これにより、発泡樹脂層13には、第2複合部20に隣接した部分の密度が発泡樹脂層13の他の部分の密度に比べて高くなり、この部分が高密度層13bとして成形される。高密度層13bの密度は、第2複合部20に近づくに従って、高くなる。 By the mold clamping, the foamed resin sheet 13 ′ is foamed to a predetermined thickness. However, since the end 13a ′ of the foamed resin sheet 13 ′ is pressed by the upper mold 51A, the foamed resin sheet 13 ′ is foamed as compared with other parts. It is suppressed. Thereby, in the foamed resin layer 13, the density of the part adjacent to the 2nd composite part 20 becomes high compared with the density of the other part of the foamed resin layer 13, and this part is shape | molded as the high-density layer 13b. The density of the high-density layer 13b increases as the second composite portion 20 is approached.
 さらに、上型51Aの形状により、発泡樹脂シート13’の端部を変形させるので、高密度層13bの層厚みを、発泡樹脂層13の他の部分の層厚みよりも薄くすることができ、高密度層13bの層厚みを、第2複合部20に近づくに従って、薄くすることができる。 Furthermore, since the end portion of the foamed resin sheet 13 ′ is deformed by the shape of the upper mold 51A, the layer thickness of the high-density layer 13b can be made thinner than the layer thickness of the other part of the foamed resin layer 13, The layer thickness of the high-density layer 13b can be reduced as the second composite portion 20 is approached.
3.その他の変形例
 図9は、図6に示す繊維強化複合体1Aの変形例を示した模式的斜視図である。図9に示すように、繊維強化複合体1Aは、繊維強化複合体1Aの底部1aおよび周縁部1cが、第2複合部20A、20Bにより形成され、立ち上がり部1bが、第1複合部10により形成されている。底部1aには、開口部1dが形成されている。
3. Other Modifications FIG. 9 is a schematic perspective view showing a modification of the fiber-reinforced composite 1A shown in FIG. As shown in FIG. 9, the fiber reinforced composite 1 </ b> A includes a bottom 1 a and a peripheral edge 1 c of the fiber reinforced composite 1 </ b> A formed by the second composite parts 20 </ b> A and 20 </ b> B, and a rising part 1 b formed by the first composite part 10. Is formed. An opening 1d is formed in the bottom 1a.
 この変形例では、繊維強化複合体1Aの立ち上がり部1bの第1複合部10の底部側の周りを囲うように、円板状の第2複合部20Aが形成され、繊維強化複合体1Aの立ち上がり部1bの第1複合部10の開口側の周りを囲うように、リング状の第2複合部20Bが形成されることになる。これにより、底部1aに、開口部1dが形成されていても、第1複合部10の発泡樹脂層が露出することはない。 In this modification, a disk-shaped second composite portion 20A is formed so as to surround the bottom side of the first composite portion 10 of the rising portion 1b of the fiber reinforced composite 1A, and the rising of the fiber reinforced composite 1A. The ring-shaped second composite part 20B is formed so as to surround the opening side of the first composite part 10 of the part 1b. Thereby, even if the opening part 1d is formed in the bottom part 1a, the foamed resin layer of the 1st composite part 10 is not exposed.
図10(a)~図10(c)は、図7に示す繊維強化複合体1Aの変形例を示した要部断面図である。たとえば、図7では、発泡樹脂層13の高密度層13bの一方側(第1繊維強化樹脂層11側)の界面を傾斜させることにより、高密度層13bの層厚みが、第2複合部20に近づくに従って、薄くなっていた。 FIGS. 10 (a) to 10 (c) are cross-sectional views of main parts showing a modification of the fiber reinforced composite 1A shown in FIG. For example, in FIG. 7, the layer thickness of the high-density layer 13b is set to the second composite portion 20 by inclining the interface on one side (the first fiber reinforced resin layer 11 side) of the high-density layer 13b of the foamed resin layer 13. As it approached, it became thinner.
 しかしながら、図10(a)に示すように、発泡樹脂層13の高密度層13bの両方(第1繊維強化樹脂層11側および第2繊維強化樹脂層12側)の界面を傾斜させることにより、高密度層13bの層厚みが、第2複合部20に近づくに従って、薄くなっていてもよい。 However, as shown in FIG. 10A, by inclining the interface of both the high density layer 13b of the foamed resin layer 13 (the first fiber reinforced resin layer 11 side and the second fiber reinforced resin layer 12 side), The layer thickness of the high-density layer 13b may become thinner as the second composite unit 20 is approached.
 さらに、図10(b)に示すように、発泡樹脂層13の一方側を凹ませることにより、高密度層13bの層厚みを略均一にしてもよく、図10(c)に示すように、発泡樹脂層13の両側を凹ませることにより、高密度層13bの層厚みを略均一にしてもよい。 Furthermore, as shown in FIG. 10B, the thickness of the high-density layer 13b may be made substantially uniform by denting one side of the foamed resin layer 13, and as shown in FIG. By denting both sides of the foamed resin layer 13, the thickness of the high-density layer 13b may be made substantially uniform.
〔第3実施形態〕
 図11(a)は、第3実施形態に係る繊維強化複合体1Bの要部を説明するための模式的断面図であり、図11(b)は、図11(a)の参考例に係る繊維強化複合体1Bの要部を説明するための模式的断面図である。本実施形態が、第1実施形態と相違する点は、端部被覆層12cおよび連続層12dをさらに設けた点である。なお、第1実施形態と同じ構成は、同じ符号を付して詳細な説明を省略する。
[Third Embodiment]
Fig.11 (a) is typical sectional drawing for demonstrating the principal part of the fiber reinforced composite_body | complex 1B which concerns on 3rd Embodiment, FIG.11 (b) concerns on the reference example of Fig.11 (a). It is typical sectional drawing for demonstrating the principal part of the fiber reinforced composite_body | complex 1B. This embodiment is different from the first embodiment in that an end covering layer 12c and a continuous layer 12d are further provided. In addition, the same structure as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits detailed description.
 本実施形態では、第2繊維強化樹脂層12の内側層12bと連続して、第1複合部10の端面を覆う端部被覆層12cが形成され、端部被覆層12cと連続して、第2複合部20の一部として積層される連続層12dがさらに形成されている。内側層12bの強化繊維の織物基材である場合、この織物基材が、端部被覆層12cおよび連続層12dに連続して形成されている。 In the present embodiment, an end covering layer 12c that covers the end surface of the first composite portion 10 is formed continuously with the inner layer 12b of the second fiber reinforced resin layer 12, and is continuously formed with the end covering layer 12c. The continuous layer 12d laminated | stacked as a part of 2 composite part 20 is further formed. In the case of the woven fabric base material of the reinforcing fiber of the inner layer 12b, the woven base material is formed continuously with the end covering layer 12c and the continuous layer 12d.
 端部被覆層12cは、第1および第2複合部10、20を仕切る位置に形成されており、端部被覆層12の強化繊維は、これらの隣接する端面に沿って配向されている。この実施形態によれば、第2繊維強化樹脂層12の内側層12bに連続して、端部被覆層12c、連続層12dが形成されているので、第1複合部10と第2複合部20の接合強度を高めることができる。 The end portion covering layer 12c is formed at a position separating the first and second composite portions 10 and 20, and the reinforcing fibers of the end portion covering layer 12 are oriented along these adjacent end faces. According to this embodiment, since the end portion covering layer 12c and the continuous layer 12d are formed continuously to the inner layer 12b of the second fiber reinforced resin layer 12, the first composite portion 10 and the second composite portion 20 are formed. It is possible to increase the bonding strength.
 これに加えて、端部被覆層12cが、第1複合部10の端面を覆い、第1複合部10の端面に端部被覆層12cの強化繊維が配向されているので、製造時において、第3繊維強化樹脂層23の合成樹脂が、発泡樹脂層13に含浸されることを抑えることができる。この結果、第3繊維強化樹脂層23の合成樹脂が、発泡樹脂層13に含浸されることで、繊維強化複合体1Bの表面に凹みが形成されることを抑えることができる。 In addition to this, the end cover layer 12c covers the end face of the first composite part 10, and the reinforcing fibers of the end cover layer 12c are oriented on the end face of the first composite part 10. It is possible to suppress the foamed resin layer 13 from being impregnated with the synthetic resin of the three-fiber reinforced resin layer 23. As a result, the synthetic resin of the third fiber reinforced resin layer 23 is impregnated in the foamed resin layer 13, thereby suppressing the formation of dents on the surface of the fiber reinforced composite 1 </ b> B.
 なお、本実施形態では、発泡樹脂層13に高密度層13bが形成されることが前提であるが、図11(b)に示すように、高密度層13bを設けず、端部被覆層12cを形成してもよい。この場合であっても、製造時に繊維強化複合体1Bの表面に凹みが形成されることを抑え、第1複合部10と第2複合部20の接合強度を高めることができる。 In this embodiment, it is a premise that the high density layer 13b is formed on the foamed resin layer 13, but as shown in FIG. 11B, the high density layer 13b is not provided, and the end covering layer 12c is provided. May be formed. Even in this case, it is possible to suppress the formation of a dent on the surface of the fiber-reinforced composite 1B during manufacturing, and to increase the bonding strength between the first composite part 10 and the second composite part 20.
 以下に、本発明を実施例を用いてより具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
 図1に示す繊維強化複合体を、図4を参照して説明した製造方法に従って製造した。まず、繊維強化複合体の内側層に相当する炭素繊維の織物基材に未硬化のエポキシ系樹脂を含浸した繊維強化樹脂シート(プリプレグ)を準備し、これらの間に、予備発泡させた発泡樹脂シート(ポリエステル系樹脂発泡シート)を挟み込んだ積層体を成形した。 The fiber reinforced composite shown in FIG. 1 was manufactured according to the manufacturing method described with reference to FIG. First, a fiber reinforced resin sheet (prepreg) in which an uncured epoxy resin is impregnated on a carbon fiber woven base material corresponding to the inner layer of the fiber reinforced composite is prepared, and a foamed resin pre-foamed between them. The laminated body which pinched | interposed the sheet | seat (polyester-type resin foam sheet) was shape | molded.
 この積層体の発泡樹脂シートに隣接した位置に、上述したものと同様の繊維強化樹脂シートを複数積層した繊維強化樹脂プレートを配置した。次に、積層体と繊維強化樹脂プレートの間に、繊維強化樹脂からなるインサート材を配置した。さらにこれらを覆うように、外皮用繊維強化樹脂シートを積層した。 A fiber reinforced resin plate in which a plurality of fiber reinforced resin sheets similar to those described above are laminated is disposed at a position adjacent to the foamed resin sheet of this laminate. Next, an insert material made of fiber reinforced resin was disposed between the laminate and the fiber reinforced resin plate. Further, a fiber reinforced resin sheet for the skin was laminated so as to cover them.
 そして、上型と下型との間に、外皮用繊維強化樹脂シートに覆われた、積層体、繊維強化樹脂プレート、およびインサート材を配置し、上型と下型とでこれらを加圧しながら、熱処理を130℃で30分実施し、40℃になるまで自然冷却した。得られた繊維強化複合体の断面を観察した。この結果を図12に示す。図12に示すように、第1複合部の第1および第2繊維強化樹脂層(FRP層)の間には、発泡樹脂層が形成され、第2複合部に近づくに従って、層厚みが薄くなっていた。 Then, between the upper mold and the lower mold, a laminate, a fiber reinforced resin plate, and an insert material, which are covered with a fiber reinforced resin sheet for the skin, are arranged, and these are pressed with the upper mold and the lower mold. The heat treatment was carried out at 130 ° C. for 30 minutes and naturally cooled to 40 ° C. The cross section of the obtained fiber reinforced composite was observed. The result is shown in FIG. As shown in FIG. 12, a foamed resin layer is formed between the first and second fiber reinforced resin layers (FRP layers) of the first composite part, and the layer thickness decreases as the second composite part is approached. It was.
 さらに、図12に示す断面において、第2複合部に近づくに従って、層厚みが薄くなっている発泡樹脂層の密度と、発泡樹脂層の他の部分の密度を測定した。この結果、層厚みが薄くなっている発泡樹脂層の密度が、発泡樹脂層の他の部分の密度よりも高くなり、薄くなっている発泡樹脂層は、第2複合部に近づくに従って高くなった高密度層が形成されていることがわかった。 Furthermore, in the cross section shown in FIG. 12, the density of the foamed resin layer with the layer thickness becoming thinner and the density of the other part of the foamed resin layer were measured as approaching the second composite part. As a result, the density of the foamed resin layer whose layer thickness is thin becomes higher than the density of the other part of the foamed resin layer, and the thin foamed resin layer becomes higher as it approaches the second composite part. It was found that a high density layer was formed.
 以上、本発明のいくつか実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。 As mentioned above, although several embodiment of this invention was explained in full detail, this invention is not limited to the said embodiment, In the range which does not deviate from the mind of this invention described in the claim, it is various. Design changes can be made.
 たとえば、図2および図5に示す第1実施形態に係る構造を、図7および図10に示す第2実施形態係る構造に適用してもよく、図7および図10に示す第2実施形態に係る構造を、図2および図5に示す第1実施形態に係る構造に適用してもよい。 For example, the structure according to the first embodiment shown in FIGS. 2 and 5 may be applied to the structure according to the second embodiment shown in FIGS. 7 and 10, and the second embodiment shown in FIGS. Such a structure may be applied to the structure according to the first embodiment shown in FIGS.
1:繊維強化複合体、11:第1繊維強化樹脂層、12:第2繊維強化樹脂層、13:発泡樹脂層、13b:高密度層、20:第2複合部、21:第1連続層、22:第2連続層、23:第3繊維強化樹脂層 1: fiber reinforced composite, 11: first fiber reinforced resin layer, 12: second fiber reinforced resin layer, 13: foamed resin layer, 13b: high density layer, 20: second composite part, 21: first continuous layer , 22: second continuous layer, 23: third fiber reinforced resin layer

Claims (9)

  1.  第1繊維強化樹脂層と、第2繊維強化樹脂層と、前記第1および第2繊維強化樹脂層の間に形成された発泡樹脂層を有した第1複合部と、
     前記発泡樹脂層の端部に隣接して形成され、繊維強化樹脂からなる第2複合部と、を備えており、
     前記発泡樹脂層のうち、前記第2複合部に隣接した部分が、前記発泡樹脂層の他の部分に比べて密度が高い高密度層となっていることを特徴とする繊維強化複合体。
    A first composite part having a first fiber reinforced resin layer, a second fiber reinforced resin layer, and a foamed resin layer formed between the first and second fiber reinforced resin layers;
    A second composite part formed adjacent to an end of the foamed resin layer and made of a fiber-reinforced resin,
    Of the foamed resin layer, a portion adjacent to the second composite portion is a high-density layer having a higher density than other portions of the foamed resin layer.
  2.  前記高密度層の層厚みは、前記発泡樹脂層の他の部分の層厚みよりも薄くなっていることを特徴とする請求項1に記載の繊維強化複合体。 2. The fiber-reinforced composite according to claim 1, wherein a layer thickness of the high-density layer is thinner than a layer thickness of other portions of the foamed resin layer.
  3.  前記高密度層の層厚みは、前記第2複合部に近づくに従って、薄くなっていることを特徴とする請求項2に記載の繊維強化複合体。 The fiber-reinforced composite according to claim 2, wherein the layer thickness of the high-density layer becomes thinner as it approaches the second composite part.
  4.  前記高密度層の密度は、前記第2複合部に近づくに従って、高くなっていることを特徴とする請求項1~3のいずれか一項に記載の繊維強化複合体。 The fiber-reinforced composite according to any one of claims 1 to 3, wherein the density of the high-density layer increases as the density approaches the second composite part.
  5.  前記第2複合部は、前記第1繊維強化樹脂層の少なくとも一部が連続した第1連続層と、前記第2繊維強化樹脂層の少なくとも一部が連続した第2連続層とを含むことを特徴とする請求項1~4のいずれか一項に記載の繊維強化複合体。 The second composite part includes a first continuous layer in which at least a part of the first fiber reinforced resin layer is continuous, and a second continuous layer in which at least a part of the second fiber reinforced resin layer is continuous. The fiber-reinforced composite according to any one of claims 1 to 4, wherein
  6.  前記第2複合部には、前記第1連続層と前記第2連続層との間に、第3繊維強化樹脂層がさらに積層されていることを特徴とする請求項5に記載の繊維強化複合体。 The fiber reinforced composite according to claim 5, wherein a third fiber reinforced resin layer is further laminated on the second composite part between the first continuous layer and the second continuous layer. body.
  7.  前記第2複合部は、前記第1連続層と前記第2連続層とが接合して積層された積層構造であることを特徴とする請求項5に記載の繊維強化複合体。 The fiber-reinforced composite according to claim 5, wherein the second composite part has a laminated structure in which the first continuous layer and the second continuous layer are joined and laminated.
  8.  前記繊維強化複合体の端部に、前記第2複合部が形成されていることを特徴とする請求項1~7のいずれか一項に記載の繊維強化複合体。 The fiber reinforced composite according to any one of claims 1 to 7, wherein the second composite part is formed at an end of the fiber reinforced composite.
  9.  前記繊維強化複合体
    の周縁部に、前記第1複合部の周りを囲うように、前記第2複合部が形成されていることを特徴とする請求項1~7のいずれか一項に記載の繊維強化複合体。
    The second composite part is formed at a peripheral part of the fiber reinforced composite so as to surround the first composite part. Fiber reinforced composite.
PCT/JP2017/032309 2017-03-24 2017-09-07 Fiber-reinforced composite WO2018173322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059406A JP6731875B2 (en) 2017-03-24 2017-03-24 Fiber reinforced composite
JP2017-059406 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018173322A1 true WO2018173322A1 (en) 2018-09-27

Family

ID=63586325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032309 WO2018173322A1 (en) 2017-03-24 2017-09-07 Fiber-reinforced composite

Country Status (3)

Country Link
JP (1) JP6731875B2 (en)
TW (1) TWI661938B (en)
WO (1) WO2018173322A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764221B (en) * 2019-08-19 2022-05-11 仁寶電腦工業股份有限公司 Composite material structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106644A (en) * 1979-02-09 1980-08-15 Asahi Glass Co Ltd Reinforcing method of metal plate body
US5080950A (en) * 1986-07-01 1992-01-14 The Roll-O-Matic Chain Company Composite foam structural laminate
JPH04288227A (en) * 1990-01-25 1992-10-13 Basf Ag Laminated board of improved edge part stability
JPH05154956A (en) * 1991-12-05 1993-06-22 Sekisui Chem Co Ltd Plate-shaped composite
JPH06155642A (en) * 1992-11-18 1994-06-03 Ashimori Ind Co Ltd Plate-like laminate having edge and manufacture thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013022834A (en) * 2011-07-21 2013-02-04 Mitsubishi Heavy Ind Ltd Composite material of fiber-reinforced resin and lightweight core, and method and apparatus for producing the same
CN102424706B (en) * 2011-10-11 2013-03-20 武汉理工大学 Preparation method of polymethyl methacrylate (PMMA) cellular gradient material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106644A (en) * 1979-02-09 1980-08-15 Asahi Glass Co Ltd Reinforcing method of metal plate body
US5080950A (en) * 1986-07-01 1992-01-14 The Roll-O-Matic Chain Company Composite foam structural laminate
JPH04288227A (en) * 1990-01-25 1992-10-13 Basf Ag Laminated board of improved edge part stability
JPH05154956A (en) * 1991-12-05 1993-06-22 Sekisui Chem Co Ltd Plate-shaped composite
JPH06155642A (en) * 1992-11-18 1994-06-03 Ashimori Ind Co Ltd Plate-like laminate having edge and manufacture thereof

Also Published As

Publication number Publication date
JP2018161775A (en) 2018-10-18
TWI661938B (en) 2019-06-11
TW201834842A (en) 2018-10-01
JP6731875B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
KR100971873B1 (en) Integrated body using composite materials for vehicles and manufacturing method of the same
US6180206B1 (en) Composite honeycomb sandwich panel for fixed leading edges
WO2011099611A1 (en) Sheet for fiber-reinforced resin and fiber-reinforced resin molded article using same
US10611328B2 (en) Composite material structural member and method of manufacturing the composite material structural member
KR20170026866A (en) Method for manufacturing lightweight and high stiffness headlining of vehicle
WO2018173322A1 (en) Fiber-reinforced composite
JP2013023184A (en) Outer panel for transportation apparatus and method of manufacturing the same
CN113382848A (en) Composite laminated resin and fiberglass structure
CA2801886C (en) Method of making automotive body parts
KR101776432B1 (en) A composite for roof of an automaobile and a method for preparation thereof
KR20200030772A (en) Sandwich structure
KR101819050B1 (en) Under cover and a manufacturing method for automobiles
JP4015584B2 (en) Door and manufacturing method thereof
KR102217436B1 (en) Laminate and molded product including the same
JP6877264B2 (en) Fiber reinforced composite material laminate
JP2018168893A (en) Joint structure
JP2020146859A (en) Method of manufacturing laminate
KR20190059365A (en) Light-weight headliner for vehicle
JP2019077061A (en) Resin structure and method for producing the same
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
KR102021188B1 (en) Composite molded article using fiber reinforced plastics and manufacturing method thereof
JP2021030616A (en) Fiber-reinforced resin composite molding and method for manufacturing the same
JP2020146863A (en) Method of manufacturing laminate
JP2021187341A (en) Composite structure for vehicle
JP2021049692A (en) Fiber-reinforced composite panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901705

Country of ref document: EP

Kind code of ref document: A1