JPH03117623A - Intake controller of internal combustion engine - Google Patents
Intake controller of internal combustion engineInfo
- Publication number
- JPH03117623A JPH03117623A JP1255397A JP25539789A JPH03117623A JP H03117623 A JPH03117623 A JP H03117623A JP 1255397 A JP1255397 A JP 1255397A JP 25539789 A JP25539789 A JP 25539789A JP H03117623 A JPH03117623 A JP H03117623A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- cylinder
- intake control
- valve
- knock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 10
- 238000001514 detection method Methods 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 description 13
- 230000001276 controlling effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/08—Modifying distribution valve timing for charging purposes
- F02B29/083—Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/027—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、内燃機関の吸気弁と別体に各気筒に連通ずる
吸気通路毎に配設された複数の吸気制御弁に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a plurality of intake control valves that are separate from the intake valves of an internal combustion engine and are arranged for each intake passage that communicates with each cylinder.
従来より、吸気通路毎にこうした吸気制御弁を設けるこ
とで、内燃機関の逆流を防止するといったことが考えら
れている。つまり、内燃機関の吸気行程開始時には、バ
ルブオーバーラツプによって気筒内や排気通路内の既燃
ガスが吸気通路へ逆流して吸気の充填効率が低下したり
、吸気制御弁を用いて吸気の逆流を防止することにより
、吸気の充填効率を向上して内燃機関のトルクアップ、
燃費向上を図るのである。Conventionally, it has been considered to prevent backflow in an internal combustion engine by providing such an intake control valve for each intake passage. In other words, at the start of the intake stroke of an internal combustion engine, burned gas in the cylinders and exhaust passages flows back into the intake passage due to valve overlap, reducing the intake air filling efficiency. By preventing this, the intake air filling efficiency is improved and the torque of the internal combustion engine is increased.
The aim is to improve fuel efficiency.
こうした吸気制御弁の開閉を切り換えるものとして、各
気筒に連通ずる吸気通路毎に吸気制御弁を設け、これら
の複数の吸気制御弁を各々独立のアクチュエータで開閉
制御するものがある。As a device for switching the opening and closing of such an intake control valve, there is one in which an intake control valve is provided for each intake passage communicating with each cylinder, and each of the plurality of intake control valves is controlled to open and close by an independent actuator.
このものでは、各々の吸気制御弁は、運転状態(回転数
、負荷等)に応じて開閉時期を制御しているが、各気筒
毎で比較するとその開閉時期は全ての気筒において同一
であるので、吸気系のレイアウトの関係で吸入空気量が
ばらつくと、エンジンのノック等の発生が変動するとい
う問題がある。In this system, each intake control valve controls the opening/closing timing according to the operating condition (rotational speed, load, etc.), but when comparing each cylinder, the opening/closing timing is the same for all cylinders. If the amount of intake air varies due to the layout of the intake system, there is a problem in that the occurrence of engine knocks and the like will vary.
そこで本発明では、ノックの検出に応じて、各々の吸気
制御弁を最適な閉タイミングで制御し、エンジンのノッ
ク発生を防止することを目的とする。Therefore, it is an object of the present invention to prevent engine knock by controlling each intake control valve at an optimal closing timing in response to detection of knock.
上記課題を解決するために、本発明の吸気制御装置は、
内燃機関の各気筒に連通ずる複数の吸気通路毎に配設さ
れ、吸気通路を開閉する複数の吸気制御弁と、
これらの複数の吸気制御弁を各々独立で開閉駆動する開
閉駆動手段と、
前記吸気制御弁を介して各気筒に至る吸気の圧力を弁体
の開度により調整する圧力調整弁と、各気筒のノックを
検出するノック検出手段とを備え、
このノック検出手段により得られたノックの回数に応じ
て、前記開閉駆動手段により、前記吸気制御弁の閉時期
を補正制御することを特徴とする。In order to solve the above problems, the intake control device of the present invention includes a plurality of intake control valves that are arranged for each of a plurality of intake passages communicating with each cylinder of an internal combustion engine and open and close the intake passages; an opening/closing drive means that independently opens and closes each intake control valve; a pressure regulating valve that adjusts the pressure of intake air reaching each cylinder via the intake control valve by the opening degree of a valve body; and a pressure regulating valve that detects knocking in each cylinder. A knock detection means is provided, and the closing timing of the intake control valve is corrected and controlled by the opening/closing drive means according to the number of knocks obtained by the knock detection means.
以上説明したように、本発明によれば、各吸気制御弁を
独立で補正制御して、制御弁を閉制御することで、各気
筒に生じるノックを確実に押さえることができる。As described above, according to the present invention, each intake control valve is independently corrected and controlled to close the control valve, thereby reliably suppressing knock occurring in each cylinder.
以下、図面に基づき本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the drawings.
本実施例の吸気制御装置が搭載されるエンジンのシステ
ム構成を第1図に示す。FIG. 1 shows the system configuration of an engine equipped with the intake control device of this embodiment.
第1図において、本システムは、4気筒エンジン11こ
のエンジン1の吸気系1aに配設された吸気制御部3お
よびこれらを制御する電子制御装置(以下、単にECU
と呼ぶ)4から構成されている。In FIG. 1, this system includes a four-cylinder engine 11, an intake control unit 3 disposed in an intake system 1a of the engine 1, and an electronic control unit (hereinafter simply ECU) that controls these.
4).
エンジン1は、例えば、4個の気筒5,6,7゜8を備
え、各気筒5,6,7.8には、高速適合カムによって
開閉されるインテークバルブ9,10.11.12が配
設され、また、エキゾーストバルブ13,14,15.
16も設けられている。The engine 1 includes, for example, four cylinders 5, 6, 7.8, and each cylinder 5, 6, 7.8 is provided with an intake valve 9, 10, 11, 12 that is opened and closed by a high-speed adaptive cam. Also, exhaust valves 13, 14, 15 .
16 are also provided.
このエンジン1の吸気系1aには、圧力調整弁としての
スロットルバルブ40が配設され、このスロットルバル
ブ40はスロットルアクチュエータ41によりその開度
が駆動制御される。A throttle valve 40 as a pressure regulating valve is disposed in the intake system 1a of the engine 1, and the opening degree of the throttle valve 40 is drive-controlled by a throttle actuator 41.
また、吸気系1aから分岐して各気筒5,6゜7.8に
連通ずる吸気ポート17.18.19゜20が配設され
ている。吸気ボート17.1B。Further, intake ports 17, 18, 19° 20 are arranged which branch from the intake system 1a and communicate with each cylinder 5, 6° 7,8. Intake boat 17.1B.
19.20には、各々吸気制御弁21,22,23.2
4が配設され、これらの吸気制御弁21゜22.23.
24は、各々開閉駆動手段としてのアクチュエータ25
,26,27.28により各気筒独立に開閉駆動される
。19.20, intake control valves 21, 22, 23.2, respectively.
4 are arranged, and these intake control valves 21°, 22, 23 .
24 are actuators 25 each serving as opening/closing driving means.
, 26, 27, and 28, each cylinder is independently driven to open and close.
エンジン1には、検出器として、各気筒5,67.8の
図示しないピストンが上死点(TDC)に位IF する
ときにパルス信号を出力するクランク角センサ29、所
定のクランク角度毎にパルス信号を出力する回転速度セ
ンサ30、気筒毎のトルクあるいは燃焼を検出する手段
31(例えば筒内圧センサ、トルクセンサ、ノックセン
サ)、気筒毎の空気量を検出する手段32(例えば吸気
管内圧力センサ)、負荷状態を検出する負荷検出手段(
例えばスロットルセンサ、アクセルセンサ)、騒音ある
いは振動を検出する騒音・振動検出手段34、エミッシ
ョンの状態を検出するエミッション検出手段35を備え
る。The engine 1 includes a crank angle sensor 29 as a detector that outputs a pulse signal when the piston (not shown) of each cylinder 5, 67.8 reaches the top dead center (TDC). A rotation speed sensor 30 that outputs a signal, a means 31 for detecting torque or combustion for each cylinder (for example, a cylinder pressure sensor, a torque sensor, a knock sensor), and a means 32 for detecting the air amount for each cylinder (for example, an intake pipe pressure sensor). , load detection means (
For example, a throttle sensor, an accelerator sensor), noise/vibration detection means 34 for detecting noise or vibration, and emission detection means 35 for detecting the state of emissions.
また、エンジン1には、インジェクタによる噴射量およ
び噴射時期を制御噴射する制御手段36、点火時期を制
御する点火時期制御手段37、吸気の過給を行う過給手
段38、運転状態に応じて学習制御を行う学習制御手段
39、吸気の加熱を行う吸気加熱手段42、冷却水の温
度を調整する冷却水温調整手段43が設けられている。The engine 1 also includes a control means 36 for controlling and injecting the amount and timing of injection by the injector, an ignition timing control means 37 for controlling the ignition timing, a supercharging means 38 for supercharging intake air, and learning according to the operating state. A learning control means 39 that performs control, an intake air heating means 42 that heats intake air, and a cooling water temperature adjustment means 43 that adjusts the temperature of cooling water are provided.
ECU4は、CPU4A、ROM4B、RAIl14C
を中心に論理演算回路として構成され、コロンバス4D
を介して入出力部4已に接続され、り部との入出力を行
う。各センサがらの検出信号ネよび各制御手段からの信
号は入出力部4Eがら(PUjAに入力される。一方、
CPU4Aは、)出力部4Eを介して、アクチュエータ
25,2E27.28、スロットルアクチュエータ4I
S%給手段38、吸気加熱手段42に制御信号を出ノす
る。ECU4 is CPU4A, ROM4B, RAI14C
It is configured as a logic operation circuit centered on the Columbus 4D
It is connected to the input/output section 4 through the input/output section, and performs input/output with the remote section. Detection signals from each sensor and signals from each control means are input to the input/output unit 4E (PUjA. On the other hand,
The CPU 4A outputs the actuators 25, 2E27.28, and the throttle actuator 4I via the output section 4E.
A control signal is output to the S% supply means 38 and the intake air heating means 42.
次に、本実施例の制御方法について説明する。Next, the control method of this embodiment will be explained.
気筒毎の吸入空気量については、気筒毎の空り。Regarding the intake air amount for each cylinder, it is the empty space for each cylinder.
量を検出する手段32からの入力信号とアクチュエータ
25,26,27.28への吸気制御弁21.22,2
3.24の開弁・閉弁時期指令信月に基づいて求められ
、この演算結果に基づいて噴射制御手段36はインジェ
クタの噴射量を気筒毎に定める。Input signals from the means 32 for detecting the quantity and the intake control valves 21, 22, 2 to the actuators 25, 26, 27, 28
3.24, and the injection control means 36 determines the injection amount of the injector for each cylinder based on the calculation result.
次に、吸気制御弁21,22,23.24の開弁時期の
基本的な制御については、回転速度センサ30の人力信
号に基づいて、表−1に示すように回転数の上昇につれ
て上死点に対する進角量が大きくなるように駆動手段2
5,26,27.28によって制御される。表−1にお
いて、開弁時期は上死点に対する進角量を示している。Next, basic control of the opening timing of the intake control valves 21, 22, 23, and 24 is performed based on the human power signal of the rotation speed sensor 30, as shown in Table 1, as the rotation speed increases. The driving means 2
5, 26, 27, and 28. In Table 1, the valve opening timing indicates the amount of advance relative to top dead center.
弁時期の基本的な制御については、以下のように設定さ
れる。すなわち、吸入空気量は空気密度に吸気時間を乗
じることで決定され、従来では部分負荷時の空気量調整
は吸気時間が一定でスロットルバルブにより空気密度を
変化させることで対応していたが、本実施例ではポンプ
損失低減を図るため、空気密度だけでなく吸気時間の調
整も併せて行っているので、吸気制御弁21,22,2
3゜24の開弁時間は表−2に示すように負荷に応じて
制御される。なお、この時のアクセル踏み込み量に対す
るスロットルバルブ40の開度の関係は第2図に示すよ
うに設定されている。表−2において、閉弁時間は下死
点に対する進角量(CA)を示している。The basic control of valve timing is set as follows. In other words, the amount of intake air is determined by multiplying the air density by the intake time. Conventionally, the air amount could be adjusted at partial load by keeping the intake time constant and changing the air density using the throttle valve. In the embodiment, in order to reduce pump loss, not only the air density but also the intake time are adjusted, so the intake control valves 21, 22, 2
The valve opening time of 3°24 is controlled according to the load as shown in Table 2. The relationship between the opening degree of the throttle valve 40 and the amount of depression of the accelerator at this time is set as shown in FIG. In Table 2, the valve closing time indicates the amount of advance (CA) with respect to the bottom dead center.
さらに、本実施例では、閉弁時期は上記基本閉弁制御に
対し、運転状態に応じた各種の補正項との演算により決
定される。この補正項は各気筒毎に設けられているので
、各気筒の吸入空気量は運転状況に応じた最適値に決め
られる。Further, in this embodiment, the valve closing timing is determined by calculating the basic valve closing control with various correction terms depending on the operating state. Since this correction term is provided for each cylinder, the intake air amount for each cylinder is determined to be the optimum value depending on the operating situation.
ここで、(1)式は、閉弁時期の演算の一例を示すもの
である。Here, equation (1) shows an example of calculation of the valve closing timing.
TC−TCBSE+TTC+FTC+TRTC+BTC
+NTC+NETC+TDC
・・・・・・(1)
(1)式において、
TCは閉弁時期の進角量
TCBSEは表−2に示した閉弁基本進角量TTCは過
渡時のA/F補正進角量
FTCは燃焼温度の補正進角量
TRTCは加速スリップ(トラクション)制御進角量
BTCは減速時の吸気ブレーキ制御進角量NTCはノッ
ク時の補正進角量
NETCは等空気量制御時の補正進角量TDCはアクチ
ュエータ経時変化補正進角量を各り示している。TC-TCBSE+TTC+FTC+TRTC+BTC
+NTC+NETC+TDC...(1) In formula (1), TC is the advance amount of valve closing timing TCBSE is the basic valve closing advance amount TTC shown in Table-2 is the A/F correction advance angle during transition. FTC is the amount of correction advance for combustion temperature TRTC is the amount of advance for acceleration slip (traction) control BTC is the amount of advance for intake brake control during deceleration NTC is the amount of advance for correction during knock NETC is the correction for equal air amount control The advance angle amount TDC indicates the advance angle amount for correcting changes over time of the actuator.
この補正制御において、本実施例では、全負荷時のノッ
ク制御について、第2図のフローチャートで説明する。In this correction control, in this embodiment, knock control at full load will be explained with reference to the flowchart of FIG. 2.
ステップ100では、吸気制御弁21〜24の開時期(
TOBSE)および閉時2t11(TcBsE)を読み
取る。ステップ110では、運転終了時の各気筒のノッ
ク補正値NTC(41)〜(#4)を読みとり、これら
読みとった値に基づいて、ステップ120では、各気筒
#1〜#4に応じた閉時期を求め、各アクチュエータ2
5〜28に、吸気制御弁21〜24を駆動するための信
号を送る。In step 100, the opening timing of the intake control valves 21 to 24 (
TOBSE) and 2t11 (TcBsE) when closed. In step 110, the knock correction values NTC (41) to (#4) of each cylinder at the end of operation are read, and based on these read values, in step 120, the closing timing corresponding to each cylinder #1 to #4 is determined. Find each actuator 2
5 to 28, signals for driving the intake control valves 21 to 24 are sent.
これによって、運転終了時の吸気制御弁の閉時期制御が
初期化されることになる。As a result, the closing timing control of the intake control valve at the end of operation is initialized.
次に、ステップ130では、ノックの連結発生回数を計
数するカウンタNを初期化する。Next, in step 130, a counter N that counts the number of times that knocking has occurred is initialized.
ステップ140およびステップ150では、ノック信号
を検出して、ノック判定を気筒毎に行う。In steps 140 and 150, a knock signal is detected and a knock determination is made for each cylinder.
ステップ160では、ステップ140およびステップ1
50のノック信号に応じて、ノックの連続回数を計測す
る。ステップ170は、ノック連続回数Nの値により、
例えば、以下の表−39表4に基づいて定められたΔN
TCを読み取る。In step 160, step 140 and step 1
The number of consecutive knocks is measured in response to the 50 knock signals. In step 170, depending on the value of the number of consecutive knocks N,
For example, ΔN determined based on Table-39 Table 4 below.
Read TC.
表−3は自然吸気のエンジンの場合であり、表−4はタ
ーボ付のエンジンの場合をそれぞれ示している。Table 3 shows the case of a naturally aspirated engine, and Table 4 shows the case of a turbo engine.
表−3
表−4
ステップ180では、上記ステップ170で求めたΔN
TCを、ノック発生している。例えば、気筒#1、及び
気筒#4に加算し、上述した(1)式に基づいて、制御
弁21〜24の閉時期を決定するものである。Table-3 Table-4 In step 180, ΔN obtained in step 170 above is
A knock has occurred on the TC. For example, it is added to cylinder #1 and cylinder #4, and the closing timing of the control valves 21 to 24 is determined based on the above-mentioned equation (1).
一方、ステップ140およびステップ150で、ノック
発生が行われなかった気筒においては、ステップ190
にて、ノックが発生していない時間Δむを計測する。こ
の時間Δtが1秒以上ならば、ステップ200にて、ノ
ックが発生していない該当する気筒の補正進角量をIC
A減算するものである。On the other hand, in the cylinder in which no knock occurred in step 140 and step 150, step 190
Measure the time Δm during which no knock occurs. If this time Δt is 1 second or more, in step 200, the correction advance amount of the corresponding cylinder in which no knock has occurred is determined by IC.
A is subtraction.
その後、ステップ190に戻り、時間ΔLが1秒以上で
あれば、同様に減算を行う。Thereafter, the process returns to step 190, and if the time ΔL is 1 second or more, subtraction is performed in the same manner.
また、ステップ190にて、時間Δtが1秒未満であれ
ば、ステップ210に移り、ステップ160へ移行し、
引き続き、制御を行う。Further, in step 190, if the time Δt is less than 1 second, the process moves to step 210, and then moves to step 160,
Continue to control.
それにより、エンジン回転数が160Orpmで、気筒
#1および気筒#4にノック発生した場合には、吸気制
御弁21および24の閉時期を、第3図の破線で示す如
(、遅角させて、ノックの発生を押さえることができる
。As a result, when the engine speed is 160 Orpm and knock occurs in cylinder #1 and cylinder #4, the closing timing of the intake control valves 21 and 24 is retarded as shown by the broken line in FIG. , it is possible to suppress the occurrence of knocking.
また、エンジン回転数が500Orpmで、ノックが発
生した場合には、第4図の破線で示す吸気制御弁の閉時
期を進角させて、ノックの発生を押さえる。Further, if knocking occurs when the engine speed is 500 rpm, the closing timing of the intake control valve shown by the broken line in FIG. 4 is advanced to suppress the occurrence of knocking.
次に、トルクが常に最大となる制御弁閉時期を求めるた
めの学習補正について説明する。Next, learning correction for determining the control valve closing timing at which the torque always becomes maximum will be explained.
本発明は、各気筒のトルクを測る方法として、吸気弁と
制御弁との間の空間の圧力を用いる。The present invention uses the pressure in the space between the intake valve and the control valve as a method for measuring the torque of each cylinder.
第5図(a)、 (b)は、エンジン回転数が1200
rpaで測定した上記圧力波形であり、それぞれ制御弁
の制御した場合としなかった場合であり、制御すると制
御弁閉後の圧力は、大きく正圧倒にずれるこの正圧のピ
ークを圧力センサで各気筒毎に測れば、第6図の様な正
圧ピークとトルク向上率の関係が得られ、この関係より
、このピークが高くなる様、学習補正すれば良い事がわ
かる。Figures 5 (a) and (b) show that the engine speed is 1200.
These are the above pressure waveforms measured with RPA, with and without control valve control, respectively. When controlled, the pressure after the control valve closes largely deviates to positive pressure. The peak of this positive pressure is detected by a pressure sensor for each cylinder. If measured every time, a relationship between the positive pressure peak and the torque improvement rate as shown in Fig. 6 can be obtained, and from this relationship, it can be seen that learning correction should be performed so that this peak becomes higher.
次に、上記学習補正について、第7図のフローチャート
に基づいて説明する。Next, the learning correction described above will be explained based on the flowchart shown in FIG.
ステップ300で補正項GCをΔG C(CA)だけ進
角させ、ステップ310でピーク圧力PRI、を測る。In step 300, the correction term GC is advanced by ΔGC(CA), and in step 310, the peak pressure PRI is measured.
ステップ320では進角前のピーク圧力値PR,,−1
と比較して、大きくなっている場合は、ステップ330
に進み、ノック判定を行い、ノックが発生していないな
らば、再びステップ300に戻り、さらにΔGC進角さ
せる。また、ステップ330にて、ノックを検出した場
合は、Gcをもとの値にもどし完了する。In step 320, the peak pressure value PR,, -1 before the advance angle is
If it is larger than that, step 330
The process proceeds to step 300, where a knock determination is made, and if no knock has occurred, the process returns to step 300 and the angle is further advanced by ΔGC. Further, in step 330, if a knock is detected, Gc is returned to its original value and the process is completed.
一方、ステップ320で進角後のピーク圧力値PR,が
逆に進角前のピーク圧力値PR,,よりも低くなった時
は、ステップ350に移行する。On the other hand, if in step 320 the peak pressure value PR after the advance angle becomes lower than the peak pressure value PR before the advance angle, the process moves to step 350.
このステップ350では、補正項GCを遅角させる方向
へ、ΔGCだけ減算させる。その後、ステップ360で
ピーク圧力を測り、ステップ370で比較し、ピーク圧
力値PR,が高い場合ならスチップ380へ、低い場合
ならステップ400に進み、完了する。ステップ380
はノックの判定をし、ノックが無ければステップ350
にもどる。In step 350, ΔGC is subtracted in the direction of retarding the correction term GC. Thereafter, the peak pressure is measured in step 360, and compared in step 370. If the peak pressure value PR is high, the process proceeds to step 380, and if it is low, the process proceeds to step 400, and the process is completed. step 380
determines if there is a knock, and if there is no knock, step 350
Return to
そして、ノックがあれば、ステップ390に進み、ノッ
クするまえの値をGCとして、RAM内にいれて、完了
する。If there is a knock, the process proceeds to step 390, where the value before the knock is stored in the RAM as GC, and the process is completed.
つまり、上記制御を行うことで、正圧ビーク値の最大値
に近い範囲で、制御弁の閉時期を制御することができる
ため、第6図に示す如く、トルク向上を計ることができ
る。In other words, by performing the above control, the closing timing of the control valve can be controlled in a range close to the maximum value of the positive pressure peak value, so as shown in FIG. 6, it is possible to improve the torque.
そして、第8図に、低回転域で、上記制御を行った時(
すなわち、ΔGCの制御の制御弁カスプロフィールを示
す。Figure 8 shows that when the above control is performed in the low rotation range (
That is, the control valve cass profile of the control of ΔGC is shown.
なお、上記実施例では、正圧のピークで、各気筒のトル
クを推定しているが、これは筒内圧、回転変動もしくは
トルクセンサ等の出力を用いても良い。In the above embodiment, the torque of each cylinder is estimated at the peak of positive pressure, but this may be done using cylinder pressure, rotational fluctuations, or the output of a torque sensor.
第1図は本発明の実施例の全体構成を示すシステム図、
第2図は本発明のノック制御を示すフローチャート、第
3図はエンジンの低速時の吸気制御弁の開閉プロフィー
ルを示す図、第4図はエンジンの高速時の吸気制御弁の
開閉プロフィールを示す図、第5図はクランク角度に対
する圧力の関係を示すグラフ、第6図は圧力のピーク値
に対するトルク向上率の関係を示すグラフ、第7図は正
圧ビーク値に応じた吸気制御弁の制御を示すフローチャ
ート、第8図はエンジンの低速時の吸気制御弁のカムプ
ロフィールを示す図である。
4・・・電子制御装置、21〜24・・・吸気制御弁。
25〜28・・・アクチニエータ(開閉駆動手段)。
40・・・スロットルバルブ(圧力調整弁)。FIG. 1 is a system diagram showing the overall configuration of an embodiment of the present invention;
Fig. 2 is a flowchart showing the knock control of the present invention, Fig. 3 is a drawing showing the opening/closing profile of the intake control valve when the engine is running at low speed, and Fig. 4 is a drawing showing the opening/closing profile of the intake control valve when the engine is running at high speed. , Fig. 5 is a graph showing the relationship between pressure and crank angle, Fig. 6 is a graph showing the relationship between torque improvement rate and pressure peak value, and Fig. 7 shows the control of the intake control valve according to the positive pressure peak value. The flowchart shown in FIG. 8 is a diagram showing the cam profile of the intake control valve when the engine is running at low speed. 4... Electronic control device, 21-24... Intake control valve. 25-28...actiniator (opening/closing drive means). 40...Throttle valve (pressure adjustment valve).
Claims (1)
れ、吸気通路を開閉する複数の吸気制御弁と、 これらの複数の吸気制御弁を各々独立で開閉駆動する開
閉駆動手段と、 前記吸気制御弁を介して各気筒に至る吸気の圧力を弁体
の開度により調整する圧力調整弁と、各気筒のノックを
検出するノック検出手段とを備え、 このノック検出手段により得られたノックの回数に応じ
て、前記開閉駆動手段により、前記吸気制御弁の閉時期
を補正制御することを特徴とする内燃機関の吸気制御装
置。[Scope of Claims] A plurality of intake control valves that are arranged for each of a plurality of intake passages communicating with each cylinder of an internal combustion engine and open and close the intake passages, and a plurality of intake control valves that are independently driven to open and close. The apparatus includes an opening/closing drive means, a pressure regulating valve that adjusts the pressure of intake air reaching each cylinder via the intake control valve by the opening degree of a valve body, and a knock detection means that detects knock in each cylinder, An intake control device for an internal combustion engine, characterized in that the closing timing of the intake control valve is corrected and controlled by the opening/closing drive means in accordance with the number of knocks obtained by the means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1255397A JPH03117623A (en) | 1989-09-29 | 1989-09-29 | Intake controller of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1255397A JPH03117623A (en) | 1989-09-29 | 1989-09-29 | Intake controller of internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03117623A true JPH03117623A (en) | 1991-05-20 |
Family
ID=17278195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1255397A Pending JPH03117623A (en) | 1989-09-29 | 1989-09-29 | Intake controller of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03117623A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008000568A1 (en) * | 2006-06-26 | 2008-01-03 | Siemens Aktiengesellschaft | Method for cylinder-specific knock regulation and corresponding device |
EP1712760A3 (en) * | 2005-04-13 | 2010-01-20 | Ricardo, Inc. | Indirect variable valve actuation for an internal combustion engine |
-
1989
- 1989-09-29 JP JP1255397A patent/JPH03117623A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1712760A3 (en) * | 2005-04-13 | 2010-01-20 | Ricardo, Inc. | Indirect variable valve actuation for an internal combustion engine |
WO2008000568A1 (en) * | 2006-06-26 | 2008-01-03 | Siemens Aktiengesellschaft | Method for cylinder-specific knock regulation and corresponding device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7004148B2 (en) | Control apparatus for internal combustion engine | |
EP0706610B1 (en) | Exhaust valve timing control responsive to engine knock and torque | |
JP5270008B2 (en) | Control device for internal combustion engine | |
JP5024216B2 (en) | Ignition timing control device and ignition timing control method for internal combustion engine | |
JP4779757B2 (en) | Control device and control method for internal combustion engine | |
JPH11324778A (en) | Gasoline direct injection engine | |
US6848435B2 (en) | Control system for compression ignition internal combustion engine | |
WO2018179801A1 (en) | Control device for internal combustion engine | |
CN101311511B (en) | System and method for adaptive control of variable valve lift tappet transformation | |
US6494185B2 (en) | Fuel injection control apparatus and method for variably operated engine valve equipped internal combustion | |
JP5851463B2 (en) | Valve timing control device for internal combustion engine | |
US5014669A (en) | System and method for controlling ignition timing for internal combustion engine having cylinder banks | |
US20070095314A1 (en) | Control apparatus and control method for internal combustion engine | |
JPH03117623A (en) | Intake controller of internal combustion engine | |
JP2004360562A (en) | Control device for internal combustion engine | |
JP2005194965A (en) | Fuel injection controller of engine | |
JPS60230548A (en) | Variable compression-ratio type engine | |
CN110730861B (en) | Method and device for controlling internal combustion engine | |
JPS59194058A (en) | Idling revolution number control device for engine | |
JP4396253B2 (en) | Intake control device for internal combustion engine | |
JPH11190236A (en) | Device for suppressing knocking of four cycle engine | |
JP7421687B2 (en) | Internal combustion engine control device and internal combustion engine control method | |
US8141539B2 (en) | Controller and control method for internal combustion engine | |
JP3078008B2 (en) | Engine fuel control device | |
JPS6132148Y2 (en) |