JPH11324778A - Gasoline direct injection engine - Google Patents

Gasoline direct injection engine

Info

Publication number
JPH11324778A
JPH11324778A JP10123598A JP12359898A JPH11324778A JP H11324778 A JPH11324778 A JP H11324778A JP 10123598 A JP10123598 A JP 10123598A JP 12359898 A JP12359898 A JP 12359898A JP H11324778 A JPH11324778 A JP H11324778A
Authority
JP
Japan
Prior art keywords
valve
timing
intake valve
intake
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10123598A
Other languages
Japanese (ja)
Other versions
JP3525737B2 (en
Inventor
Toru Noda
徹 野田
Goji Masuda
剛司 桝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP12359898A priority Critical patent/JP3525737B2/en
Publication of JPH11324778A publication Critical patent/JPH11324778A/en
Application granted granted Critical
Publication of JP3525737B2 publication Critical patent/JP3525737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the deposition amount of fuel on the piston crown and cylinder bore wall of a gasoline direct injection engine while it is cold. SOLUTION: At a normal operation, an exhaust valve (EXH) and an intake valve (INT) are overlapped in opening, and a fuel injection is carried out while the intake valve opens. At a cold operation, on the other hand, the exhaust and intake valves are no longer overlapped in opening so that the exhaust valve is closed before TDC and the intake valve is opened after TDC, and a fuel injection is preformed between the exhaust valve closing and the intake valve opening. This control, which means a fuel injection into the high- temperature combustion gas that remains in the cylinder, promotes the carburetion of fuel spray, and allows a fuel injection nearer to TDC that avoids fuel deposition on the piston crown and bore wall.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は筒内噴射ガソリンエ
ンジンに関し、特に、冷間時においてシリンダボア壁面
のオイル希釈及びスモークの発生を防止するための技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection gasoline engine, and more particularly, to a technique for preventing oil dilution and smoke generation on a cylinder bore wall surface during a cold period.

【0002】[0002]

【従来の技術】従来、筒内噴射ガソリンエンジンにおい
て、エンジンの温度が設定温度よりも低いとき(冷間
時)には吸気行程初期に燃料噴射を行わせ、エンジン温
度が設定温度よりも高いとき(通常時)には圧縮行程末
期に燃料噴射を行わせる構成のものがあった(特開平5
−71343号公報参照)。
2. Description of the Related Art Conventionally, in a direct injection gasoline engine, when the engine temperature is lower than a set temperature (in a cold state), fuel injection is performed at an early stage of an intake stroke, and when the engine temperature is higher than the set temperature. (Normal time) there is a configuration in which fuel injection is performed at the end of the compression stroke.
-71343 gazette).

【0003】[0003]

【発明が解決しようとする課題】しかし、冷間時の燃料
噴射時期を吸気行程の初期に設定すると、燃料がピスト
ン冠面上に付着して液膜を形成し、この液膜からの燃料
の拡散燃焼によりスモークが発生する可能性があった。
一方、吸気行程の中期から後期に燃料噴射時期を設定す
ると、燃料がシリンダボア壁に付着してボア壁面のオイ
ルが希釈され、潤滑性を低下させることがあり、冷間時
にオイル希釈及びスモークの発生を同時に回避すること
が困難であった。
However, when the fuel injection timing at the time of cold is set at the beginning of the intake stroke, the fuel adheres to the piston crown surface to form a liquid film, and the fuel film from the liquid film is formed. Smoke could be generated by diffusion combustion.
On the other hand, if the fuel injection timing is set in the middle to late stages of the intake stroke, the fuel adheres to the cylinder bore wall and the oil on the bore wall surface is diluted, which may reduce the lubricity. Was difficult to avoid at the same time.

【0004】本発明は上記問題点に鑑みなされたもので
あり、冷間時にシリンダボア壁面及びピストン冠面への
燃料付着を抑制して、オイル希釈及びスモークの発生を
同時に回避できる筒内噴射ガソリンエンジンを提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and a cylinder-injection gasoline engine capable of simultaneously suppressing oil dilution and generation of smoke by suppressing fuel adhesion to a cylinder bore wall surface and a piston crown surface during a cold period. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】そのため請求項1記載の
発明は、筒内に直接燃料を噴射する燃料噴射弁を備えて
なる筒内噴射ガソリンエンジンにおいて、排気バルブの
閉時期から所定クランク角度後に吸気バルブの開時期と
なるようにし、前記排気バルブの閉時期から吸気バルブ
の開時期までの間に前記燃料噴射弁による燃料噴射を行
わせる構成とした。
SUMMARY OF THE INVENTION Therefore, the present invention is directed to a direct injection gasoline engine having a fuel injection valve for directly injecting fuel into a cylinder, after a predetermined crank angle from the closing timing of the exhaust valve. The opening timing of the intake valve is set so that the fuel injection by the fuel injection valve is performed from the closing timing of the exhaust valve to the opening timing of the intake valve.

【0006】かかる構成によると、排気バルブと吸気バ
ルブの開期間をオーバーラップさせずに、排気バルブが
閉じられてから所定クランク角度後に吸気バルブが開く
ようにして、排気バルブの閉時期から吸気バルブの開時
期までの間、即ち、排気バルブと吸気バルブとの両方が
閉じている間に燃料噴射を行わせる。請求項2記載の発
明では、前記吸気バルブの開時期をピストン上死点以降
に設定し、前記ピストン上死点から前記吸気バルブの開
時期までの間に前記燃料噴射弁による燃料噴射を行わせ
る構成とした。
According to this configuration, the opening period of the exhaust valve and the intake valve are not overlapped, and the intake valve is opened after a predetermined crank angle from the closing of the exhaust valve. Until the opening timing of, that is, while both the exhaust valve and the intake valve are closed, fuel injection is performed. In the invention described in claim 2, the opening timing of the intake valve is set after the piston top dead center, and the fuel injection by the fuel injection valve is performed from the piston top dead center to the opening timing of the intake valve. The configuration was adopted.

【0007】かかる構成によると、排気バルブの閉時期
以降に設定される吸気バルブの開時期がピストン上死点
(TDC)以降に設定され、かつ、ピストン上死点から
吸気バルブの開時期までのピストンの下降中に燃料噴射
を行わせる。請求項3記載の発明では、前記燃料噴射弁
による噴射時期を、前記吸気バルブの開時期の直前とす
る構成とした。
According to this configuration, the opening timing of the intake valve set after the closing timing of the exhaust valve is set after the piston top dead center (TDC), and the opening timing of the intake valve from the piston top dead center to the opening timing of the intake valve is set. Fuel injection is performed while the piston is descending. According to the third aspect of the invention, the injection timing of the fuel injection valve is set to be immediately before the opening timing of the intake valve.

【0008】かかる構成によると、吸気バルブの開時期
以前であって、かつ、ピストンが下降中であってかつ最
も下がった位置で燃料噴射が行われることになる。請求
項4記載の発明では、前記吸気バルブの開時期を変更可
能に構成し、エンジン回転速度が高いときほど前記吸気
バルブの開時期をピストン上死点に近づける構成とし
た。
According to this configuration, the fuel is injected at a position before the opening timing of the intake valve, at the time when the piston is descending, and at the lowest position. In the invention described in claim 4, the opening timing of the intake valve is configured to be changeable, and the opening timing of the intake valve is made closer to the piston top dead center as the engine rotation speed increases.

【0009】かかる構成によると、エンジン回転速度が
高くピストンの下降速度が速いときには、吸気バルブの
開時期をピストン上死点に近づけ、逆に、エンジン回転
速度が低くピストンの下降速度が遅いときには、吸気バ
ルブの開時期をピストン上死点から遠ざける。請求項5
記載の発明では、前記吸気バルブの開時期を、筒内圧力
と吸気管圧力とが略同等となる時期とする構成とした。
With this configuration, when the engine rotation speed is high and the piston descending speed is high, the opening timing of the intake valve approaches the piston top dead center. Conversely, when the engine rotational speed is low and the piston descending speed is low, Move the intake valve open timing away from the piston top dead center. Claim 5
In the described invention, the opening timing of the intake valve is set to a timing at which the in-cylinder pressure and the intake pipe pressure become substantially equal.

【0010】かかる構成によると、ピストン上死点以降
であって、筒内圧力と吸気管圧力とが略同等となる時期
に吸気バルブを開く。請求項6記載の発明では、前記排
気バルブの閉時期をピストン上死点以前に設定する構成
とした。かかる構成によると、ピストン上死点以前に排
気バルブが閉じ、その後所定のクランク角度毎に吸気バ
ルブが開かれ、その間に燃料噴射が行われる。
According to this configuration, the intake valve is opened after the piston top dead center and at a time when the in-cylinder pressure and the intake pipe pressure become substantially equal. In the invention according to claim 6, the closing timing of the exhaust valve is set before the piston top dead center. According to such a configuration, the exhaust valve is closed before the piston top dead center, and thereafter the intake valve is opened at every predetermined crank angle, during which fuel injection is performed.

【0011】請求項7記載の発明では、前記吸気バルブ
の開時期をピストン上死点以降に設定し、ピストン上死
点から前記吸気バルブの開時期までの角度を、前記排気
バルブの閉時期からピストン上死点までの角度以上に設
定する構成とした。かかる構成によると、ピストン上死
点を挟んで前後に排気バルブの閉時期と吸気バルブの開
時期とが設定され、ピストン上死点から吸気バルブの開
時期までの角度が、排気バルブの閉時期からピストン上
死点までの角度と等しいか、又は、より大きくなるよう
に設定される。
In the invention described in claim 7, the opening timing of the intake valve is set after the piston top dead center, and the angle from the piston top dead center to the opening timing of the intake valve is set from the closing timing of the exhaust valve. The angle is set to be greater than the angle to the piston top dead center. According to this configuration, the closing timing of the exhaust valve and the opening timing of the intake valve are set before and after the piston top dead center, and the angle from the piston top dead center to the opening timing of the intake valve is determined by the closing timing of the exhaust valve. Is set to be equal to or larger than the angle from to the piston top dead center.

【0012】請求項8記載の発明では、前記燃料噴射弁
が、シリンダの斜め下方に燃料を噴射する構成であっ
て、前記排気バルブの閉時期と前記吸気バルブの開時期
とをピストンの排気行程後半から吸気行程前半の間にそ
れぞれ設定する構成とした。かかる構成によると、ピス
トンの排気行程後半から吸気行程前半の間のピストンが
比較的上方に位置する間に、シリンダの斜め下方、すな
わち、ピストン冠面に向けて燃料が噴射される。
According to the present invention, the fuel injection valve injects fuel obliquely below the cylinder, and the closing timing of the exhaust valve and the opening timing of the intake valve are determined by an exhaust stroke of the piston. It was set to be set between the latter half and the first half of the intake stroke. According to such a configuration, while the piston is located relatively upward during the second half of the exhaust stroke and the first half of the intake stroke, fuel is injected diagonally below the cylinder, that is, toward the piston crown surface.

【0013】請求項9記載の発明では、少なくともエン
ジンの温度が所定温度以下であるときに、前記排気バル
ブの閉時期から吸気バルブの開時期までの間に前記燃料
噴射弁による燃料噴射を行わせる構成とした。かかる構
成によると、燃料噴霧が気化し難くなる冷間時に、前記
排気バルブの閉時期から吸気バルブの開時期までの間に
燃料噴射を行わせる。
According to a ninth aspect of the present invention, at least when the temperature of the engine is equal to or lower than a predetermined temperature, the fuel injection by the fuel injection valve is performed between the closing timing of the exhaust valve and the opening timing of the intake valve. The configuration was adopted. According to such a configuration, fuel injection is performed between the closing timing of the exhaust valve and the opening timing of the intake valve during a cold time when the fuel spray is less likely to evaporate.

【0014】請求項10記載の発明では、前記吸気バルブ
の開時期を変更可能な動弁装置を備え、少なくとも前記
吸気バルブの開時期が所定の遅角位置のときに、前記排
気バルブの閉時期から所定クランク角度後に前記吸気バ
ルブの開時期になるよう構成され、少なくともエンジン
の温度が所定温度以下であるときに、前記吸気バルブの
開時期を前記所定の遅角位置に設定し、前記排気バルブ
の閉時期から前記吸気バルブの開時期までの間に前記燃
料噴射弁による燃料噴射を行わせる構成とした。
According to a tenth aspect of the present invention, there is provided a valve operating device capable of changing the opening timing of the intake valve, wherein the closing timing of the exhaust valve is at least when the opening timing of the intake valve is at a predetermined retarded position. And the opening timing of the intake valve is set to the predetermined retarded position at least when the temperature of the engine is equal to or lower than the predetermined temperature. The fuel injection by the fuel injection valve is performed during the period from the closing timing to the opening timing of the intake valve.

【0015】かかる構成によると、動弁装置による吸気
バルブの開時期の遅角制御によって、排気バルブの閉時
期から所定クランク角度後に吸気バルブの開時期になる
非オーバーラップ状態を実現し、低温時に、前記非オー
バーラップ状態での燃料噴射を行わせる。請求項11記載
の発明では、前記排気バルブの閉時期を変更可能な動弁
装置を備え、少なくとも前記排気バルブの閉時期が所定
の進角位置のときに、前記排気バルブの閉時期から所定
クランク角度後に前記吸気バルブの開時期になるよう構
成され、少なくともエンジンの温度が所定温度以下であ
るときに、前記排気バルブの閉時期を前記所定の進角位
置に設定し、前記排気バルブの閉時期から前記吸気バル
ブの開時期までの間に前記燃料噴射弁による燃料噴射を
行わせる構成とした。
According to this configuration, the non-overlap state in which the intake valve opens at a predetermined crank angle after the exhaust valve closes is realized by the retard control of the opening timing of the intake valve by the valve operating device. The fuel injection is performed in the non-overlapping state. The invention according to claim 11, further comprising a valve operating device capable of changing a closing timing of the exhaust valve, wherein at least when the closing timing of the exhaust valve is at a predetermined advanced position, a predetermined crank from the closing timing of the exhaust valve is provided. The opening timing of the intake valve is set after the angle, and at least when the temperature of the engine is equal to or lower than a predetermined temperature, the closing timing of the exhaust valve is set to the predetermined advanced position, and the closing timing of the exhaust valve is set. The fuel injection by the fuel injection valve is performed during the period from to the opening timing of the intake valve.

【0016】かかる構成によると、動弁装置による排気
バルブの閉時期の進角制御によって、排気バルブの閉時
期から所定クランク角度後に吸気バルブの開時期になる
非オーバーラップ状態を実現し、低温時に、前記非オー
バーラップ状態での燃料噴射を行わせる。請求項12記載
の発明では、前記動弁装置は、クランク軸とカム軸との
位相を変化させる機構を有する構成とした。
According to this configuration, the non-overlap state in which the intake valve opens at a predetermined crank angle after the exhaust valve closes is realized by the advance control of the exhaust valve close timing by the valve operating device. The fuel injection is performed in the non-overlapping state. In the invention according to claim 12, the valve train has a mechanism for changing a phase between a crankshaft and a camshaft.

【0017】かかる構成によると、クランク軸とカム軸
との位相を変化させることで、作動角一定のままバルブ
タイミングがシフトすることになり、排気バルブの閉時
期及び/又は吸気バルブの開時期の進角,遅角制御が行
える。請求項13記載の発明では、前記動弁装置は、クラ
ンク軸の角速度に対するカム軸の角速度を周期的に変化
させる機構を有する構成とした。
According to this configuration, by changing the phase between the crankshaft and the camshaft, the valve timing is shifted while the operating angle is kept constant, and the closing timing of the exhaust valve and / or the opening timing of the intake valve is changed. Advance and retard control can be performed. In the invention according to claim 13, the valve train has a mechanism for periodically changing the angular velocity of the camshaft with respect to the angular velocity of the crankshaft.

【0018】かかる構成によると、クランク軸の角速度
に対するカム軸の角速度を周期的に変化させることで、
バルブタイミングと作動角とを同時に変更可能であり、
例えば吸気バルブの閉時期を固定として開時期のみを変
化させることが可能となる。請求項14記載の発明では、
前記動弁装置は、複数のカムを切換える機構を有する構
成とした。
According to this configuration, the angular velocity of the camshaft relative to the angular velocity of the crankshaft is periodically changed,
Valve timing and operating angle can be changed at the same time,
For example, it is possible to fix the closing timing of the intake valve and change only the opening timing. In the invention according to claim 14,
The valve train has a mechanism for switching a plurality of cams.

【0019】かかる構成によると、バルブのリフト特性
の異なる複数のカムを使い分けることで、バルブタイミ
ングと作動角とを同時に変更可能である。請求項15記載
の発明では、前記動弁装置は、油圧力によってバルブを
駆動する装置である構成とした。かかる構成によると、
カム駆動ではなく、油圧力によってバルブが開閉駆動さ
れ、油圧力の発生タイミングの制御によってバルブタイ
ミングが変更される。
According to this configuration, the valve timing and the operating angle can be changed at the same time by selectively using a plurality of cams having different valve lift characteristics. In the invention according to claim 15, the valve train is configured to be a device that drives a valve by hydraulic pressure. According to such a configuration,
The valve is opened and closed by hydraulic pressure instead of cam drive, and the valve timing is changed by controlling the hydraulic pressure generation timing.

【0020】請求項16記載の発明では、前記動弁装置
は、電磁力によってバルブを駆動する装置である構成と
した。かかる構成によると、カム駆動ではなく、電磁力
によってバルブが開閉駆動され、電磁力の発生タイミン
グの制御によってバルブタイミングが変更される。
[0020] In the invention according to claim 16, the valve operating device is configured to drive the valve by electromagnetic force. According to this configuration, the valve is opened and closed by the electromagnetic force, not by the cam drive, and the valve timing is changed by controlling the timing at which the electromagnetic force is generated.

【0021】[0021]

【発明の効果】請求項1記載の発明によると、排気バル
ブと吸気バルブとの開期間をオーバーラップさせないこ
とで燃焼ガスを燃焼室内に残留させ、かつ、この高温の
燃焼ガス中へ燃料噴射を行わせるようにしたので、噴霧
の進行中に周囲の高温ガスから熱をもらって燃料の気化
が進み、ピストン冠面やシリンダボア壁面への燃料付着
が少なくなると共に、一旦付着した燃料も周囲の高温ガ
スから熱をもらって速やかに気化するので、ピストン冠
面への燃料付着によるスモークの発生を抑制でき、か
つ、シリンダボア壁のオイル希釈を防止できるという効
果がある。
According to the first aspect of the present invention, the combustion gas remains in the combustion chamber by preventing the open periods of the exhaust valve and the intake valve from overlapping, and the fuel is injected into the high-temperature combustion gas. During the spraying, the fuel from the surrounding high temperature gas receives heat during the spraying, and the vaporization of the fuel proceeds, so that the fuel adhesion to the piston crown surface and the cylinder bore wall surface is reduced, and the fuel once adhered is also removed from the surrounding high temperature gas. , Which is quickly vaporized by receiving heat from the piston, so that the generation of smoke due to the adhesion of fuel to the piston crown surface can be suppressed, and the oil dilution of the cylinder bore wall can be prevented.

【0022】尚、オーバーラップを大きくした場合も、
燃焼ガスが燃焼室内に吸い戻されることで、燃料ガスを
燃焼室内に残留させることが可能であるが、この場合
は、燃焼ガスと共に新気も吸入することになるので、燃
焼室内のガス温度があまり高くならない。これに対し、
排気バルブと吸気バルブとの開期間をオーバーラップさ
せない構成とすれば、吸気バルブが開かれるまでは、新
気の導入がないから、燃焼室内には残留燃焼ガスのみが
存在することになり、燃焼室内のガス温度を十分に高く
できる。
When the overlap is increased,
The fuel gas can be retained in the combustion chamber by sucking the combustion gas back into the combustion chamber.In this case, fresh air is also sucked together with the combustion gas. Not very high. In contrast,
If the opening periods of the exhaust valve and the intake valve are not overlapped, no fresh air will be introduced until the intake valve is opened, so that only the residual combustion gas will be present in the combustion chamber, and the combustion The indoor gas temperature can be sufficiently increased.

【0023】請求項2記載の発明によると、ピストン下
降中に燃料噴射を行うので、下方に向かう速度成分がピ
ストン下降速度よりも小さい燃料噴霧は、ピストンの下
降に追い付けないことになり、以て、ピストン冠面への
燃料付着をより少なくできるという効果がある。請求項
3記載の発明によると、ピストン下降中であってかつ最
も遠ざかっているときに燃料噴射が行われ、ピストン冠
面への燃料付着を更に少なくできるという効果がある。
According to the second aspect of the present invention, since the fuel is injected during the lowering of the piston, the fuel spray whose downward speed component is smaller than the lowering speed of the piston cannot catch up with the lowering of the piston. This has the effect that fuel adhesion to the piston crown surface can be reduced. According to the third aspect of the present invention, the fuel is injected when the piston is descending and is farthest away, so that there is an effect that the fuel adhesion to the piston crown surface can be further reduced.

【0024】請求項4記載の発明によると、一般的に噴
霧の速度は回転速度によらずに略一定であるから、ピス
トン下降速度の大きい高回転時ほどピストン冠面への燃
料付着が少なくなり、高回転時には燃料噴射時期をピス
トン上死点寄りにしてもピストン冠面への燃料付着があ
まり増加しないので、ピストン冠面への燃料付着を低く
抑制しつつ、回転速度が高くなるほど吸気バルブの開時
期を進角させて吸気充填効率の向上を図れるという効果
がある。
According to the fourth aspect of the present invention, since the spray speed is generally constant irrespective of the rotation speed, the higher the rotation speed of the piston is, the lower the fuel adhesion to the piston crown surface becomes. However, at high revolutions, even if the fuel injection timing is closer to the piston top dead center, the amount of fuel attached to the piston crown surface does not increase so much. There is an effect that the opening timing is advanced to improve the intake charging efficiency.

【0025】請求項5記載の発明によると、筒内圧力と
吸気管圧力とが略同等となってから吸気バルブを開くこ
とでポンプロスを低減できるという効果がある。請求項
6記載の発明によると、燃焼ガスを、一旦排気通路に排
出することなくそのまま燃焼室内に閉じ込めて残留させ
るので、残留ガス温度を高く保持できるという効果があ
る。排気バルブの閉時期をピストン上死点以降に設定し
ても、排気通路に排出された燃焼ガスを再び吸い戻して
燃焼室内に残留させることが可能であるが、この場合、
排気通路壁等に燃焼ガスの熱が奪われるので、若干温度
が下がることになるので、排気バルブの閉時期をピスト
ン上死点以前に設定することで、より残留ガス温度を高
くできるものである。
According to the fifth aspect of the present invention, the pump loss can be reduced by opening the intake valve after the in-cylinder pressure and the intake pipe pressure become substantially equal. According to the sixth aspect of the present invention, the combustion gas is confined in the combustion chamber without being discharged to the exhaust passage and remains there, so that the temperature of the residual gas can be kept high. Even if the closing timing of the exhaust valve is set after the piston top dead center, it is possible to suck back the combustion gas discharged into the exhaust passage and leave it in the combustion chamber.
Since the heat of the combustion gas is taken away by the exhaust passage wall and the like, the temperature is slightly lowered. Therefore, by setting the closing timing of the exhaust valve before the piston top dead center, the residual gas temperature can be further increased. .

【0026】請求項7記載の発明によると、排気バルブ
の閉時期からピストン上死点までの間にエンジンが行う
圧縮仕事が、ピストン上死点から吸気バルブの開時期ま
での間にトルクとして回収できるので、燃費の悪化がな
いという効果がある。請求項8記載の発明によると、ピ
ストンが比較的上方にあるときに、斜め下方への燃料噴
射が行われるので、シリンダボア壁面への燃焼付着が非
常に少なくなるというこうがある。ここで、燃料噴霧
は、シリンダボア壁面よりもピストン冠面に付着し易く
なるが、たとえピストン冠面に燃料が付着したとして
も、周囲の高温ガスから熱をもらって速やかに気化する
ので、ピストン冠面への燃料付着によるスモークの発生
も抑制できる。
According to the present invention, the compression work performed by the engine between the closing timing of the exhaust valve and the top dead center of the piston is recovered as a torque from the top dead center of the piston to the opening timing of the intake valve. As a result, there is an effect that there is no deterioration in fuel efficiency. According to the eighth aspect of the invention, when the piston is relatively upward, the fuel is injected obliquely downward, so that combustion adhesion to the cylinder bore wall surface is extremely reduced. Here, the fuel spray adheres more easily to the piston crown surface than the cylinder bore wall surface, but even if fuel adheres to the piston crown surface, it is quickly vaporized by receiving heat from the surrounding high-temperature gas. The generation of smoke due to fuel adhesion to the fuel cell can also be suppressed.

【0027】請求項9記載の発明によると、燃料が気化
し難くなる冷間時に、ピストン冠面への燃料付着による
スモークの発生及びシリンダボアへの燃料付着によるオ
イル希釈の発生を防止できるという効果がある。請求項
10記載の発明によると、冷間時には、ピストン冠面への
燃料付着によるスモークの発生及びシリンダボアへの燃
料付着によるオイル希釈の発生を防止できる一方、通常
時には、吸気バルブの開時期の進角により吸気充填効率
の向上を図って出力を確保できるという効果がある。
According to the ninth aspect of the present invention, it is possible to prevent the generation of smoke due to the adhesion of the fuel to the piston crown surface and the generation of oil dilution due to the adhesion of the fuel to the cylinder bore during a cold time when the fuel is difficult to vaporize. is there. Claim
According to the invention described in 10, in the cold state, it is possible to prevent the generation of smoke due to the adhesion of fuel to the piston crown surface and the generation of oil dilution due to the adhesion of fuel to the cylinder bore. There is an effect that the output can be secured by improving the intake charging efficiency.

【0028】請求項11記載の発明によると、冷間時に
は、ピストン冠面への燃料付着によるスモークの発生及
びシリンダボアへの燃料付着によるオイル希釈の発生を
防止できる一方、通常時には、排気バルブの閉時期の遅
角により残留ガスの抜けを良くして吸気充填効率を向上
させ、出力を確保できるという効果がある。請求項12記
載の発明によると、作動角を変化させずにバルブタイミ
ングを全体的にシフトさせることで、冷間時のスモーク
発生及びオイル希釈を回避できるバルブタイミングと、
通常時の出力を確保できるバルブタイミングとに容易に
切り替えられるという効果がある。
According to the eleventh aspect of the invention, when cold, it is possible to prevent the generation of smoke due to the adhesion of fuel to the piston crown surface and the generation of oil dilution due to the adhesion of fuel to the cylinder bore. By retarding the timing, there is an effect that the escape of the residual gas is improved, the intake charging efficiency is improved, and the output can be secured. According to the invention of claim 12, by shifting the valve timing as a whole without changing the operating angle, valve timing that can avoid smoke generation and oil dilution during cold time,
There is an effect that it can be easily switched to the valve timing that can secure the output during normal operation.

【0029】請求項13記載の発明によると、排気バルブ
の開時期及び吸気バルブの閉時期を固定としたまま、排
気バルブの閉時期及び/又は吸気バルブの開時期を、冷
間時のスモーク発生及びオイル希釈を回避できるタイミ
ングに切り換えることが可能になるという効果がある。
請求項14記載の発明によると、カムの切り換えによりバ
ルブの開時期と閉時期とをそれぞれ独立して変化させる
ことが可能となり、冷間時及び通常時にそれぞれで最適
なバルブタイミングに設定できるという効果がある。
According to the thirteenth aspect of the present invention, while keeping the opening timing of the exhaust valve and the closing timing of the intake valve fixed, the closing timing of the exhaust valve and / or the opening timing of the intake valve can be changed during the cold generation of smoke. In addition, there is an effect that it is possible to switch to a timing at which oil dilution can be avoided.
According to the invention described in claim 14, it is possible to independently change the opening timing and the closing timing of the valve by switching the cam, and it is possible to set the optimal valve timing in each of the cold state and the normal state. There is.

【0030】請求項15,16記載の発明によると、吸気バ
ルブの開時期及び/又は排気バルブの閉時期を自由にか
つ連続的に変更可能であり、冷間時及び通常時それぞれ
で最適なバルブタイミングに確実に設定できるという効
果がある。
According to the present invention, the opening timing of the intake valve and / or the closing timing of the exhaust valve can be freely and continuously changed, and the optimum valve can be optimally used in a cold state and a normal state. There is an effect that the timing can be reliably set.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。図1は、実施形態における車両用の筒
内噴射ガソリンエンジンのシステム構成図である。この
図1において、アクセル開度センサ1は、運転者によっ
て操作されるアクセルペダルの開度を検出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a system configuration diagram of a direct injection gasoline engine for a vehicle according to an embodiment. In FIG. 1, an accelerator opening sensor 1 detects an opening of an accelerator pedal operated by a driver.

【0032】クランク角センサ2は、単位クランク角毎
のポジション信号及び気筒間の行程位相差毎のリファレ
ンス信号を発生し、前記ポジション信号の単位時間当り
の発生数を計測することにより、或いは、前記リファレ
ンス信号の発生周期を計測することにより、エンジン回
転速度N(rpm)が検出される。エアフローメータ3は、
エンジン4の吸入空気流量Qaを検出する。
The crank angle sensor 2 generates a position signal for each unit crank angle and a reference signal for each stroke phase difference between the cylinders, and measures the number of the position signals generated per unit time, or By measuring the generation cycle of the reference signal, the engine rotation speed N (rpm) is detected. The air flow meter 3
The intake air flow rate Qa of the engine 4 is detected.

【0033】水温センサ5は、エンジン4の冷却水温度
Twを検出する。尚、本実施形態では、前記冷却水温度
Twをエンジン4の温度を代表するパラメータとして用
いる。エンジン4には、各気筒毎に、燃料を直接シリン
ダ内に噴射する燃料噴射弁6、及び、燃焼室に装着され
て点火を行う点火栓7が設けられる。前記燃料噴射弁6
は、シリンダの略中央に向けて斜め下方に燃料を噴射す
るように取り付けられている。
The water temperature sensor 5 detects a cooling water temperature Tw of the engine 4. In the present embodiment, the cooling water temperature Tw is used as a parameter representing the temperature of the engine 4. The engine 4 is provided with a fuel injection valve 6 for injecting fuel directly into the cylinder, and an ignition plug 7 mounted in a combustion chamber and ignited for each cylinder. The fuel injection valve 6
Is mounted so as to inject fuel obliquely downward toward substantially the center of the cylinder.

【0034】一方、エンジン4の吸気通路8にはスロッ
トル弁9が介装され、該スロットル弁9は、DCモータ
等のスロットルアクチュエータ10によって開閉駆動され
るようになっている。前記各種センサ類からの検出信号
は、CPU,RAM,ROM,入出力インターフェース
等を含んで構成されるコントロールユニット11へ入力さ
れ、該コントロールユニット11は、前記センサ類からの
信号に基づいて検出される運転状態に応じて、スロット
ル弁9の開度を制御し、前記燃料噴射弁6による燃料噴
射量及び噴射タイミングを制御し、前記点火栓7による
点火時期を制御する。
On the other hand, a throttle valve 9 is interposed in an intake passage 8 of the engine 4, and the throttle valve 9 is opened and closed by a throttle actuator 10 such as a DC motor. Detection signals from the various sensors are input to a control unit 11 including a CPU, a RAM, a ROM, an input / output interface, and the like. The control unit 11 is detected based on signals from the sensors. In accordance with the operating state, the opening degree of the throttle valve 9 is controlled, the fuel injection amount and the injection timing by the fuel injection valve 6 are controlled, and the ignition timing by the ignition plug 7 is controlled.

【0035】また、エンジン4の吸気バルブ12(IN
T)及び排気バルブ13(EXH)をそれぞれにカムで駆
動する動弁装置には、バルブの開閉時期(バルブタイミ
ング)を可変に制御する可変動弁機構14a,14bが備え
られている。ここで、前記コントロールユニット11によ
るバルブタイミング制御及び燃料噴射制御の第1の実施
形態を図2のフローチャートに従って説明する。
The intake valve 12 (IN) of the engine 4
T) and the exhaust valve 13 (EXH) driven by cams are provided with variable valve mechanisms 14a and 14b for variably controlling the valve opening / closing timing (valve timing). Here, a first embodiment of the valve timing control and the fuel injection control by the control unit 11 will be described with reference to the flowchart of FIG.

【0036】図2のフローチャートにおいて、まず、S
1では、水温センサ5で検出された冷却水温度Twを読
み込む。S2では、前記冷却水温度Twと予め設定され
た基準温度とを比較することで、冷間時であるか否かを
判別する。冷却水温度Twが基準温度を越えている暖機
終了後の状態(通常時)であるときには、S3へ進み、
図3及び図4に示すように、排気バルブ13(EXH)が
吸気TDCの後で閉じ、かつ、吸気バルブ12(INT)
が吸気TDCの前で開くことで、排気バルブ13と吸気バ
ルブ12との開期間が吸気TDC前後でオーバーラップす
る通常のバルブタイミングになるように、前記可変動弁
機構14a,14bを制御する。尚、図3中では、吸気バル
ブ12の開時期をIVO,閉時期をIVCと示し、排気バ
ルブ13の開時期をEVO,閉時期をEVCと示してあ
る。
In the flowchart of FIG. 2, first, S
In step 1, the cooling water temperature Tw detected by the water temperature sensor 5 is read. In S2, it is determined whether or not the engine is cold by comparing the cooling water temperature Tw with a preset reference temperature. When the cooling water temperature Tw is higher than the reference temperature and is in a state after normal warm-up (normal time), the process proceeds to S3,
As shown in FIGS. 3 and 4, the exhaust valve 13 (EXH) closes after the intake TDC and the exhaust valve 12 (INT)
Is opened before the intake TDC, the variable valve mechanisms 14a and 14b are controlled so that the open period between the exhaust valve 13 and the intake valve 12 becomes a normal valve timing that overlaps before and after the intake TDC. In FIG. 3, the opening timing of the intake valve 12 is indicated by IVO, the closing timing is indicated by IVC, the opening timing of the exhaust valve 13 is indicated by EVO, and the closing timing is indicated by EVC.

【0037】また、次のS4では、通常時用の噴射時期
を、エンジン回転速度に応じたテーブルを参照して決定
する。尚、図3及び図4に示すように、吸気バルブ12の
開中に設定されて燃焼室内に均質な混合気を形成させて
行われる均質燃焼と、圧縮行程中に噴射させて点火栓7
の周辺に燃焼可能な混合気を偏在化させて行われる成層
燃焼とに切り替えられる場合には、各燃焼方式毎に噴射
時期テーブルが設定されるものとする。
In the next step S4, the injection timing for normal operation is determined with reference to a table corresponding to the engine speed. As shown in FIGS. 3 and 4, homogeneous combustion is performed when the intake valve 12 is opened to form a homogeneous mixture in the combustion chamber, and the ignition plug 7 is injected during the compression stroke.
When it is possible to switch to stratified combustion in which the combustible air-fuel mixture is unevenly distributed around the fuel cell, an injection timing table is set for each combustion method.

【0038】一方、S2で冷却水温度Twが基準温度以
下である冷間時であると判別されると、S5へ進み、図
3及び図4に示した通常の状態から、排気バルブ13の開
・閉時期を進角切り替えし、かつ、吸気バルブ12の開・
閉時期を遅角切り替えさせ、図5及び図6に示すよう
に、排気バルブ13が吸気TDCの前で閉じ、かつ、吸気
バルブ12が吸気TDCの後で開くことで、排気バルブ13
の閉時期から所定クランク角度後に吸気バルブ12の開時
期となるようにする。
On the other hand, if it is determined in S2 that the engine is in the cold state in which the cooling water temperature Tw is equal to or lower than the reference temperature, the process proceeds to S5, and the exhaust valve 13 is opened from the normal state shown in FIGS.・ Adjusts the closing timing and opens the intake valve 12.
The closing timing is switched to a retarded angle, and as shown in FIGS. 5 and 6, the exhaust valve 13 is closed before the intake TDC and the intake valve 12 is opened after the intake TDC, so that the exhaust valve 13 is opened.
The opening timing of the intake valve 12 is set after a predetermined crank angle from the closing timing.

【0039】即ち、前記S5のバルブタイミング制御
は、作動角一定のまま、吸気バルブ12の開閉タイミング
を全体的に遅角方向にシフトさせ、排気バルブ13の開閉
タイミングを全体的に進角方向にシフトさせるものであ
り、係る切り替えを可能にする可変動弁機構14a,14b
としては、クランク軸に対するカム軸の位相を切り替え
る公知の機構を用いることができる。
That is, in the valve timing control in S5, the opening / closing timing of the intake valve 12 is shifted entirely in the retard direction while the operating angle is kept constant, and the opening / closing timing of the exhaust valve 13 is shifted in the overall advance direction. Variable valve mechanisms 14a and 14b for performing the switching.
A known mechanism that switches the phase of the camshaft with respect to the crankshaft can be used.

【0040】次のS6では、排気バルブ13の閉時期から
吸気バルブ12の開時期までの間に燃料噴射を行わせる冷
間時用の噴射時期を、エンジン回転速度に応じたテーブ
ルを参照して設定する。ここで、前記冷間時用の噴射時
期としては、燃料噴射が吸気バルブ12の開時期直前で行
われることが好ましく、更には、図5及び図6に示すよ
うに、燃料噴射の終了時期が吸気バルブ12の開時期に一
致することがより好ましい。従って、噴射時期(開始時
期又は終了時期)をエンジン回転速度に応じたテーブル
を参照して設定する代わりに、燃料噴射の終了時期が吸
気バルブ12の開時期に一致するように噴射開始時期を可
変に制御する構成とすることがより好ましい。
In the next step S6, the injection timing for the cold period for performing the fuel injection between the closing timing of the exhaust valve 13 and the opening timing of the intake valve 12 is determined by referring to a table corresponding to the engine speed. Set. Here, as the injection timing for the cold time, it is preferable that the fuel injection be performed immediately before the opening timing of the intake valve 12, and furthermore, as shown in FIGS. More preferably, it coincides with the opening timing of the intake valve 12. Therefore, instead of setting the injection timing (start timing or end timing) with reference to a table corresponding to the engine rotation speed, the injection start timing is varied so that the end timing of fuel injection matches the opening timing of the intake valve 12. It is more preferable to adopt a configuration in which control is performed at

【0041】このように、上記第1の実施形態では、図
6に示すように、通常時には吸気バルブ12と排気バルブ
13との開期間がオーバーラップするようにし、吸気バル
ブ12の開中又は圧縮行程で燃料噴射を行わせるが、冷間
時には、前記オーバーラップを発生させずに、排気バル
ブ13の閉時期から所定クランク角度後に吸気バルブ12の
開時期となるようにし(非オーバーラップ状態)、か
つ、前記排気バルブ13の閉時期から吸気バルブ12の開時
期までの間の両バルブが閉じているときに燃料噴射を行
わせるものである。
As described above, in the first embodiment, as shown in FIG. 6, the intake valve 12 and the exhaust valve
The fuel injection is performed during the opening or compression stroke of the intake valve 12 while the opening period of the exhaust valve 13 is overlapped with the opening period of the exhaust valve 13. After the crank angle, the opening timing of the intake valve 12 is set (non-overlap state), and the fuel injection is performed when both valves are closed between the closing timing of the exhaust valve 13 and the opening timing of the intake valve 12. Is performed.

【0042】排気バルブ13の閉時期から所定クランク角
度後に吸気バルブ12の開時期となるようにすると、比較
的高温の燃焼ガスが燃焼室内に残留することになり、こ
の残留ガス中へ燃料を噴射させると、燃料の気化が促進
され、ピストン冠面への燃料付着が抑制される。また、
噴射時期において筒内圧が比較的高いため、燃料噴霧の
到達距離が短くなり、これによっても、ピストン冠面へ
の燃料付着が抑制されることになる。従って、比較的上
死点近傍で燃料噴射を行わせても、ピストン冠面への燃
料付着が抑制され、ピストン冠面に付着した燃料が拡散
燃焼することによるスモークの発生を防止できる。
If the intake valve 12 is opened at a predetermined crank angle after the exhaust valve 13 is closed, a relatively high temperature combustion gas remains in the combustion chamber, and fuel is injected into the residual gas. By doing so, the vaporization of the fuel is promoted, and the adhesion of the fuel to the piston crown surface is suppressed. Also,
Since the in-cylinder pressure is relatively high at the injection timing, the reach of the fuel spray is shortened, which also suppresses the adhesion of fuel to the piston crown surface. Therefore, even if the fuel is injected relatively near the top dead center, the adhesion of fuel to the piston crown is suppressed, and the generation of smoke due to the diffusion and combustion of the fuel attached to the piston crown can be prevented.

【0043】また、シリンダの略中央に向けて斜め下方
に燃料を噴射する前記燃料噴射弁6により上死点近傍で
燃料噴射を行わせることで、シリンダボアへの燃料付着
を回避でき、シリンダボア壁面に対する燃料付着による
オイル希釈の発生も防止できる。また、噴射時期を吸気
バルブ12の開時期の直前とすれば、ピストンの下降中で
あってかつ最もピストンが下がった位置で燃料噴射を行
わせることができ、ピストン冠面への燃料付着を低減で
きる。
Further, by causing fuel injection near the top dead center by the fuel injection valve 6 for injecting fuel obliquely downward substantially toward the center of the cylinder, fuel adhesion to the cylinder bore can be avoided, and Oil dilution due to fuel adhesion can also be prevented. Also, if the injection timing is set immediately before the opening timing of the intake valve 12, the fuel can be injected while the piston is descending and at the position where the piston is most lowered, thereby reducing fuel adhesion to the piston crown surface. it can.

【0044】更に、図5及び図6に示すように、排気バ
ルブ13の閉時期から吸気TDCまでの角度と、吸気TD
Cから吸気バルブ12の開時期までの角度とを略一致させ
れば、図7に示すように、排気バルブの閉時期からピス
トン上死点までの圧縮仕事が、ピストン上死点から吸気
バルブの開時期までに回収されるから、オーバーラップ
を生じさせる通常時のバルブタイミングでのポンプロス
(図8参照)よりも、ポンプロスを低減できる。
Further, as shown in FIGS. 5 and 6, the angle from the closing timing of the exhaust valve 13 to the intake TDC and the intake TD
If the angle from C to the opening timing of the intake valve 12 is substantially matched, as shown in FIG. 7, the compression work from the closing timing of the exhaust valve to the piston top dead center, Since it is collected before the opening timing, the pump loss can be reduced as compared with the pump loss (see FIG. 8) at the normal valve timing that causes the overlap.

【0045】但し、図9及び図10に示すように、排気バ
ルブ13の閉時期から吸気TDCまでの角度と、吸気TD
Cから吸気バルブ12の開時期までの角度とを必ずしも一
致させる必要はなく、図9及び図10に示すようなバルブ
タイミングであっても、排気バルブ13の閉時期から吸気
バルブ12の開時期までの間に燃料噴射を行わせること
で、スモークの発生,シリンダボア壁面のオイル希釈の
発生を防止できる。
However, as shown in FIGS. 9 and 10, the angle from the closing timing of the exhaust valve 13 to the intake TDC and the intake TD
It is not always necessary to make the angle from C to the opening timing of the intake valve 12 coincide, and even if the valve timing is as shown in FIGS. 9 and 10, from the closing timing of the exhaust valve 13 to the opening timing of the intake valve 12 By performing the fuel injection during this time, generation of smoke and generation of oil dilution on the cylinder bore wall surface can be prevented.

【0046】尚、図11及び図12に示すように、バルブタ
イミングの切り替えを行わずに、常に排気バルブ13の閉
時期から所定クランク角度後に吸気バルブ12の開時期と
なる設定とし、噴射時期のみを冷間時であるか否かに基
づいて切り替えるようにしても、冷間時のスモークの発
生,ボア壁面のオイル希釈の発生を防止できることにな
るが、前述のように、通常時にオーバーラップを生じる
バルブタイミングに切り替えることで、通常時の出力の
確保が図られる。
As shown in FIGS. 11 and 12, the valve timing is not switched, and the intake valve 12 is always opened at a predetermined crank angle after the exhaust valve 13 is closed. Although it is possible to prevent the generation of smoke and the dilution of oil on the bore wall surface during the cold period even if the switching is performed based on whether or not By switching to the generated valve timing, the output during normal operation can be ensured.

【0047】また、吸気バルブ12と排気バルブ13とのい
ずれか一方のバルブタイミングのみを切り替えること
で、オーバーラップ状態から非オーバーラップ状態に切
り替える構成であっても良い。尚、両方のバルブタイミ
ングを切り替えるようにした場合も、排気バルブ13の閉
時期から吸気TDCまでの角度と吸気TDCから吸気バ
ルブ12の開時期までの角度とを一致させる設定とすれ
ば、単一のバルブタイミング変更機構で両方のバルブタ
イミングを切り替えるように構成することが容易とな
る。
Further, a configuration may be adopted in which only one of the valve timings of the intake valve 12 and the exhaust valve 13 is switched to switch from the overlap state to the non-overlap state. It should be noted that when both valve timings are switched, if the angle from the closing timing of the exhaust valve 13 to the intake TDC and the angle from the intake TDC to the opening timing of the intake valve 12 are set to be the same, a single It is easy to configure so that both valve timings are switched by the valve timing changing mechanism.

【0048】図13のフローチャートは、前記コントロー
ルユニット11によるバルブタイミング制御及び燃料噴射
制御の第2の実施形態を示すものであり、S11で読み込
んだ冷却水温度Twに基づいてS12で冷間時であると判
別されたときには、S15へ進み、排気バルブ13の閉時期
を進角切り替えし、かつ、吸気バルブ12の開時期を遅角
切り替えすることで、図3及び図4に示した通常のオー
バーラップ状態から、図14に示すように、排気バルブ13
の閉時期から所定クランク角度後に吸気バルブ12の開時
期となる非オーバーラップ状態に切り替える。
FIG. 13 is a flow chart showing a second embodiment of the valve timing control and the fuel injection control by the control unit 11. In the cold state at S12 based on the cooling water temperature Tw read at S11. If it is determined that there is, the process proceeds to S15, in which the closing timing of the exhaust valve 13 is advanced and the opening timing of the intake valve 12 is advanced, whereby the normal overshoot shown in FIGS. From the wrapped state, as shown in FIG.
Is switched to a non-overlapping state in which the intake valve 12 is opened after a predetermined crank angle from the closing timing of.

【0049】即ち、通常時から排気バルブ13の開時期及
び吸気バルブ12の閉時期は変えずに、排気バルブ13の閉
時期を進角し、かつ、吸気バルブ12の開時期を遅角する
ことで、前記非オーバーラップ状態に切り替えるもので
あり、係る切り替えを可能にする可変動弁機構14a,14
bとしては、クランク軸の角速度に対するカム軸の角速
度を周期的に変化させてバルブタイミングと作動角とを
可変に制御できる機構のものを用いることができる。
That is, the closing timing of the exhaust valve 13 is advanced and the opening timing of the intake valve 12 is retarded without changing the opening timing of the exhaust valve 13 and the closing timing of the intake valve 12 from the normal time. In the non-overlapping state, the variable valve mechanisms 14a, 14
As b, a mechanism capable of variably controlling the valve timing and the operating angle by periodically changing the angular speed of the camshaft with respect to the angular speed of the crankshaft can be used.

【0050】S16では、前記S6と同様に、冷間時用の
噴射時期を設定させる。一方、S12で暖機終了後である
と判別されると、S13へ進んで、図3及び図4に示すよ
うに排気バルブ13が吸気TDCの後で閉じ、かつ、吸気
バルブ12が吸気TDCの前で開くことで、排気バルブ13
と吸気バルブ12との開状態がオーバーラップする通常の
バルブタイミングになるように、冷間時に対して排気バ
ルブ13の閉時期を遅角し、かつ、吸気バルブ12の開時期
を進角する。
In step S16, similarly to step S6, the injection timing for cold operation is set. On the other hand, if it is determined in S12 that the warm-up has been completed, the process proceeds to S13, where the exhaust valve 13 closes after the intake TDC and the intake valve 12 closes the intake TDC as shown in FIGS. By opening in front, the exhaust valve 13
The closing timing of the exhaust valve 13 is retarded and the opening timing of the intake valve 12 is advanced with respect to the cold state so that the normal valve timing at which the opening states of the intake valve 12 and the intake valve 12 overlap is provided.

【0051】次のS14では、前記S4と同様に、通常の
噴射時期を設定する。上記の第2の実施形態において
も、通常時の出力を確保しつつ、冷間時におけるスモー
ク発生及びボア壁面のオイル希釈を回避できる一方、か
かる冷間時のスモーク発生及びボア壁面のオイル希釈を
回避するための非オーバーラップ状態への切り替えが、
排気バルブ13の閉時期の進角及び吸気バルブ12の開時期
の遅角のみによって行える。
In the next step S14, a normal injection timing is set as in step S4. In the above-described second embodiment, smoke generation and oil dilution on the bore wall surface during cold can be avoided while securing the output during normal operation. On the other hand, smoke generation and oil dilution on the bore wall surface during cold operation can be avoided. Switching to non-overlapping state to avoid
This can be performed only by advancing the closing timing of the exhaust valve 13 and retarding the opening timing of the intake valve 12.

【0052】図15のフローチャートは、前記コントロー
ルユニット11によるバルブタイミング制御及び燃料噴射
制御の第3の実施形態を示すものであり、前記可変動弁
機構14a,14bとして、通常時用のカムと冷間時用のカ
ムとを切り替える構成のものを用いるものとする。図15
のフローチャートにおいて、S21で読み込んだ冷却水温
度Twに基づいてS22で暖機終了後であると判別される
と、S23へ進んで、通常時用のカムに切り替えて、図3
及び図4に示すようなオーバーラップを生じるバルブタ
イミングに制御し、次のS24では、S4と同様に、通常
時の噴射時期を設定する。
FIG. 15 is a flow chart showing a third embodiment of the valve timing control and the fuel injection control by the control unit 11. The variable valve mechanism 14a, 14b includes a cam for normal use and a cold control. It is assumed that a configuration that switches between the cams for the interim time is used. Fig. 15
When it is determined in S22 that the warm-up has been completed in S22 based on the cooling water temperature Tw read in S21, the process proceeds to S23, where the cam is switched to the normal cam, and FIG.
Then, the valve timing is controlled so as to cause overlap as shown in FIG. 4, and in the next S24, the injection timing at the normal time is set as in S4.

【0053】一方、S22で冷間時であると判別される
と、S25へ進み、冷間時用のカムに切り替える制御を行
い、図16及び図17に示すように、排気バルブ13の閉時期
から所定クランク角度後に吸気バルブ12の開時期となる
非オーバーラップ状態に切り替える。そして、S26で
は、前記S6と同様に、冷間時用の噴射時期を設定す
る。尚、図16及び図17に示す冷間時用のカムの特性は、
排気バルブ13の閉時期を進角し、かつ、吸気バルブ12の
開時期を遅角することで、非オーバーラップ状態に切り
替える構成であると共に、通常時のカムよりもバルブリ
フト量が小さく、かつ、排気バルブ13の開時期を僅かに
遅角させ、また、吸気バルブ12の閉時期を僅かに進角さ
せた特性となっている。即ち、排気バルブ13の閉時期の
進角及び開時期の遅角と、吸気バルブ12の開時期の遅角
及び閉時期の進角とを行うことで、非オーバーラップ状
態に切り替える。
On the other hand, if it is determined in S22 that the engine is in the cold state, the process proceeds to S25, in which the control for switching to the cam for the cold state is performed, and as shown in FIGS. Is switched to a non-overlap state in which the intake valve 12 is opened after a predetermined crank angle. Then, in S26, similarly to S6, the injection timing for cold operation is set. The characteristics of the cold cam shown in FIGS. 16 and 17 are as follows.
By advancing the closing timing of the exhaust valve 13 and retarding the opening timing of the intake valve 12, it is configured to switch to the non-overlapping state, and the valve lift is smaller than the normal cam, and The opening timing of the exhaust valve 13 is slightly retarded, and the closing timing of the intake valve 12 is slightly advanced. That is, the exhaust valve 13 is advanced to the non-overlap state by performing the advance timing of the closing timing and the retarding of the opening timing, and the intake valve 12 by the retarding of the opening timing and the advance of the closing timing.

【0054】上記のように、通常時用のカムと、冷間時
用のカムとを使い分ける構成であれば、冷間時に最も適
したバルブタイミング及びリフト量で吸・排気バルブ1
2,13を動作させることができる。図18のフローチャー
トは、前記コントロールユニット11によるバルブタイミ
ング制御及び燃料噴射制御の第4の実施形態を示すもの
であり、S31で読み込んだ冷却水温度Twに基づいてS
32で冷間時であると判別されると、S36へ進んで、吸気
バルブ12の開時期の遅角量を演算する。尚、前記遅角量
とは、通常時の開時期に対する冷間時の開時期の遅角量
を示す。
As described above, if the cam for normal use and the cam for cold use can be selectively used, the intake / exhaust valve 1 can be set at the most suitable valve timing and lift amount during cold use.
2, 13 can be operated. The flowchart of FIG. 18 shows a fourth embodiment of the valve timing control and the fuel injection control by the control unit 11, and the flow chart of FIG. 18 is based on the cooling water temperature Tw read in S31.
If it is determined in 32 that the engine is in the cold state, the process proceeds to S36, and the retard amount of the opening timing of the intake valve 12 is calculated. Here, the retard amount indicates a retard amount of the opening timing in the cold state with respect to the opening timing in the normal state.

【0055】第4の実施形態では、前記第2の実施形態
と同様に、通常時から排気バルブ13の開時期及び吸気バ
ルブ12の閉時期は変えずに、排気バルブ13の閉時期を進
角し、かつ、吸気バルブ12の開時期を遅角することで、
非オーバーラップ状態に切り替えるものである。但し、
排気バルブ13の閉時期の進角量は一定とするが、排気バ
ルブ13の閉時期から吸気TDCまでの角度よりも、吸気
TDCから吸気バルブ12の開時期までの角度が大きくし
て、吸気管内の圧力と筒内の圧力とが一致する時期に吸
気バルブ12が開かれるように、吸気バルブ12の開時期の
遅角量をそのときの条件に応じて可変に設定する構成と
してある(図19参照)。
In the fourth embodiment, similarly to the second embodiment, the closing timing of the exhaust valve 13 is advanced without changing the opening timing of the exhaust valve 13 and the closing timing of the intake valve 12 from the normal time. And, by delaying the opening timing of the intake valve 12,
It switches to a non-overlapping state. However,
Although the advance amount of the closing timing of the exhaust valve 13 is fixed, the angle from the intake TDC to the opening timing of the intake valve 12 is made larger than the angle from the closing timing of the exhaust valve 13 to the intake TDC, so that The opening angle of the intake valve 12 is variably set in accordance with the condition at that time so that the intake valve 12 is opened at a time when the pressure in the cylinder coincides with the pressure in the cylinder (FIG. 19). reference).

【0056】従って、前記S36では、吸気管内の圧力と
筒内の圧力とが一致する時期に吸気バルブ12が開かれる
ように、吸気バルブ12の開時期の遅角量を演算するもの
であり、具体的に、以下のようにして進角量を演算でき
る。即ち、Pを筒内圧力、Vを燃焼室容積、θをクラン
ク角、nをポリトロープ指数とすると、一般に、往復式
エンジンの筒内圧力Pと燃焼室容積Vとの間には、下式
の関係が成り立つ。
Therefore, in S36, the retard amount of the opening timing of the intake valve 12 is calculated so that the intake valve 12 is opened at the time when the pressure in the intake pipe and the pressure in the cylinder coincide. Specifically, the advance amount can be calculated as follows. That is, if P is the in-cylinder pressure, V is the combustion chamber volume, θ is the crank angle, and n is the polytropic index, generally, the following equation is established between the in-cylinder pressure P and the combustion chamber volume V of a reciprocating engine. The relationship holds.

【0057】PVn =const. また、クランク半径・コンロッド長等が既知であれば、
燃焼室容積Vは、クランク角θの関数として求められ
る。 V=f(θ) ここで、吸気管圧力Pintake=吸気バルブ12の開時期I
VOにおける筒内圧P IVO となる吸気バルブ12の開時期
θIVO を求めるためには、 排気バルブ13の閉時期における筒内圧PEV 01=1気圧 排気バルブ13の閉時期における燃焼室容積VEV 01=f
(θEV 01) 吸気管圧力Pintake=センサによる測定値又は運転条件
による推定値 として、上記3つの値が既知であるとして、以下の式を
解けば良い。
PVn= Const. If the crank radius, connecting rod length, etc. are known,
The combustion chamber volume V is determined as a function of the crank angle θ.
You. V = f (θ) Here, intake pipe pressure Pintake = opening timing I of intake valve 12
In-cylinder pressure P in VO IVOOpening timing of intake valve 12
θIVOIn order to determine the in-cylinder pressure P when the exhaust valve 13 is closed,EV 01= 1 atm. Combustion chamber volume V when exhaust valve 13 is closedEV 01= F
EV 01Intake pipe pressure Pintake = value measured by sensor or operating condition
Assuming that the above three values are known as
I just need to unravel.

【0058】PEV 01・VEV 01n =Pintake・VIVO nIVO =f(θIVO ) ポリトロープ指数nについては、通常1.2 〜1.4 程度の
値となるが、ここでは、作動ガスが既燃ガスであること
から、n=1.25程度として演算すれば良い。尚、簡易的
には、図20に示すように、吸気管圧力が大気圧に近いと
きほど遅角量を小さく設定する構成としても良い。
[0058] For P EV 01 · V EV 01n = Pintake · V IVO n V IVO = f (θ IVO) polytropic exponent n, but the usual 1.2 to 1.4 degree value, here, the working gas is burned gas Therefore, the calculation may be performed with n = about 1.25. Note that, for simplicity, as shown in FIG. 20, the retard amount may be set smaller as the intake pipe pressure is closer to the atmospheric pressure.

【0059】S36で吸気バルブ12の開時期の遅角量(冷
間時の開時期)を演算すると、S37では、前記演算され
た遅角量だけ吸気バルブ12の開時期を通常時から遅角さ
せると共に、排気バルブ13の閉時期を通常時から予め設
定された角度だけ進角させる。S38では、冷間時用の噴
射時期を、エンジン回転速度に応じたテーブルを参照し
て設定し、次のS39では、前記S37で求めた噴射時期
と、吸気バルブ12の開時期とを比較し、吸気バルブ12の
開時期よりも前に噴射が終了するように噴射時期を適宜
修正する。
When the retard amount of the opening timing of the intake valve 12 (open timing during cold) is calculated in S36, the opening timing of the intake valve 12 is retarded from the normal timing by the computed retard amount in S37. At the same time, the closing timing of the exhaust valve 13 is advanced from a normal time by a preset angle. In S38, the injection timing for cold operation is set with reference to a table corresponding to the engine speed. In the next S39, the injection timing obtained in S37 is compared with the opening timing of the intake valve 12. The injection timing is appropriately corrected so that the injection ends before the intake valve 12 opens.

【0060】但し、吸気バルブ12の開時期に噴射を終了
させるべく、噴射開始時期を設定する場合には、上記S
39における処理は不要となる。一方、S32で暖機終了後
であると判別されると、S33へ進み、前記S36で求めら
れた遅角量を参照し、前記遅角量だけ進角させて通常に
戻す設定を行う。そして、S34で、排気バルブ13の閉時
期及び吸気バルブ12の開時期を通常に戻す制御を行い、
S35では、通常時用の噴射時期を設定する。
However, when the injection start timing is set to end the injection at the opening timing of the intake valve 12, the above-described S
The processing in 39 becomes unnecessary. On the other hand, if it is determined in S32 that the warm-up has been completed, the process proceeds to S33, in which the retard amount obtained in S36 is referred to, and the setting is advanced by the retard amount to return to normal. Then, in S34, control is performed to return the closing timing of the exhaust valve 13 and the opening timing of the intake valve 12 to normal,
In S35, the injection timing for normal operation is set.

【0061】上記第4の実施形態では、排気バルブ13が
閉じられて吸気TDCまでの間で圧縮仕事を行った後、
同じ角度だけピストンが下がるまでの間、吸気バルブ12
が閉じられているので、前記圧縮仕事が回収され、更
に、その後に吸気管内の圧力と筒内の圧力とが一致した
時点で吸気バルブ12が開かれるので、排気バルブ13の閉
時期から吸気TDCまでの角度と吸気TDCから吸気バ
ルブ12の開時期までの角度とを略同じにした場合より
も、ポンプロスを更に低減して燃費の向上を図れる(図
21参照)。
In the fourth embodiment, after the exhaust valve 13 is closed and the compression work is performed up to the intake TDC,
Intake valve 12 until piston lowers by the same angle
Is closed, the compression work is recovered, and then, when the pressure in the intake pipe and the pressure in the cylinder match, the intake valve 12 is opened. And the angle from the intake TDC to the opening timing of the intake valve 12 is substantially the same, the pump loss can be further reduced, and the fuel efficiency can be improved (FIG.
21).

【0062】図22のフローチャートは、前記コントロー
ルユニット11によるバルブタイミング制御及び燃料噴射
制御の第5の実施形態を示すものである。第5の実施形
態は、前記第2の実施形態と同様に、通常時から排気バ
ルブ13の開時期及び吸気バルブ12の閉時期は変えずに、
排気バルブ13の閉時期を進角し、かつ、吸気バルブ12の
開時期を遅角することで、非オーバーラップ状態に切り
替えるものであって、吸気TDCを挟んで前後に同じ角
度で排気バルブ13の閉時期と吸気バルブ12の開時期とが
設定される構成を基本とする。
The flowchart of FIG. 22 shows a fifth embodiment of the valve timing control and the fuel injection control by the control unit 11. In the fifth embodiment, similarly to the second embodiment, the opening timing of the exhaust valve 13 and the closing timing of the intake valve 12 are not changed from the normal time.
The non-overlap state is switched by advancing the closing timing of the exhaust valve 13 and retarding the opening timing of the intake valve 12, and the exhaust valve 13 is set at the same angle before and after the intake TDC. And the opening timing of the intake valve 12 are basically set.

【0063】図22のフローチャートにおいて、S41で読
み込んだ冷却水温度Twに基づきS42で冷間時であると
判別されると、S46へ進み、エンジン回転速度を、クラ
ンク角センサ2からの信号に基づいて演算する。次のS
47では、図23に示すように、エンジン回転速度が高いと
きほど、排気バルブ13の閉時期から吸気バルブ12の開時
期までの角度が短くなるように予め設定された特性に基
づき、そのときのエンジン回転速度に対応する排気バル
ブ13の閉時期の進角量及び吸気バルブ12の開時期の遅角
量を設定する。
In the flowchart of FIG. 22, if it is determined in S42 that the engine is in a cold state based on the cooling water temperature Tw read in S41, the process proceeds to S46, where the engine speed is determined based on a signal from the crank angle sensor 2. To calculate. Next S
In FIG. 47, as shown in FIG. 23, based on a characteristic preset so that the angle from the closing timing of the exhaust valve 13 to the opening timing of the intake valve 12 becomes shorter as the engine rotation speed becomes higher, The amount of advance of the closing timing of the exhaust valve 13 and the amount of retardation of the opening of the intake valve 12 corresponding to the engine speed are set.

【0064】エンジン回転速度が高いときには、ピスト
ンが上死点から遠ざかる速度が大きいため、より上死点
に近い位置で燃料噴射を行わせても、ピストン冠面に対
する燃料付着量を充分に抑制できる。そこで、エンジン
回転速度が高いときほど排気バルブ13の閉時期から吸気
バルブ12の開時期までの角度が短くなるようにして(図
24参照)、ピストン冠面への燃料付着を抑制しつつ、冷
間時において非オーバーラップ状態とすることによる充
填効率の低下による出力低下を最小限に抑制するもので
ある。
When the engine rotational speed is high, the speed at which the piston moves away from the top dead center is large. Therefore, even if the fuel is injected at a position closer to the top dead center, the amount of fuel adhering to the piston crown surface can be sufficiently suppressed. . Therefore, the angle from the closing timing of the exhaust valve 13 to the opening timing of the intake valve 12 becomes shorter as the engine speed increases (see FIG.
24), while suppressing fuel adhesion to the piston crown surface, and minimizing a decrease in output due to a decrease in charging efficiency due to a non-overlapping state in a cold state.

【0065】S48では、S47での設定に基づき排気バル
ブ13の閉時期を進角させると共に、吸気バルブ12の開時
期の遅角させる。S49では、冷間時用のテーブルを参照
して噴射時期を設定し、S50では、S49で設定した噴射
時期と、吸気バルブ12の開時期とを比較して、吸気バル
ブ12の開時期前に噴射が行われるように、噴射時期を適
宜修正する。ここでも、吸気バルブ12の開時期に噴射を
終了させるべく、噴射開時期を可変に制御する構成であ
れば、S50の処理を省略できる。
In S48, the closing timing of the exhaust valve 13 is advanced and the opening timing of the intake valve 12 is retarded based on the setting in S47. In S49, the injection timing is set with reference to the cold time table. In S50, the injection timing set in S49 is compared with the opening timing of the intake valve 12, and the injection timing is set before the opening timing of the intake valve 12. The injection timing is appropriately corrected so that the injection is performed. Here, if the injection opening timing is variably controlled so as to end the injection at the opening timing of the intake valve 12, the processing of S50 can be omitted.

【0066】一方、S42で暖機終了後であると判別され
たときには、S43で、前記冷間時におけるエンジン回転
速度に応じた排気バルブ13の閉時期の進角量及び吸気バ
ルブ12の開時期の遅角量を参照し、通常のオーバーラッ
プ状態に戻すための排気バルブ13の閉時期の遅角量及び
吸気バルブ12の開時期の進角量を設定する。そして、S
44では、前記設定に基づいて排気バルブ13の閉時期の遅
角させると共に、吸気バルブ12の開時期の進角させ、通
常のオーバーラップ状態に戻す。
On the other hand, when it is determined in S42 that the warm-up has been completed, in S43, the advance amount of the closing timing of the exhaust valve 13 and the opening timing of the intake valve 12 according to the engine speed during the cold state are determined. The amount of retard of the closing timing of the exhaust valve 13 and the amount of advance of the opening timing of the intake valve 12 for returning to the normal overlapping state are set with reference to the retarding amount of the intake valve 12. And S
At 44, the closing timing of the exhaust valve 13 is retarded based on the setting, and the opening timing of the intake valve 12 is advanced to return to the normal overlapping state.

【0067】S45では、通常時の噴射時期を設定する。
尚、上記実施形態では、吸気バルブ12及び排気バルブ13
の動弁装置としてカムによってバルブを開閉駆動する装
置を用いる構成としたが、油圧力や電磁力によってバル
ブを駆動する動弁装置であっても良く、この場合、油圧
力や電磁力の発生タイミングの制御によって、上記のい
ずれの実施形態におけるバルブタイミングも実現可能で
あり、かつ、バルブタイミング設定の自由度がより高
く、最適なバルブタイミングに容易に設定できる。
In step S45, a normal injection timing is set.
In the above embodiment, the intake valve 12 and the exhaust valve 13
Although a device that opens and closes a valve by a cam is used as the valve operating device, a valve operating device that drives the valve by hydraulic pressure or electromagnetic force may be used. In this case, the timing of generation of hydraulic pressure or electromagnetic force With the above control, the valve timing in any of the above-described embodiments can be realized, and the degree of freedom in setting the valve timing is higher, and the optimum valve timing can be easily set.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態における筒内噴射ガソリンエンジンを
示すシステム図。
FIG. 1 is a system diagram showing a direct injection gasoline engine according to an embodiment.

【図2】バルブタイミング及び噴射制御の第1の実施形
態を示すフローチャート。
FIG. 2 is a flowchart showing a first embodiment of valve timing and injection control.

【図3】通常時のバルブタイミング及び噴射時期を示す
図。
FIG. 3 is a diagram showing valve timing and injection timing in a normal state.

【図4】通常時のバルブタイミング及び噴射時期を示す
図。
FIG. 4 is a view showing valve timing and injection timing in a normal state.

【図5】第1の実施形態における冷間時のバルブタイミ
ング及び噴射時期を示す図。
FIG. 5 is a view showing valve timing and injection timing in a cold state according to the first embodiment.

【図6】第1の実施形態における冷間時と通常時とのバ
ルブタイミング及び噴射時期の違いを示す図。
FIG. 6 is a diagram showing differences in valve timing and injection timing between a cold state and a normal state in the first embodiment.

【図7】第1の実施形態の冷間時における圧力線図。FIG. 7 is a pressure diagram at the time of cold of the first embodiment.

【図8】吸気バルブと排気バルブの開時期をオーバーラ
ップさせる通常時の圧力線図。
FIG. 8 is a pressure diagram in a normal state in which the opening timings of an intake valve and an exhaust valve overlap.

【図9】冷間時の非オーバーラップ状態の別の例を示す
図。
FIG. 9 is a diagram showing another example of the non-overlapping state at the time of cold.

【図10】冷間時の非オーバーラップ状態の別の例を示す
図。
FIG. 10 is a diagram showing another example of the non-overlapping state at the time of cold.

【図11】バルブタイミングを固定として噴射時期のみを
切り替える例を示す図。
FIG. 11 is a diagram showing an example in which only the injection timing is switched while the valve timing is fixed.

【図12】バルブタイミングを固定として噴射時期のみを
切り替える例を示す図。
FIG. 12 is a diagram showing an example in which only the injection timing is switched while the valve timing is fixed.

【図13】バルブタイミング及び噴射制御の第2の実施形
態を示すフローチャート。
FIG. 13 is a flowchart illustrating a second embodiment of valve timing and injection control.

【図14】第2の実施形態における冷間時と通常時とのバ
ルブタイミング及び噴射時期の違いを示す図。
FIG. 14 is a diagram illustrating differences in valve timing and injection timing between a cold state and a normal state in the second embodiment.

【図15】バルブタイミング及び噴射制御の第3の実施形
態を示すフローチャート。
FIG. 15 is a flowchart illustrating a third embodiment of valve timing and injection control.

【図16】第3の実施形態における冷間時のバルブタイミ
ング及び噴射時期を示す図。
FIG. 16 is a view showing valve timing and injection timing at the time of cold in the third embodiment.

【図17】第3の実施形態における冷間時と通常時とのバ
ルブタイミング及び噴射時期の違いを示す図。
FIG. 17 is a diagram illustrating differences in valve timing and injection timing between a cold state and a normal state in the third embodiment.

【図18】バルブタイミング及び噴射制御の第4の実施形
態を示すフローチャート。
FIG. 18 is a flowchart illustrating a fourth embodiment of valve timing and injection control.

【図19】第4の実施形態における冷間時と通常時とのバ
ルブタイミング及び噴射時期の違いを示す図。
FIG. 19 is a diagram illustrating differences in valve timing and injection timing between a cold state and a normal state in the fourth embodiment.

【図20】第4の実施形態における冷間時の吸気バルブの
開時期と吸気管圧力との相関を示す線図。
FIG. 20 is a diagram illustrating a correlation between an intake valve opening timing and an intake pipe pressure in a cold state according to the fourth embodiment.

【図21】第4の実施形態の冷間時における圧力線図。FIG. 21 is a pressure diagram at the time of cold of the fourth embodiment.

【図22】バルブタイミング及び噴射制御の第5の実施形
態を示すフローチャート。
FIG. 22 is a flowchart showing a fifth embodiment of valve timing and injection control.

【図23】第5の実施形態における冷間時におけるEVC
〜IVO期間の長さとエンジン回転速度との相関を示す
線図。
FIG. 23 is an EVC at the time of cold in the fifth embodiment.
FIG. 4 is a diagram illustrating a correlation between the length of an IVO period and the engine speed.

【図24】第5の実施形態における冷間時と通常時とのバ
ルブタイミング及び噴射時期の違いを示す図。
FIG. 24 is a diagram showing differences in valve timing and injection timing between a cold state and a normal state in the fifth embodiment.

【符号の説明】[Explanation of symbols]

1 アクセル開度センサ 2 クランク角センサ 3 エアフローメータ 4 エンジン 5 水温センサ 6 燃料噴射弁 7 点火栓 8 吸気通路 9 スロットル弁 10 スロットルアクチュエータ 11 コントロールユニット 12 吸気バルブ 13 排気バルブ 14a,14b 可変動弁機構 DESCRIPTION OF SYMBOLS 1 Accelerator opening sensor 2 Crank angle sensor 3 Air flow meter 4 Engine 5 Water temperature sensor 6 Fuel injection valve 7 Spark plug 8 Intake passage 9 Throttle valve 10 Throttle actuator 11 Control unit 12 Intake valve 13 Exhaust valve 14a, 14b Variable valve mechanism

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 43/00 301 F02D 43/00 301Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 43/00 301 F02D 43/00 301Z

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】筒内に直接燃料を噴射する燃料噴射弁を備
えてなる筒内噴射ガソリンエンジンにおいて、 排気バルブの閉時期から所定クランク角度後に吸気バル
ブの開時期となるようにし、前記排気バルブの閉時期か
ら吸気バルブの開時期までの間に前記燃料噴射弁による
燃料噴射を行わせることを特徴とする筒内噴射ガソリン
エンジン。
1. An in-cylinder injection gasoline engine having a fuel injection valve for injecting fuel directly into a cylinder, wherein the intake valve is opened at a predetermined crank angle after the exhaust valve is closed. A direct injection gasoline engine wherein fuel injection is performed by the fuel injection valve during a period between a closing time of the fuel injection valve and an opening timing of the intake valve.
【請求項2】前記吸気バルブの開時期をピストン上死点
以降に設定し、前記ピストン上死点から前記吸気バルブ
の開時期までの間に前記燃料噴射弁による燃料噴射を行
わせることを特徴とする請求項1記載の筒内噴射ガソリ
ンエンジン。
2. The method according to claim 1, wherein the opening timing of the intake valve is set after the piston top dead center, and fuel is injected by the fuel injection valve from the piston top dead center to the opening timing of the intake valve. The direct injection gasoline engine according to claim 1, wherein:
【請求項3】前記燃料噴射弁による噴射時期を、前記吸
気バルブの開時期の直前とすることを特徴とする請求項
2記載の筒内噴射ガソリンエンジン。
3. The direct injection gasoline engine according to claim 2, wherein the injection timing of the fuel injection valve is set immediately before the opening timing of the intake valve.
【請求項4】前記吸気バルブの開時期を変更可能に構成
し、エンジン回転速度が高いときほど前記吸気バルブの
開時期をピストン上死点に近づけることを特徴とする請
求項2又は3に記載の筒内噴射ガソリンエンジン。
4. The intake valve according to claim 2, wherein the opening timing of the intake valve is changeable, and the opening timing of the intake valve is made closer to the piston top dead center as the engine speed increases. In-cylinder injection gasoline engine.
【請求項5】前記吸気バルブの開時期を、筒内圧力と吸
気管圧力とが略同等となる時期とすることを特徴とする
請求項2又は3に記載の筒内噴射ガソリンエンジン。
5. An in-cylinder injection gasoline engine according to claim 2, wherein the opening timing of the intake valve is set to a timing at which the in-cylinder pressure and the intake pipe pressure become substantially equal.
【請求項6】前記排気バルブの閉時期をピストン上死点
以前に設定したことを特徴とする請求項1〜5のいずれ
か1つに記載の筒内噴射ガソリンエンジン。
6. The direct injection gasoline engine according to claim 1, wherein the closing timing of the exhaust valve is set before the top dead center of the piston.
【請求項7】前記吸気バルブの開時期をピストン上死点
以降に設定し、ピストン上死点から前記吸気バルブの開
時期までの角度を、前記排気バルブの閉時期からピスト
ン上死点までの角度以上に設定したことを特徴とする請
求項6記載の筒内噴射ガソリンエンジン。
7. An opening timing of said intake valve is set after a piston top dead center, and an angle from a piston top dead center to an opening timing of said intake valve is set between a closing timing of said exhaust valve and a piston top dead center. 7. The direct injection gasoline engine according to claim 6, wherein the angle is set to be equal to or larger than the angle.
【請求項8】前記燃料噴射弁が、シリンダの斜め下方に
燃料を噴射する構成であって、前記排気バルブの閉時期
と前記吸気バルブの開時期とをピストンの排気行程後半
から吸気行程前半の間にそれぞれ設定したことを特徴と
する請求項1〜7のいずれか1つに記載の筒内噴射ガソ
リンエンジン。
8. The fuel injection valve according to claim 1, wherein the fuel injection valve injects fuel obliquely below the cylinder, wherein the closing timing of the exhaust valve and the opening timing of the intake valve are set in the second half of the exhaust stroke of the piston and the first half of the intake stroke. The cylinder-injected gasoline engine according to any one of claims 1 to 7, wherein the gasoline engine is set between the two.
【請求項9】少なくともエンジンの温度が所定温度以下
であるときに、前記排気バルブの閉時期から吸気バルブ
の開時期までの間に前記燃料噴射弁による燃料噴射を行
わせることを特徴とする請求項1〜8のいずれか1つに
記載の筒内噴射ガソリンエンジン。
9. The fuel injection valve according to claim 1, wherein the fuel injection is performed by the fuel injection valve during a period from the closing timing of the exhaust valve to the opening timing of the intake valve at least when the temperature of the engine is equal to or lower than a predetermined temperature. Item 9. A direct injection gasoline engine according to any one of Items 1 to 8.
【請求項10】前記吸気バルブの開時期を変更可能な動弁
装置を備え、少なくとも前記吸気バルブの開時期が所定
の遅角位置のときに、前記排気バルブの閉時期から所定
クランク角度後に前記吸気バルブの開時期になるよう構
成され、少なくともエンジンの温度が所定温度以下であ
るときに、前記吸気バルブの開時期を前記所定の遅角位
置に設定し、前記排気バルブの閉時期から前記吸気バル
ブの開時期までの間に前記燃料噴射弁による燃料噴射を
行わせることを特徴とする請求項1〜8のいずれか1つ
に記載の筒内噴射ガソリンエンジン。
10. A valve operating device capable of changing an opening timing of the intake valve, wherein at least when the opening timing of the intake valve is at a predetermined retarded position, after a predetermined crank angle from the closing timing of the exhaust valve. The intake valve is configured to be opened at a timing, and at least when the temperature of the engine is equal to or lower than a predetermined temperature, the opening timing of the intake valve is set to the predetermined retarded position. The direct injection gasoline engine according to any one of claims 1 to 8, wherein the fuel injection by the fuel injection valve is performed before the valve is opened.
【請求項11】前記排気バルブの閉時期を変更可能な動弁
装置を備え、少なくとも前記排気バルブの閉時期が所定
の進角位置のときに、前記排気バルブの閉時期から所定
クランク角度後に前記吸気バルブの開時期になるよう構
成され、少なくともエンジンの温度が所定温度以下であ
るときに、前記排気バルブの閉時期を前記所定の進角位
置に設定し、前記排気バルブの閉時期から前記吸気バル
ブの開時期までの間に前記燃料噴射弁による燃料噴射を
行わせることを特徴とする請求項1〜8のいずれか1つ
に記載の筒内噴射ガソリンエンジン。
11. A valve operating device capable of changing a closing timing of the exhaust valve, wherein at least when the closing timing of the exhaust valve is at a predetermined advanced position, after a predetermined crank angle from the closing timing of the exhaust valve. The intake valve is configured to be opened, and at least when the temperature of the engine is equal to or lower than a predetermined temperature, the closing timing of the exhaust valve is set to the predetermined advanced position, and the intake valve is closed from the closing timing of the exhaust valve. The direct injection gasoline engine according to any one of claims 1 to 8, wherein the fuel injection by the fuel injection valve is performed before the valve is opened.
【請求項12】前記動弁装置は、クランク軸とカム軸との
位相を変化させる機構を有することを特徴とする請求項
10又は11に記載の筒内噴射ガソリンエンジン。
12. The valve operating device according to claim 1, further comprising a mechanism for changing a phase between a crankshaft and a camshaft.
12. The in-cylinder injection gasoline engine according to 10 or 11.
【請求項13】前記動弁装置は、クランク軸の角速度に対
するカム軸の角速度を周期的に変化させる機構を有する
ことを特徴とする請求項10又は11に記載の筒内噴射ガソ
リンエンジン。
13. The direct injection gasoline engine according to claim 10, wherein the valve train has a mechanism for periodically changing an angular speed of a camshaft with respect to an angular speed of a crankshaft.
【請求項14】前記動弁装置は、複数のカムを切換える機
構を有することを特徴とする請求項10又は11に記載の筒
内噴射ガソリンエンジン。
14. The direct injection gasoline engine according to claim 10, wherein the valve train has a mechanism for switching a plurality of cams.
【請求項15】前記動弁装置は、油圧力によってバルブを
駆動する装置であることを特徴とする請求項10又は11に
記載の筒内噴射ガソリンエンジン。
15. The direct injection gasoline engine according to claim 10, wherein the valve operating device is a device that drives a valve by hydraulic pressure.
【請求項16】前記動弁装置は、電磁力によってバルブを
駆動する装置であることを特徴とする請求項10又は11に
記載の筒内噴射ガソリンエンジン。
16. The direct injection gasoline engine according to claim 10, wherein the valve train is a device that drives a valve by electromagnetic force.
JP12359898A 1998-05-06 1998-05-06 In-cylinder injection gasoline engine Expired - Lifetime JP3525737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12359898A JP3525737B2 (en) 1998-05-06 1998-05-06 In-cylinder injection gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12359898A JP3525737B2 (en) 1998-05-06 1998-05-06 In-cylinder injection gasoline engine

Publications (2)

Publication Number Publication Date
JPH11324778A true JPH11324778A (en) 1999-11-26
JP3525737B2 JP3525737B2 (en) 2004-05-10

Family

ID=14864587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12359898A Expired - Lifetime JP3525737B2 (en) 1998-05-06 1998-05-06 In-cylinder injection gasoline engine

Country Status (1)

Country Link
JP (1) JP3525737B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052391A3 (en) * 1999-05-12 2001-01-24 Nissan Motor Co., Ltd. Compression self-igniting gasoline engine
JP2002242713A (en) * 2000-12-15 2002-08-28 Denso Corp Control device for internal combustion engine
FR2838162A1 (en) 2002-04-08 2003-10-10 Toyota Motor Co Ltd Direct injection spark ignition IC engine on automotive vehicle, uses EGR gases during the compression phase to improve cold starting
US6837040B2 (en) 2002-03-27 2005-01-04 Toyota Jidosha Kabushiki Kaisha In-cylinder injection type spark-ignition internal combustion engine and control method thereof
FR2877048A1 (en) * 2004-10-25 2006-04-28 Renault Sas Internal combustion engine e.g. direct injection diesel engine, control method for vehicle, involves controlling closing of exhaust valve before piston reaches top dead center, and opening inlet valve after reaching center
WO2007022603A1 (en) * 2005-08-26 2007-03-01 Orbital Australia Pty Ltd Engine control strategy
JP2008196384A (en) * 2007-02-13 2008-08-28 Hitachi Ltd Intake air control device for internal combustion engine
WO2010020852A1 (en) * 2008-08-22 2010-02-25 Toyota Jidosha Kabushiki Kaisha Engine-start control device and method for internal combustion engine
EP2169198A1 (en) * 2008-09-26 2010-03-31 Mazda Motor Corporation Control of spark ignited internal combustion engine
JP2010121567A (en) * 2008-11-20 2010-06-03 Toyota Motor Corp Control device for internal combustion engine
JP2010209716A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Control device for internal combustion engine
US7992537B2 (en) 2007-10-04 2011-08-09 Ford Global Technologies, Llc Approach for improved fuel vaporization in a directly injected internal combustion engine
WO2012137055A1 (en) * 2011-04-04 2012-10-11 Toyota Jidosha Kabushiki Kaisha Internal combustion engine starting control device and internal combustion engine starting control method
CN104595046A (en) * 2013-10-31 2015-05-06 三菱电机株式会社 internal combustion engine control apparatus
EP2902607A4 (en) * 2012-09-27 2016-05-25 Hitachi Automotive Systems Ltd Cylinder injection engine control apparatus
CN109072786A (en) * 2016-04-27 2018-12-21 五十铃自动车株式会社 The control device and internal-combustion engine system of internal combustion engine
CN111852680A (en) * 2020-07-31 2020-10-30 重庆长安汽车股份有限公司 Oil injection method
EP4283108A1 (en) * 2022-05-24 2023-11-29 Mazda Motor Corporation Engine control apparatus, engine system, and vehicle
WO2024105256A1 (en) * 2022-11-18 2024-05-23 New H Powertrain Holding, S.L.U Method for controlling a motor vehicle engine comprising at least one engine adjustment mode for increasing the amount of calories from the engine used by a heating system of the vehicle

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052391A3 (en) * 1999-05-12 2001-01-24 Nissan Motor Co., Ltd. Compression self-igniting gasoline engine
JP2002242713A (en) * 2000-12-15 2002-08-28 Denso Corp Control device for internal combustion engine
US6837040B2 (en) 2002-03-27 2005-01-04 Toyota Jidosha Kabushiki Kaisha In-cylinder injection type spark-ignition internal combustion engine and control method thereof
FR2838162A1 (en) 2002-04-08 2003-10-10 Toyota Motor Co Ltd Direct injection spark ignition IC engine on automotive vehicle, uses EGR gases during the compression phase to improve cold starting
FR2877048A1 (en) * 2004-10-25 2006-04-28 Renault Sas Internal combustion engine e.g. direct injection diesel engine, control method for vehicle, involves controlling closing of exhaust valve before piston reaches top dead center, and opening inlet valve after reaching center
WO2007022603A1 (en) * 2005-08-26 2007-03-01 Orbital Australia Pty Ltd Engine control strategy
JP2008196384A (en) * 2007-02-13 2008-08-28 Hitachi Ltd Intake air control device for internal combustion engine
US8166959B2 (en) 2007-10-04 2012-05-01 Ford Global Technologies, Llc Approach for improved fuel vaporization in a directly injected internal combustion engine
US7992537B2 (en) 2007-10-04 2011-08-09 Ford Global Technologies, Llc Approach for improved fuel vaporization in a directly injected internal combustion engine
WO2010020852A1 (en) * 2008-08-22 2010-02-25 Toyota Jidosha Kabushiki Kaisha Engine-start control device and method for internal combustion engine
EP2169198A1 (en) * 2008-09-26 2010-03-31 Mazda Motor Corporation Control of spark ignited internal combustion engine
JP2010121567A (en) * 2008-11-20 2010-06-03 Toyota Motor Corp Control device for internal combustion engine
JP2010209716A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Control device for internal combustion engine
WO2012137055A1 (en) * 2011-04-04 2012-10-11 Toyota Jidosha Kabushiki Kaisha Internal combustion engine starting control device and internal combustion engine starting control method
EP2902607A4 (en) * 2012-09-27 2016-05-25 Hitachi Automotive Systems Ltd Cylinder injection engine control apparatus
CN104595046A (en) * 2013-10-31 2015-05-06 三菱电机株式会社 internal combustion engine control apparatus
JP2015086790A (en) * 2013-10-31 2015-05-07 三菱電機株式会社 Control device for internal combustion engine
CN109072786A (en) * 2016-04-27 2018-12-21 五十铃自动车株式会社 The control device and internal-combustion engine system of internal combustion engine
CN111852680A (en) * 2020-07-31 2020-10-30 重庆长安汽车股份有限公司 Oil injection method
EP4283108A1 (en) * 2022-05-24 2023-11-29 Mazda Motor Corporation Engine control apparatus, engine system, and vehicle
WO2024105256A1 (en) * 2022-11-18 2024-05-23 New H Powertrain Holding, S.L.U Method for controlling a motor vehicle engine comprising at least one engine adjustment mode for increasing the amount of calories from the engine used by a heating system of the vehicle
FR3142126A1 (en) * 2022-11-18 2024-05-24 Renault S.A.S Method for controlling a motor vehicle engine comprising at least one engine adjustment mode aimed at increasing the quantity of calories from the engine used by a vehicle heating system

Also Published As

Publication number Publication date
JP3525737B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
KR100863475B1 (en) Control apparatus and control method for internal combustion engine
JP5919697B2 (en) Diesel engine start control device
JPH11324778A (en) Gasoline direct injection engine
JP4525517B2 (en) Internal combustion engine
US8272207B2 (en) Late post injection of fuel for particulate filter heating
US7503301B2 (en) Throttle position control during an engine start
US20080060611A1 (en) Variable event valvetrain operation during an engine start
JP3616320B2 (en) Ignition timing control device for internal combustion engine
JP2001073834A (en) Control device for internal combustion engine
JP2008291686A (en) Control device of internal combustion engine
EP3421777B1 (en) Internal combustion engine control apparatus
JP2000073803A (en) Cylinder injection gasoline engine
US7441520B2 (en) Valve-timing control apparatus of internal combustion engine
JP2007056839A (en) Valve timing control device for internal combustion engine
JP4182888B2 (en) Engine control device
US8161926B2 (en) Device and method for controlling internal combustion engine
JP2005194965A (en) Fuel injection controller of engine
JP3771101B2 (en) Control device for internal combustion engine
JP2015048839A (en) Valve timing control device for internal combustion engine
JP3620381B2 (en) Control device for variable valve engine
JP3915367B2 (en) Control device for variable valve engine
JPS6329102B2 (en)
JP2004308560A (en) Control device for internal combustion engine
JP2006097603A (en) Control device for internal combustion engine
JP7276589B2 (en) CONTROL METHOD AND CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 10

EXPY Cancellation because of completion of term