JP2004360562A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2004360562A
JP2004360562A JP2003159478A JP2003159478A JP2004360562A JP 2004360562 A JP2004360562 A JP 2004360562A JP 2003159478 A JP2003159478 A JP 2003159478A JP 2003159478 A JP2003159478 A JP 2003159478A JP 2004360562 A JP2004360562 A JP 2004360562A
Authority
JP
Japan
Prior art keywords
cylinder
internal combustion
combustion engine
knocking
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003159478A
Other languages
Japanese (ja)
Inventor
Yuji Kishimoto
雄治 岸本
Arinori Hamada
有啓 浜田
Ryoji Nishiyama
亮治 西山
Satoshi Wachi
敏 和知
Hiromichi Tsugami
弘道 津上
Takashi Matsumoto
隆史 松本
Koji Nagao
浩治 永尾
Toshikatsu Saito
敏克 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003159478A priority Critical patent/JP2004360562A/en
Publication of JP2004360562A publication Critical patent/JP2004360562A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine capable of taking a knocking countermeasures without deteriorating output torque and fuel economy of an internal combustion engine. <P>SOLUTION: This device is provided with the internal combustion engine 1 having a plurality of cylinders 1a - 1d, an intake air quantity control means 7a - 7d individually controlling intake air to each cylinder 1a - 1d of the internal combustion engine 1, a fuel injection means 9a - 9d individually controlling fuel injection quantity to each cylinder 1a - 1d of the internal combustion engine 1, a knocking detection means 13 detecting knocking of the internal combustion engine for each cylinder, and a control means 14 controlling intake air quantity of each cylinder by the intake air control means 7a - 7d and fuel injection quantity corresponding to intake air quantity by the fuel injection means 9a - 9d. In this device, the knocking detection means 14 detects knocking, the control means 14 performs control to reduce intake air quantity of the cylinder where knocking occurs. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、車両用内燃機関のノッキング制御、特に、燃料消費量の低減を図りながらノッキングの制御を行う内燃機関の制御装置に関するものである。
【0002】
【従来の技術】
車両用内燃機関、特に過給気を持つ内燃機関や高圧縮比の内燃機関などにおいては、内燃機関の高負荷運転時にノッキングが発生し、内燃機関には振動が発生するのみならず、燃焼室壁面を高温の燃焼ガスから保護している温度境界層が破壊されて燃焼室を構成する各部品が溶損する事故につながることになる。このためにノッキングが発生した場合、内燃機関に発生するノッキング振動を検出し、このノッキング振動の信号に応じて点火時期を遅角制御させるノッキング制御が一般的に行われている。
【0003】
一方、内燃機関にはMBT(Minimum Advanced for Best Torque)と呼ばれる最適点火時期が存在し、このMBTより点火時期が進角しても、また、遅角しても内燃機関の発生トルクは減少すると共に燃費が悪化する。従って、通常はこのMBT、または、MBT近傍に点火時期の設定がなされるが、従来の内燃機関ではノッキングが発生すると遅角制御がなされるため、遅角制御がなされた気筒については燃費が悪化することになる。
【0004】
このような弊害を軽減するものとして、例えば、特許文献1に開示されているような技術がある。この資料に開示された技術は、ノッキングにより遅角している状態において、内燃機関の現在の運転状態でのノッキングが発生する最大点火角(時期)と実点火角との差であるノッキング余裕角を決定するノッキング余裕角決定手段と、このノッキング余裕角が大きいほど進角を大きく設定する進角設定手段と、進角設定手段で設定された角度だけ実点火時期を進角させる点火時期制御手段とを備えることにより、ノッキングにより遅角した実点火時期をMBTに迅速に接近させるようにしたものである。
【0005】
【特許文献1】
特開平8−165974号公報(第3頁、第4頁、第1〜5図)
【0006】
【発明が解決しようとする課題】
このように、点火時期を迅速にMBTに接近させたとしても、ノッキングの発生と共に点火時期が遅れ、MBTの領域から外れた期間はトルクの減少と燃費の悪化とが起こることになり、ノッキングが発生するような使用状態においては、点火時期がMBT近傍に戻ればまたノッキングが発生し、結果として遅角と進角との繰り返しになるため、全体としては遅角制御がなされることになり、遅角制御がなされた気筒についてはトルクの低下と燃費の悪化が避けられない。
【0007】
この発明は、このような課題を解決するためになされたもので、点火時期の遅角以外に気筒に対する吸気の充填量を制御してもノッキング対策ができることに着目し、内燃機関の発生トルクや燃費を低下させることなく、ノッキング対策が可能な内燃機関の制御装置を得ることを目的とするものである。
【0008】
【課題を解決するための手段】
この発明による内燃機関の制御装置は、複数の気筒を有する内燃機関と、内燃機関の各気筒に対する吸気を個別に制御する吸気量制御手段と、内燃機関の各気筒に対する燃料噴射量を個別に制御する燃料噴射手段と、内燃機関の各気筒のノッキングを検出するノッキング検出手段と、吸気量制御手段による各気筒の個別の吸気量、および、燃料噴射手段による吸気量に見合った燃料噴射量を制御する制御手段とを備え、ノッキング検出手段がノッキングを検出したとき、制御手段がノッキングの発生した気筒に対して吸気量を減少させるように制御するものである。
【0009】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1による内燃機関の制御装置を説明する内燃機関のシステム構成図、図2は、MBT近傍における平均有効圧と燃料消費量とを示す特性図であり、図1では四気筒の内燃機関を一例として説明する。
【0010】
図1において、内燃機関1は高圧縮比の気筒1aないし1dを有しており、各気筒1aないし1dには吸気弁2aないし2dと、排気弁3aないし3dとが設けられている。各吸気弁2aないし2dは、各気筒1aないし1dと吸気枝管4aないし4dとの接続部に設けられ、各吸気枝管4aないし4dはその上流部において一つにまとめられて吸気管5を形成し、吸気管5はエアクリーナ6に接続されて、エアクリーナ6からの吸気を吸気管5から各吸気枝管4aないし4dに分配し、各気筒1aないし1dに与えるように構成されている。
【0011】
吸気枝管4aないし4dには、吸気量制御手段としての電子制御スルットルバルブ(以下ETVと称す)7aないし7dと、吸気圧センサ8aないし8dと、燃料噴射弁9aないし9dとが設けられており、ETV7aないし7dは、各気筒1aないし1dの吸気量を個別に制御する。また、吸気圧センサ8aないし8dは単一の吸気圧センサを設けて各気筒1aないし1dの行程により切換使用することもできるものである。各気筒1aないし1dと排気管10との接続部には排気弁3aないし3dが設けられており、排気管10には内燃機関1の空燃比を検出する空燃比センサ11が設けられている。
【0012】
内燃機関1には各気筒1aないし1dの行程と回転速度とを検出することが可能な気筒識別センサ12と、ノッキング信号を検出するノッキング検出手段13とが設けられており、気筒識別センサ12とノッキング検出手段13が出力する信号は制御手段14に入力される。制御手段14にはETV7aないし7dを操作して内燃機関1における各気筒1aないし1dの吸気量を個別に調整する個別吸気量調整手段14a、および、燃料噴射弁9aないし9dを操作して燃料噴射量を個別に調整する個別燃料噴射量調整手段14bが含まれている。
【0013】
そして、制御手段14は、運転者が操作する図示しないアクセルペダルの操作量に基づき、各気筒1aないし1dに対する吸入空気量を演算してETV7aないし7dの制御を行い、この制御量を吸気圧センサ8aないし8dにて検出し、気筒識別センサ12により気筒の識別をした上で、燃料噴射弁9aないし9dに気筒別の燃料噴射量を指示する。また、個別吸気量調整手段14aは排気管10に設けられた空燃比センサ11の信号によりフィードバック制御を行い、各気筒1aないし1dの空燃比を調整する。
【0014】
制御手段14は、図示しない点火時期制御手段を有しており、個別燃料噴射量調整手段14bの出力で点火時期制御手段を制御することにより、MTBまたはMTB近辺における点火の制御を行う。図2はMTBまたはMTB近辺における点火の効果を示したもので、図の曲線(a)に示すようににより平均有効圧は最大となり、図の曲線(b)に示すようにMTBでの点火により燃料消費量は最低値を示すことになる。すなわち、MTBで点火を行うことにより、内燃機関1は最高の効率で運転することができることになる。
【0015】
以上のように構成した内燃機関1において、運転中にノッキング検出手段13がノッキング信号を検出すると、制御手段14の個別吸気量調整手段14aはETV7aないし7dに指令を送り、ETV7aないし7dを操作してノッキングの発生した気筒に対する吸入空気量を減少させる方向に制御し、この制御に基づき個別燃料噴射量調整手段14bは該当する気筒の燃料噴射量を制御して空燃比を所定値に保ち、吸入空気量と燃料の量とを減少させることにより、ノッキングの抑制を行うように制御する。
【0016】
ノッキングの発生は四サイクルの内燃機関においては燃焼行程中であり、ノッキングの発生を検出して次回の燃焼行程でのノッキング抑制を行うためには、次回の燃焼行程での吸入空気量、または、点火時期を制御する必要があるが、従来の内燃機関では、一つにまとまった吸気管5の部分にスロットルバルブが存在していたために、スロットルバルブから各気筒までの容積が大となり、スロットルバルブの動作を速めても吸入空気量の制御の即応性は困難であり、しかも、全気筒の吸気量が減少するために内燃機関の出力が低下してしまうことになり、そのためにノッキング対策は点火時期の遅角制御で対応していた。
【0017】
この発明の内燃機関の制御装置においては、各吸気枝管4aないし4dにETV7aないし7dを設け、各気筒独立に吸気制御を行うようにしたので、点火時期をノッキングとは無関係に燃費の最良時期に置き、吸気制御により応答性良くノッキング制御ができるもので、例えば、ETV7aないし7dの下流側、各吸気弁2aないし2dまでの容積を各気筒1aないし1dの行程容積の1.5倍としても、吸気弁2aないし2dが開弁するまでの間にETV7aないし7dを閉じれば吸気量を約60%以下まで低減することができ、充分な応答性でノッキングの抑制ができ、また、ノッキング未発生の気筒に対してはその出力を維持することが可能になるものである。
【0018】
また、ノッキング検出手段13の信号強度に応じてノッキング発生気筒に対する充填空気量の減少量を制御することにより、その気筒の出力を余分に低下させることなくノッキング制御することができ、さらに、ノッキングの停止と共に充填空気量の復帰を一挙に行うと、ノッキングの発生と停止とのハンチング現象が生ずるため、充填空気量の復帰を回転と共に漸増させることにより、ハンチングを生ずることなく、燃費を確保しながら効果的にノッキングを抑制することができるものである。
【0019】
実施の形態2.
図3は、この発明の実施の形態2による内燃機関の制御装置を説明する内燃機関のシステム構成図で、図1と同一機能部には同一符号を付与しており、この実施の形態による内燃機関の制御装置は、実施の形態1に対してETV7aないし7dに変え、吸入空気量の制御を吸気弁15aないし15dの開弁期間および開弁タイミングにより制御すると共に、吸気管5にエアーフローセンサ16を設けるようにしたものである。
【0020】
吸気弁15aないし15dは、開弁期間と開弁タイミングまたは開弁動作量を電子的に制御されるもので、例えば、電子直動バルブ制御手段などが使用され、図示しないアクセルペダルと連動して吸入空気量を制御すると共に、ノッキング検出手段13の信号によっても吸入空気量が制御される。このように構成することにより、制御装置14が吸気弁15aないし15dに使用する電子直動バルブ制御手段を制御し、各気筒に対する充填吸気量を個別に、しかも、高速に行うことができるもので、点火時期をノッキングとは無関係に燃費の最良時期に置き、吸気制御により応答性良くノッキング制御ができるものである。
【0021】
実施の形態3.
図4は、この発明の実施の形態3による内燃機関の制御装置を説明する内燃機関のシステム構成図で、図1と同一機能部には同一符号を付与しており、この実施の形態による内燃機関の制御装置は、実施の形態1に対して筒内圧センサ17aないし17dを設け、筒内圧センサ17aないし17dにより吸気圧センサ8aないし8dと、ノッキング検出手段13と、気筒識別センサ12の機能の一部とを置き換えたものである。
【0022】
このように構成しても筒内圧センサ17aないし17dにより、吸気圧とノッキングとの検出が可能になり、各気筒の行程の判定ができるので、実施の形態1および2と同様に各気筒に対する充填吸気量を個別に、しかも、高速に行うことができると共に、点火時期をノッキングとは無関係に燃費の最良時期に置き、吸気制御により応答性良くノッキング制御ができるものである。
【0023】
【発明の効果】
以上に説明したように、この発明の内燃機関の制御装置によれば、複数の気筒を有する内燃機関の各気筒に対する吸気を個別に制御する吸気量制御手段と、各気筒に対する燃料噴射量を個別に制御する燃料噴射手段と、各気筒のノッキングを検出するノッキング検出手段と、吸気量制御手段による各気筒個別の吸気量、および、燃料噴射手段による燃料噴射量を制御する制御手段とを備え、ノッキング検出手段がノッキングを検出したとき、制御手段がノッキングの発生した気筒に対して吸気量を減少させるようにしたので、点火時期をノッキングの発生とは無関係に燃費の最良時期に置き、吸気制御により応答性良くノッキング制御ができるもので、燃料消費量が良好であり、ノッキングに対して応答性の良好な内燃機関の制御装置を得ることができるものである。
【図面の簡単な説明】
【図1】この発明の実施の形態1による内燃機関の制御装置を説明するシステム構成図である。
【図2】この発明の実施の形態1による内燃機関の制御装置を説明する特性図である。
【図3】この発明の実施の形態2による内燃機関の制御装置を説明するシステム構成図である。
【図4】この発明の実施の形態3による内燃機関の制御装置を説明するシステム構成図である。
【符号の説明】
1 内燃機関、1a〜1d 各気筒、
2a〜2d、15a〜15d 吸気弁、3a〜3d 排気弁、
4a〜4d 吸気枝管、5 吸気管、 6 エアクリーナ、
7a〜7d ETV(吸気量制御手段)、 8a〜8d 吸気圧センサ、
9a〜9d 燃料噴射弁、10 排気管、 11 空燃比センサ、
12 気筒識別センサ、13 ノッキング検出手段、
14 制御手段、14a 個別吸気量調整手段、
14b 個別燃料噴射量調整手段、16 エアーフローセンサ、
17a〜17d 筒内圧センサ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a knocking control of a vehicular internal combustion engine, and more particularly to a control device of an internal combustion engine that performs knocking control while reducing fuel consumption.
[0002]
[Prior art]
In a vehicle internal combustion engine, particularly an internal combustion engine having supercharging or an internal combustion engine having a high compression ratio, knocking occurs during high load operation of the internal combustion engine. The temperature boundary layer that protects the wall surface from the high-temperature combustion gas is destroyed, which may lead to an accident that the components constituting the combustion chamber are melted and damaged. For this reason, when knocking occurs, knocking control that detects knocking vibration occurring in the internal combustion engine and retards the ignition timing according to a signal of the knocking vibration is generally performed.
[0003]
On the other hand, the internal combustion engine has an optimum ignition timing called MBT (Minimum Advanced for Best Torque), and the generated torque of the internal combustion engine decreases even if the ignition timing is advanced or retarded from this MBT. At the same time, fuel economy deteriorates. Therefore, the ignition timing is usually set at or near the MBT, but in the conventional internal combustion engine, when knocking occurs, the retard control is performed, so that the fuel efficiency of the cylinder on which the retard control is performed deteriorates. Will do.
[0004]
As a technique for reducing such adverse effects, for example, there is a technique disclosed in Patent Document 1. The technique disclosed in this document is based on a knock margin which is a difference between a maximum ignition angle (timing) at which knocking occurs in the present operating state of the internal combustion engine and an actual ignition angle in a state where the engine is retarded by knocking. Angle determination means for determining the angle of advance, advance angle setting means for setting the advance angle larger as the knock margin angle is larger, and ignition timing control means for advancing the actual ignition timing by the angle set by the advance angle setting means With this arrangement, the actual ignition timing delayed by knocking is made to quickly approach the MBT.
[0005]
[Patent Document 1]
JP-A-8-165974 (page 3, page 4, FIGS. 1 to 5)
[0006]
[Problems to be solved by the invention]
As described above, even if the ignition timing approaches the MBT quickly, the ignition timing is delayed along with the occurrence of knocking, and during a period outside the MBT region, torque decreases and fuel consumption deteriorates, and knocking occurs. In a use state in which the ignition occurs, if the ignition timing returns to the vicinity of the MBT, knocking occurs again, and as a result, the retard and the advance are repeated, so that the retard control is performed as a whole, For a cylinder that has been subjected to retard control, a decrease in torque and a deterioration in fuel economy are inevitable.
[0007]
The present invention has been made in order to solve such a problem, and has focused on the fact that knocking can be prevented even by controlling the amount of intake air to a cylinder in addition to retarding the ignition timing. An object of the present invention is to provide a control device for an internal combustion engine capable of taking measures against knocking without reducing fuel consumption.
[0008]
[Means for Solving the Problems]
A control device for an internal combustion engine according to the present invention includes: an internal combustion engine having a plurality of cylinders; intake air amount control means for individually controlling intake air for each cylinder of the internal combustion engine; and individually controlling a fuel injection amount for each cylinder of the internal combustion engine. A fuel injection means, a knock detection means for detecting knocking of each cylinder of the internal combustion engine, an individual intake amount of each cylinder by an intake amount control means, and a fuel injection amount corresponding to the intake amount by the fuel injection means. The knocking detection means detects knocking, and the control means controls the cylinder in which knocking has occurred to reduce the intake air amount.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a system configuration diagram of an internal combustion engine illustrating a control device for an internal combustion engine according to a first embodiment of the present invention, and FIG. 2 is a characteristic diagram showing an average effective pressure and fuel consumption in the vicinity of MBT. In FIG. 1, a four-cylinder internal combustion engine will be described as an example.
[0010]
In FIG. 1, an internal combustion engine 1 has cylinders 1a to 1d having a high compression ratio, and each cylinder 1a to 1d is provided with intake valves 2a to 2d and exhaust valves 3a to 3d. The intake valves 2a to 2d are provided at the connecting portions between the cylinders 1a to 1d and the intake branch pipes 4a to 4d, and the intake branch pipes 4a to 4d are integrated into one at the upstream portion to connect the intake pipe 5 to the intake pipes. The intake pipe 5 is connected to an air cleaner 6 to distribute intake air from the air cleaner 6 from the intake pipe 5 to each of the intake branch pipes 4a to 4d and to supply the intake branch pipes 4a to 4d to the cylinders 1a to 1d.
[0011]
The intake branch pipes 4a to 4d are provided with electronically controlled throttle valves (hereinafter referred to as ETVs) 7a to 7d as intake amount control means, intake pressure sensors 8a to 8d, and fuel injection valves 9a to 9d. , ETVs 7a to 7d individually control the intake air amount of each cylinder 1a to 1d. The intake pressure sensors 8a to 8d can be provided with a single intake pressure sensor and can be switched according to the stroke of each cylinder 1a to 1d. Exhaust valves 3a to 3d are provided at the connection between the cylinders 1a to 1d and the exhaust pipe 10. The exhaust pipe 10 is provided with an air-fuel ratio sensor 11 for detecting the air-fuel ratio of the internal combustion engine 1.
[0012]
The internal combustion engine 1 is provided with a cylinder identification sensor 12 capable of detecting the stroke and the rotational speed of each of the cylinders 1a to 1d, and a knocking detection means 13 for detecting a knocking signal. The signal output from knocking detection means 13 is input to control means 14. The control means 14 operates the ETVs 7a to 7d to individually adjust the intake air quantity of each of the cylinders 1a to 1d in the internal combustion engine 1, and the fuel injection valves 9a to 9d to operate the fuel injection. Individual fuel injection amount adjusting means 14b for individually adjusting the amount is included.
[0013]
The control means 14 calculates the amount of intake air for each of the cylinders 1a to 1d based on the operation amount of an accelerator pedal (not shown) operated by the driver and controls the ETVs 7a to 7d. After detection at 8a to 8d and identification of the cylinder by the cylinder identification sensor 12, the fuel injection amount for each cylinder is instructed to the fuel injection valves 9a to 9d. The individual intake air amount adjusting means 14a performs feedback control based on a signal from an air-fuel ratio sensor 11 provided in the exhaust pipe 10 to adjust the air-fuel ratio of each of the cylinders 1a to 1d.
[0014]
The control unit 14 has an ignition timing control unit (not shown), and controls the MTB or the vicinity of the MTB by controlling the ignition timing control unit with the output of the individual fuel injection amount adjusting unit 14b. FIG. 2 shows the effect of ignition at or near the MTB. The average effective pressure becomes maximum as shown by the curve (a) in the figure, and the ignition by the MTB as shown by the curve (b) in the figure. The fuel consumption will show the lowest value. That is, by performing ignition with MTB, the internal combustion engine 1 can be operated with the highest efficiency.
[0015]
In the internal combustion engine 1 configured as described above, when the knocking detection unit 13 detects a knocking signal during operation, the individual intake air amount adjustment unit 14a of the control unit 14 sends a command to the ETVs 7a to 7d to operate the ETVs 7a to 7d. The individual fuel injection amount adjusting means 14b controls the fuel injection amount of the corresponding cylinder to maintain the air-fuel ratio at a predetermined value based on this control. Control is performed to suppress knocking by reducing the amount of air and the amount of fuel.
[0016]
The occurrence of knocking is in the combustion stroke in a four-cycle internal combustion engine.To detect the occurrence of knocking and suppress knocking in the next combustion stroke, the amount of intake air in the next combustion stroke, or Although it is necessary to control the ignition timing, in the conventional internal combustion engine, the volume from the throttle valve to each cylinder becomes large because the throttle valve is present in the united intake pipe 5, and the throttle valve It is difficult to respond quickly to the control of the intake air amount even if the operation is accelerated, and the output of the internal combustion engine is reduced due to the decrease in the intake air amount of all cylinders. The timing was controlled by the retard control.
[0017]
In the control device for an internal combustion engine according to the present invention, the ETVs 7a to 7d are provided in the intake branch pipes 4a to 4d, respectively, and the intake control is performed independently for each cylinder. The knocking control can be performed with good responsiveness by the intake control. For example, even if the volume of each of the intake valves 2a to 2d on the downstream side of the ETVs 7a to 7d is 1.5 times the stroke volume of each of the cylinders 1a to 1d. If the ETVs 7a to 7d are closed before the intake valves 2a to 2d are opened, the intake air amount can be reduced to about 60% or less, knocking can be suppressed with sufficient responsiveness, and knocking does not occur. The output of the cylinder can be maintained.
[0018]
Further, by controlling the amount of decrease in the amount of air charged to the knocking-occurring cylinder in accordance with the signal intensity of the knocking detection means 13, knocking control can be performed without excessively reducing the output of the cylinder. If the return of the filling air amount is performed at once with the stop, a hunting phenomenon occurs between the occurrence of knocking and the stop.Therefore, by gradually increasing the return of the filling air amount with the rotation, hunting does not occur and fuel efficiency is maintained. Knocking can be effectively suppressed.
[0019]
Embodiment 2 FIG.
FIG. 3 is a system configuration diagram of an internal combustion engine illustrating a control apparatus for an internal combustion engine according to a second embodiment of the present invention. In FIG. The control device of the engine changes to the ETVs 7a to 7d with respect to the first embodiment, controls the amount of intake air by the opening period and the opening timing of the intake valves 15a to 15d, and adds an air flow sensor to the intake pipe 5. 16 are provided.
[0020]
The intake valves 15a to 15d are electronically controlled in valve opening period and valve opening timing or valve opening operation amount. For example, electronic direct acting valve control means and the like are used, and the intake valves 15a to 15d are interlocked with an accelerator pedal (not shown). In addition to controlling the amount of intake air, the amount of intake air is also controlled by a signal from knocking detection means 13. With this configuration, the control device 14 controls the electronic direct-acting valve control means used for the intake valves 15a to 15d, so that the charged intake air amount for each cylinder can be individually and rapidly performed. In addition, the ignition timing is set at the best timing of fuel efficiency irrespective of knocking, and knocking control can be performed with good responsiveness by intake control.
[0021]
Embodiment 3 FIG.
FIG. 4 is a system configuration diagram of an internal combustion engine illustrating a control apparatus for an internal combustion engine according to a third embodiment of the present invention. In FIG. The engine control device is provided with in-cylinder pressure sensors 17a to 17d with respect to the first embodiment, and functions of the intake pressure sensors 8a to 8d, the knocking detection means 13, and the cylinder identification sensor 12 are provided by the in-cylinder pressure sensors 17a to 17d. Some are replaced.
[0022]
Even in such a configuration, the cylinder pressure sensors 17a to 17d can detect the intake pressure and the knocking, and the stroke of each cylinder can be determined. Therefore, similarly to the first and second embodiments, the charging of each cylinder is performed. In addition to being able to perform the intake air amount individually and at a high speed, the ignition timing is set to the best timing of fuel efficiency irrespective of knocking, and knocking control can be performed with good responsiveness by intake control.
[0023]
【The invention's effect】
As described above, according to the control apparatus for an internal combustion engine of the present invention, the intake air amount control means for individually controlling the intake air for each cylinder of the internal combustion engine having a plurality of cylinders, and the fuel injection amount for each cylinder individually A fuel injection means, a knock detection means for detecting knocking of each cylinder, an intake air amount for each cylinder by the intake air amount control means, and a control means for controlling the fuel injection amount by the fuel injection means, When the knocking detecting means detects the knocking, the control means reduces the intake air amount for the cylinder in which the knocking has occurred. To control the knocking with good responsiveness, to obtain a control device for an internal combustion engine having good fuel consumption and good responsiveness to knocking. One in which it is bet.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram illustrating a control device for an internal combustion engine according to a first embodiment of the present invention.
FIG. 2 is a characteristic diagram illustrating a control device for an internal combustion engine according to Embodiment 1 of the present invention.
FIG. 3 is a system configuration diagram illustrating a control device for an internal combustion engine according to a second embodiment of the present invention.
FIG. 4 is a system configuration diagram illustrating a control device for an internal combustion engine according to a third embodiment of the present invention.
[Explanation of symbols]
1 internal combustion engine, 1a-1d each cylinder,
2a-2d, 15a-15d intake valve, 3a-3d exhaust valve,
4a to 4d intake branch pipe, 5 intake pipe, 6 air cleaner,
7a-7d ETV (intake air amount control means), 8a-8d intake pressure sensor,
9a to 9d fuel injection valve, 10 exhaust pipe, 11 air-fuel ratio sensor,
12 cylinder identification sensor, 13 knocking detection means,
14 control means, 14a individual intake air amount adjusting means,
14b individual fuel injection amount adjusting means, 16 air flow sensor,
17a-17d In-cylinder pressure sensor.

Claims (7)

複数の気筒を有する内燃機関、前記内燃機関の各気筒に対する吸気を個別に制御する吸気量制御手段、前記内燃機関の各気筒に対する燃料噴射量を個別に制御する燃料噴射手段、前記内燃機関の各気筒のノッキングを検出するノッキング検出手段、前記吸気量制御手段による各気筒の個別の吸気量、および、前記燃料噴射手段による吸気量に見合った燃料噴射量を制御する制御手段を備え、前記ノッキング検出手段がノッキングを検出したとき、前記制御手段がノッキングの発生した気筒に対して吸気量を減少させるように制御することを特徴とする内燃機関の制御装置。An internal combustion engine having a plurality of cylinders, an intake air amount control means for individually controlling intake air for each cylinder of the internal combustion engine, a fuel injection means for individually controlling a fuel injection amount for each cylinder of the internal combustion engine, Knocking detection means for detecting knocking of a cylinder, control means for controlling an individual intake amount of each cylinder by the intake amount control means, and a fuel injection amount corresponding to the intake amount by the fuel injection means; A control device for an internal combustion engine, characterized in that when the means detects knocking, the control means controls the cylinder in which knocking has occurred so as to reduce the intake air amount. 前記制御手段は、ノッキングの強さに応じて前記吸気量制御手段を制御し、ノッキングが発生した気筒に対する吸気量を変化させることを特徴とする請求項1に記載の内燃機関の制御装置。2. The control device for an internal combustion engine according to claim 1, wherein the control unit controls the intake air amount control unit in accordance with knocking intensity to change an intake air amount for a cylinder in which knocking has occurred. 前記制御手段は、前記ノッキング検出手段がノッキングを検出しなくなったとき、ノッキングの消滅した気筒に対する吸気量を漸増させることを特徴とする請求項1または請求項2に記載の内燃機関の制御装置。3. The control device for an internal combustion engine according to claim 1, wherein the control unit gradually increases the intake air amount to the cylinder in which knocking has disappeared when the knocking detection unit stops detecting knocking. 前記吸気量制御手段は、前記内燃機関の各気筒に吸気を分配する吸気枝管に設けられたことを特徴とする請求項1〜請求項3に記載の内燃機関の制御装置。4. The control device for an internal combustion engine according to claim 1, wherein the intake air amount control unit is provided in an intake branch pipe that distributes intake air to each cylinder of the internal combustion engine. 5. 前記吸気枝管に設けられた前記吸気量制御手段と、各気筒の吸気弁との間の容積が、各気筒の行程容積の1.5倍以下であることを特徴とする請求項4に記載の内燃機関の制御装置。The volume between the intake amount control means provided in the intake branch pipe and the intake valve of each cylinder is 1.5 times or less the stroke volume of each cylinder. Internal combustion engine control device. 各気筒の個別の吸気量が、各気筒に設けられた吸気弁の開閉期間または動弁量により制御されることを特徴とする請求項1〜請求項3に記載の内燃機関の制御装置。4. The control device for an internal combustion engine according to claim 1, wherein an individual intake amount of each cylinder is controlled by an opening / closing period or a valve operating amount of an intake valve provided in each cylinder. 5. 各気筒に筒内圧センサが設けられており、筒内圧センサによりノッキングの検出が行われるように構成したことを特徴とする請求項1〜請求項6に記載の内燃機関の制御装置。7. The control device for an internal combustion engine according to claim 1, wherein an in-cylinder pressure sensor is provided for each cylinder, and knocking is detected by the in-cylinder pressure sensor.
JP2003159478A 2003-06-04 2003-06-04 Control device for internal combustion engine Pending JP2004360562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159478A JP2004360562A (en) 2003-06-04 2003-06-04 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159478A JP2004360562A (en) 2003-06-04 2003-06-04 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004360562A true JP2004360562A (en) 2004-12-24

Family

ID=34052523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159478A Pending JP2004360562A (en) 2003-06-04 2003-06-04 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004360562A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417290A (en) * 2004-08-19 2006-02-22 Connaught Motor Co Ltd Reducing knock in i.c. engines
WO2008000568A1 (en) * 2006-06-26 2008-01-03 Siemens Aktiengesellschaft Method for cylinder-specific knock regulation and corresponding device
WO2008105550A1 (en) * 2007-02-26 2008-09-04 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
EP1712760A3 (en) * 2005-04-13 2010-01-20 Ricardo, Inc. Indirect variable valve actuation for an internal combustion engine
WO2014042847A1 (en) * 2012-09-17 2014-03-20 Chrysler Group Llc Engine management strategy
WO2015092451A1 (en) * 2013-12-20 2015-06-25 Pakai Tibor Device and procedure for increasing the efficiency of internal combustion engines
CN106837578A (en) * 2015-12-07 2017-06-13 罗伯特·博世有限公司 For the fuel distribution of internal combustion engine operation
US10598111B2 (en) 2017-11-30 2020-03-24 Toyota Jidosha Kabushiki Kaisha Fuel injection controller and controlling method for engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417290A (en) * 2004-08-19 2006-02-22 Connaught Motor Co Ltd Reducing knock in i.c. engines
GB2417290B (en) * 2004-08-19 2008-10-22 Connaught Motor Co Ltd Reducing knock in internal combustion engines with an additional power source
EP1712760A3 (en) * 2005-04-13 2010-01-20 Ricardo, Inc. Indirect variable valve actuation for an internal combustion engine
WO2008000568A1 (en) * 2006-06-26 2008-01-03 Siemens Aktiengesellschaft Method for cylinder-specific knock regulation and corresponding device
WO2008105550A1 (en) * 2007-02-26 2008-09-04 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
CN101622434B (en) * 2007-02-26 2012-08-01 丰田自动车株式会社 Control system for internal combustion engine
WO2014042847A1 (en) * 2012-09-17 2014-03-20 Chrysler Group Llc Engine management strategy
CN104838115A (en) * 2012-09-17 2015-08-12 Fca美国有限责任公司 Engine management strategy
US9175621B2 (en) 2012-09-17 2015-11-03 Fca Us Llc Engine management strategy
CN104838115B (en) * 2012-09-17 2017-10-20 Fca美国有限责任公司 engine management strategy
WO2015092451A1 (en) * 2013-12-20 2015-06-25 Pakai Tibor Device and procedure for increasing the efficiency of internal combustion engines
CN106837578A (en) * 2015-12-07 2017-06-13 罗伯特·博世有限公司 For the fuel distribution of internal combustion engine operation
US10598111B2 (en) 2017-11-30 2020-03-24 Toyota Jidosha Kabushiki Kaisha Fuel injection controller and controlling method for engine

Similar Documents

Publication Publication Date Title
JP4244979B2 (en) Supercharging pressure control device for internal combustion engine
JP5024216B2 (en) Ignition timing control device and ignition timing control method for internal combustion engine
US7886712B2 (en) Method and device for operating an internal combustion engine
US4882695A (en) Control system for ignition timing and boost pressure in internal combustion engine
JP5403057B2 (en) EGR control system for internal combustion engine
JP2004360562A (en) Control device for internal combustion engine
JP5625842B2 (en) Control device for internal combustion engine
JP5549603B2 (en) Control device for internal combustion engine
JP6511102B2 (en) Control device for internal combustion engine
US10400738B2 (en) Control device for internal combustion engine
JP6051793B2 (en) Control device for internal combustion engine
JP3799937B2 (en) Control device for continuously variable transmission
JP6296430B2 (en) Engine control device
JP2014001666A (en) Control device of internal combustion engine
JP2005113772A (en) Knocking avoidance device
JPH05332172A (en) Partial operation control device of engine
WO2021019626A1 (en) Control method and control device for internal combustion engine
JP2009191703A (en) Control device of internal combustion engine
JP4396253B2 (en) Intake control device for internal combustion engine
JP6380657B2 (en) Control device and control method for internal combustion engine
JPH0424550B2 (en)
JP2008297930A (en) Internal combustion engine controlling device
JP2008215142A (en) Knocking detection device for internal combustion engine
JP2004346905A (en) Engine knock controlling device
JP6331230B2 (en) Control device for turbocharged engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424