JP4779757B2 - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine Download PDF

Info

Publication number
JP4779757B2
JP4779757B2 JP2006092712A JP2006092712A JP4779757B2 JP 4779757 B2 JP4779757 B2 JP 4779757B2 JP 2006092712 A JP2006092712 A JP 2006092712A JP 2006092712 A JP2006092712 A JP 2006092712A JP 4779757 B2 JP4779757 B2 JP 4779757B2
Authority
JP
Japan
Prior art keywords
amount
valve
exhaust
fresh air
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006092712A
Other languages
Japanese (ja)
Other versions
JP2007263083A (en
Inventor
元之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006092712A priority Critical patent/JP4779757B2/en
Publication of JP2007263083A publication Critical patent/JP2007263083A/en
Application granted granted Critical
Publication of JP4779757B2 publication Critical patent/JP4779757B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/145Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke with intake and exhaust valves exclusively in the cylinder head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、バルブタイミング変更手段を備えた内燃機関の制御に関する。   The present invention relates to control of an internal combustion engine provided with valve timing changing means.

特許文献1では、2サイクル多気筒エンジンにおいて、クランク室の圧力に基づいて掃気量を求め、この掃気量とA/F(空燃比)とに基づいて燃料噴射量を設定している。特許文献2では、4サイクル運転と2サイクル運転とを切換可能なエンジンにおいて、バルブタイミングを制御することによって2サイクル運転での掃気量を調整する技術が開示されている。
特開平4−311636号公報 特開2004−204745号公報
In Patent Document 1, in a two-cycle multi-cylinder engine, a scavenging amount is obtained based on the crank chamber pressure, and a fuel injection amount is set based on the scavenging amount and A / F (air-fuel ratio). Patent Document 2 discloses a technique for adjusting a scavenging amount in two-cycle operation by controlling valve timing in an engine that can switch between four-cycle operation and two-cycle operation.
Japanese Patent Laid-Open No. 4-311636 JP 2004-204745 A

4サイクル内燃機関では、吸気弁と排気弁の双方が開いているバルブオーバーラップ期間において、吸気通路から排気通路への新気吹き抜け量が増加するほど、吸気通路からの新気により筒内残留ガスが排気通路へ押し出される、いわゆる掃気作用が促進され、シリンダ内に残留する筒内残留ガス量が低減し、耐ノック性能が向上し、機関出力(トルク)の向上を図ることができる。但し、上記の掃気作用は吸気圧力や排気圧力に大きく依存しており、単に機関回転数や機関負荷に基づいて吸・排気弁のバルブタイミングを変更してバルブオーバーラップ量を増減しても十分な掃気作用が得られるとは限らず、例えばターボ過給機を備える内燃機関での加速過渡期のように排気圧力が過渡的に高くなるような状況でバルブオーバーラップ量を増加すると、逆に筒内残留ガスが増加するおそれがある。   In a four-cycle internal combustion engine, in the valve overlap period in which both the intake valve and the exhaust valve are open, the cylinder residual gas is increased by the fresh air from the intake passage as the amount of fresh air blown from the intake passage to the exhaust passage increases. The so-called scavenging action is pushed out to the exhaust passage, the amount of residual cylinder gas remaining in the cylinder is reduced, the knock resistance is improved, and the engine output (torque) can be improved. However, the above scavenging action largely depends on the intake pressure and exhaust pressure, and it is sufficient to change the valve overlap amount by simply changing the intake / exhaust valve timing based on the engine speed and engine load. If the valve overlap amount is increased in a situation where the exhaust pressure becomes transiently high, for example, in an acceleration transition period in an internal combustion engine equipped with a turbocharger, the scavenging action is not always obtained. In-cylinder residual gas may increase.

本発明は、このような課題に鑑みてなされたものであって、吸気弁と排気弁がともに開弁するバルブオーバーラップ量を変更可能なバルブタイミング変更手段を備え、吸気通路から排気通路への新気吹き抜け量を推定し、この推定する新気吹き抜け量が多いほどバルブオーバーラップ量を大きくするように制御することを特徴としている。 The present invention has been made in view of such problems, and includes valve timing changing means capable of changing a valve overlap amount at which both the intake valve and the exhaust valve are opened, and is provided from the intake passage to the exhaust passage. The new air blow-off amount is estimated, and the valve overlap amount is controlled to increase as the estimated new air blow-off amount increases .

本発明によれば、掃気作用に直接的に関連する新気吹き抜け量に応じてバルブオーバーラップ量を制御することによって、バルブオーバーラップによる掃気作用を有効に活用して筒内残留ガス量を低減し、充填効率を向上することができる。   According to the present invention, by controlling the valve overlap amount in accordance with the amount of new air blown directly related to the scavenging action, the scavenging action by the valve overlap is effectively utilized to reduce the in-cylinder residual gas amount. In addition, the filling efficiency can be improved.

以下、本発明の好ましい実施の形態を図面に基づいて説明する。図1は、本発明の一実施例に係る内燃機関のシステム構成図である。この内燃機関10は、4サイクル火花点火式の多気筒レシプロエンジンであって、各気筒毎に、燃焼室内の混合気を火花点火する点火プラグ7と、燃焼室(又は吸気ポート)へ燃料を噴射する燃料噴射弁6と、が設けられている。吸気通路11には、上流側より順に、吸入空気量を計測するエアフローメータ2と、ターボ過給機1のコンプレッサ1Aと、吸入空気(過給)を冷却するインタークーラ3と、吸入空気量を調整するスロットル4と、が配設されている。また、排気通路12には、ターボ過給機1のタービン1Bと、A/Fセンサ5と、が設けられている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram of an internal combustion engine according to an embodiment of the present invention. This internal combustion engine 10 is a four-cycle spark ignition type multi-cylinder reciprocating engine, and for each cylinder, a spark plug 7 for spark-igniting an air-fuel mixture in the combustion chamber and fuel is injected into the combustion chamber (or intake port). A fuel injection valve 6 is provided. In the intake passage 11, in order from the upstream side, an air flow meter 2 that measures the intake air amount, a compressor 1 </ b> A of the turbocharger 1, an intercooler 3 that cools the intake air (supercharge), and an intake air amount A throttle 4 to be adjusted is disposed. Further, the exhaust passage 12 is provided with a turbine 1B of the turbocharger 1 and an A / F sensor 5.

スロットル4は、運転者によるアクセルペダルの操作とは独立して開度を調整可能な電制のものである。ターボ過給機1は、周知のように、排気エネルギーで排気タービン1Bを回して同軸上に連結されたコンプレッサ1Aを駆動し、吸入空気を過給するものである。A/Fセンサ5は、排気中の酸素濃度にほぼ比例した信号(電流値)を出力する広域型の空燃比センサであって、空燃比がリーンである希薄燃焼時にも空燃比フィードバック制御を可能とするものであり、近年のリーンバーンエンジンには良く用いられている。   The throttle 4 is electrically controlled so that the opening degree can be adjusted independently of the operation of the accelerator pedal by the driver. As is well known, the turbocharger 1 rotates the exhaust turbine 1B with exhaust energy to drive a compressor 1A connected coaxially to supercharge intake air. The A / F sensor 5 is a wide-range air-fuel ratio sensor that outputs a signal (current value) that is substantially proportional to the oxygen concentration in the exhaust, and can perform air-fuel ratio feedback control even during lean combustion where the air-fuel ratio is lean. It is often used in recent lean burn engines.

また、この内燃機関には、吸気弁の開閉時期を変更可能な吸気バルブタイミング変更機構21と、排気弁の開閉時期を変更可能な排気バルブタイミング変更機構22と、が設けられている。これらのバルブタイミング変更機構21,22は、周知のようにクランクシャフトに対するカムシャフトの位相を変化させるものである。また、吸気弁の開閉時期に対応する吸気カムシャフトの位相を検出する吸気カム角センサ23と、排気弁の開閉時期に対応する排気カムシャフトの位相を検出する排気カム角センサ24と、が設けられている。   The internal combustion engine is also provided with an intake valve timing changing mechanism 21 that can change the opening / closing timing of the intake valve and an exhaust valve timing changing mechanism 22 that can change the opening / closing timing of the exhaust valve. These valve timing changing mechanisms 21 and 22 change the phase of the camshaft with respect to the crankshaft as is well known. An intake cam angle sensor 23 for detecting the phase of the intake camshaft corresponding to the opening / closing timing of the intake valve and an exhaust cam angle sensor 24 for detecting the phase of the exhaust camshaft corresponding to the opening / closing timing of the exhaust valve are provided. It has been.

制御部(エンジン・コントロール・モジュール:ECM)13は、各種制御処理を記憶及び実行する機能を有するデジタルコンピュータであり、上記のA/Fセンサ5,エアフローメータ2,カム角センサ23,24の他、クランク角センサ14等の各種センサ類の検出信号に基づいて、スロットル4、燃料噴射弁6,点火プラグ7及びバルブタイミング変更機構21,22等へ制御信号を出力し、その動作を制御する。   A control unit (engine control module: ECM) 13 is a digital computer having a function of storing and executing various control processes. In addition to the A / F sensor 5, the air flow meter 2, and the cam angle sensors 23 and 24, Based on detection signals from various sensors such as the crank angle sensor 14, control signals are output to the throttle 4, the fuel injection valve 6, the spark plug 7, the valve timing changing mechanisms 21, 22, and the like to control their operations.

図2 は、上記制御部1 3 による新気吹き抜け量S 2 の推定制御の流れを示すフロチャートである。ステップS 1 1 では、上記各種センサ類からの検出信号に基づいて、機関回転数N e 、クランクシャフト( 又はカムシャフト) の回転位置あるクランク角( C A )及び吸入空気量等を読み込む。ステップS 1 2 では、機関回転数N e と吸入空気量とに基づいて、クランク角C A に対する排気ガス流量を読み込む。例えば、機関回転数N e と吸入空気量毎に予め設定された図3 に示すような制御マップを読み込む。 FIG. 2 is a flowchart showing the flow of estimation control of the fresh air blow-off amount S 2 by the control unit 1 3. In step S 1 1, the engine speed N e, the crank angle (C A) that is the rotational position of the crankshaft (or camshaft), the intake air amount, and the like are read based on the detection signals from the various sensors. In step S 1 2, the exhaust gas flow rate with respect to the crank angle C A is read based on the engine speed N e and the intake air amount. For example, a control map as shown in FIG. 3 preset for each engine speed N e and intake air amount is read.

ステップS13では、機関回転数Neに基づいて、図4に示すような予め設定された制御マップを参照して、燃焼室から排出された排気ガスがA/Fセンサ5に到達するまでの遅れ時間Td(ms)を算出する。ステップS14では、この遅れ時間Tdと機関回転数Neとクランク角CAとに基づいて、排気弁のみが開弁する期間、つまり排気弁時期EVから吸気弁開時期IVOまでの非オーバーラップ(O/L)期間Taのサンプリング時間(ms)と、吸気弁と排気弁とがともに開弁する期間、つまり吸気弁開時期IVOから排気弁閉時期EVCまでのオーバーラップ(O/L)期間Tb(CA)のサンプリング時間(ms)と、を設定する。図5に示すように、機関回転数Neが高くなるほどサンプリング時間は短くなる。 In step S13, the delay time until the exhaust gas discharged from the combustion chamber reaches the A / F sensor 5 with reference to a preset control map as shown in FIG. 4 based on the engine speed Ne. Td (ms) is calculated. In step S14, the delay on the basis of time and Td and the engine speed Ne and the crank angle CA, the period in which only the exhaust valve is opened, i.e. non-overlapping from the exhaust valve opening timing EV O to the intake valve opening timing IVO ( (O / L) The sampling time (ms) of the period Ta and the period during which both the intake valve and the exhaust valve are opened, that is, the overlap (O / L) period Tb from the intake valve opening timing IVO to the exhaust valve closing timing EVC (CA) sampling time (ms) is set. As shown in FIG. 5, the sampling time becomes shorter as the engine speed Ne becomes higher.

ステップS15では、上記のA/Fセンサ5により、上記の応答遅れ時間Tdを加味して、非O/L期間Taの酸素濃度Caと、O/L期間Tbの酸素濃度Cbと、を検出する。Caは非O/L期間Taで逐次検出される単位時間当たりの酸素濃度であり、CbはO/L期間Tbの区間平均の酸素濃度である。吸気通路11から排気通路12へ吹き抜ける未燃の新気には酸素が多く残っているために、図6にも示すように、排気ガス中に新気が含まれるO/L期間Tbでは、非O/L期間Taに比して酸素濃度が一時的に高くなり、酸素濃度に比例したA/Fセンサ5からの出力信号が局所的に高くなる。本発明はこの点に着目してなされたもので、既存のA/Fセンサ5を利用した簡素な構成で、後述するようにO/L期間Tbと非O/L期間Taの酸素濃度に基づいて、吸気通路11から排気通路12へ吹き抜ける新気吹き抜け量S2を正確に推定するものである。   In step S15, the A / F sensor 5 detects the oxygen concentration Ca in the non-O / L period Ta and the oxygen concentration Cb in the O / L period Tb in consideration of the response delay time Td. . Ca is the oxygen concentration per unit time that is sequentially detected in the non-O / L period Ta, and Cb is the average oxygen concentration in the O / L period Tb. Since a large amount of oxygen remains in the unburned fresh air blown from the intake passage 11 to the exhaust passage 12, as shown in FIG. 6, in the O / L period Tb in which fresh air is contained in the exhaust gas, the non-burning fresh air The oxygen concentration temporarily becomes higher than the O / L period Ta, and the output signal from the A / F sensor 5 that is proportional to the oxygen concentration becomes locally higher. The present invention has been made paying attention to this point, and is based on the oxygen concentration of the O / L period Tb and the non-O / L period Ta as described later with a simple configuration using the existing A / F sensor 5. Thus, the fresh air blow-through amount S2 blown from the intake passage 11 to the exhaust passage 12 is accurately estimated.

ステップS16では、下式(1)により、O/L期間Tbでの希釈濃度Ckを算出する。希釈濃度Ckは、燃焼室から排気通路12へ排出される排気ガス量(流量)に対し、O/L期間Tb中に吸気通路11から排気通路12へ吹き抜ける新気吹き抜け量の割合に相当する。
Ck=(Cb/Ca)−1 …(1)
ステップS17では、上記の希釈濃度CkとステップS12で設定された排気ガス量とに基づいて、O/L期間Tbに吸気通路11から排気通路12へ吹き抜ける新気吹き抜け量S2を算出する。具体的には、極短い演算間隔(例えば所定のクランク角)毎に、単位時間当たりの新気吹き抜け量を逐次算出し(Ck×排気ガス流量)、これらを積算することによって、1気筒1サイクルでの新気吹き抜け量S2を正確に求めることができる(図7参照)。
In step S16, the dilution concentration Ck in the O / L period Tb is calculated by the following equation (1). The dilution concentration Ck corresponds to the ratio of the amount of fresh air blown from the intake passage 11 to the exhaust passage 12 during the O / L period Tb with respect to the amount of exhaust gas (flow rate) discharged from the combustion chamber to the exhaust passage 12.
Ck = (Cb / Ca) −1 (1)
In step S17, based on the dilution concentration Ck and the exhaust gas amount set in step S12, a new air blow-off amount S2 that blows from the intake passage 11 to the exhaust passage 12 in the O / L period Tb is calculated. Specifically, for each extremely short calculation interval (for example, a predetermined crank angle), the amount of fresh air blow-out per unit time is sequentially calculated (Ck × exhaust gas flow rate), and these are integrated to make one cycle per cylinder. It is possible to accurately obtain the fresh air blow-through amount S2 at (see FIG. 7).

図8は、本実施例に係る新気吹き抜け量Sを利用したバルブオーバーラップ量(期間)の制御内容を示すフローチャートである。本ルーチンは上記制御部13によって記憶されるとともに極短期間(所定クランク角)毎に繰り返し実行される。 Figure 8 is a flow chart showing the control contents of the valve overlap amount using fresh air blow amount S 2 of the present embodiment (period). This routine is stored by the control unit 13 and is repeatedly executed every extremely short period (predetermined crank angle).

ステップS21では、機関回転数Ne,クランク角(又はカム角),吸・排気弁の開閉時期(カムシャフトの位相)等の機関運転条件を読み込む。ステップS22では、例えば図9に示すような予め設定された制御マップを用いて、機関回転数(及び機関負荷)に基づいて、吸気バルブタイミング機構21による吸気カムシャフトの目標位相、すなわち目標吸気弁開時期tIVO(及び吸気弁閉時期)と、排気バルブタイミング機構22による排気カムシャフトの目標位相、すなわち目標排気弁閉時期tEVC(及び排気弁開時期)と、を設定する。ステップS23では、上記のカム角センサ23,24の検出信号に基づいて、吸気弁と排気弁がともに開いているバルブオーバーラップ期間(量)rO/Lを演算する。また、図10に示すような予め設定される制御マップを参照して、バルブオーバーラップの要求量tO/Lを設定する。   In step S21, engine operating conditions such as engine speed Ne, crank angle (or cam angle), intake / exhaust valve opening / closing timing (camshaft phase) are read. In step S22, the target phase of the intake camshaft by the intake valve timing mechanism 21, that is, the target intake valve, based on the engine speed (and the engine load), for example, using a preset control map as shown in FIG. An opening timing tIVO (and an intake valve closing timing) and a target phase of the exhaust camshaft by the exhaust valve timing mechanism 22, that is, a target exhaust valve closing timing tEVC (and an exhaust valve opening timing) are set. In step S23, a valve overlap period (amount) rO / L in which both the intake valve and the exhaust valve are open is calculated based on the detection signals of the cam angle sensors 23 and 24 described above. Further, the valve overlap request amount tO / L is set with reference to a preset control map as shown in FIG.

ステップS24では、上記rO/L(又はtO/L)が所定の判定値sO/Lを越えているかを判定する。判定値sO/Lを越えていなければ、バルブオーバーラップによる良好な掃気作用が得られないと判断して、本ルーチンを終了する。rO/L(又はtO/L)が判定値sO/Lを越えていれば、ステップS25へ進み、図2のルーチンにより求められる新気吹き抜け量S2を読み込む。ステップS26では、新気吹き抜け量S2が所定の判定値Shを越えているかを判定する。新気吹き抜け量S2が判定値Shを越えていれば、ステップS27へ進み、新気吹き抜け量S2の変化ΔSを演算する。具体的には、今回の新気吹き抜け量S2と、その1サイクル前の新気吹き抜け量S2oldと、の差分(S2−S2old)により変化ΔSを求める。ステップS28では、上記ΔSに基づいて、新気吹き抜け量S2が増加中か減少中かを判定する。具体的には、ΔSが0(ゼロ)を越える正の値であるか、あるいは負の値であるかを判定する。   In step S24, it is determined whether the rO / L (or tO / L) exceeds a predetermined determination value sO / L. If the determination value sO / L is not exceeded, it is determined that a good scavenging action due to valve overlap cannot be obtained, and this routine is terminated. If rO / L (or tO / L) exceeds the determination value sO / L, the process proceeds to step S25, and the fresh air blow-off amount S2 obtained by the routine of FIG. 2 is read. In step S26, it is determined whether the fresh air blow-through amount S2 exceeds a predetermined determination value Sh. If the fresh air blow-through amount S2 exceeds the determination value Sh, the process proceeds to step S27, and a change ΔS of the fresh air blow-through amount S2 is calculated. Specifically, the change ΔS is obtained from the difference (S2−S2old) between the current fresh air blow-through amount S2 and the fresh air blow-through amount S2old one cycle before. In step S28, it is determined whether the fresh air blow-off amount S2 is increasing or decreasing based on the ΔS. Specifically, it is determined whether ΔS is a positive value exceeding 0 (zero) or a negative value.

ΔSが正の値で、新気吹き抜け量S2が増加していると判定された場合、ステップS29へ進み、バルブオーバーラップの増加量aを設定する。この増加量aは予め設定される固定値であって、バルブオーバーラップ量が急激に変動することのないように微小な値とされる。ステップS30では、吸気弁開時期IVOの進角化が可能であるかを判定する。つまり、tIVO又は吸気カム角センサ23等により検出される実際のIVOが最進角値を除く値であるかを判定する。IVOの進角化が可能であれば、ステップS31へ進み、上記の増加量aの分、目標吸気弁開時期tIVOを進角側へ補正する。IVOの進角化が不可能であれば、ステップS32へ進み、上記の増加量a、あるいはこの増加量aからIVOの進角量を差し引いた分、目標排気弁閉時期tEVCを遅角側へ補正する。   When it is determined that ΔS is a positive value and the fresh air blow-off amount S2 is increasing, the process proceeds to step S29, and the valve overlap increase amount a is set. This increase amount “a” is a fixed value set in advance, and is a small value so that the valve overlap amount does not fluctuate rapidly. In step S30, it is determined whether the intake valve opening timing IVO can be advanced. That is, it is determined whether the actual IVO detected by the tIVO or the intake cam angle sensor 23 is a value excluding the most advanced value. If the advance of the IVO is possible, the process proceeds to step S31, and the target intake valve opening timing tIVO is corrected to the advance side by the increment a. If the advance of the IVO is impossible, the process proceeds to step S32, and the target exhaust valve closing timing tEVC is retarded by the amount of increase a or the amount of advance of the IVO subtracted from the amount of increase a. to correct.

ΔSが負の値で、新気吹き抜け量S2が減少している場合、ステップS28からステップS33へ進み、バルブオーバーラップの減少量bを設定し、ステップS34へ進む。この減少量bは、上記の増加量と同様、予め設定される固定値であって、バルブオーバーラップ量が急激に変動することのないように微少な値とされる。また、新気吹き抜け量S2が所定の判定値Shを越えていない場合、ステップS26からステップS37へ進み、バルブオーバーラップ量が0(ゼロ)となるように、バルブオーバーラップ量の低下量cを設定し、ステップS34へ進む。この低下量cは、上記のrO/L又はtO/Lに基づいて設定される。   When ΔS is a negative value and the fresh air blow-off amount S2 is decreasing, the process proceeds from step S28 to step S33, the valve overlap decrease amount b is set, and the process proceeds to step S34. This decrease amount b is a fixed value set in advance, as in the case of the above increase amount, and is a small value so that the valve overlap amount does not fluctuate rapidly. Further, when the fresh air blow-through amount S2 does not exceed the predetermined determination value Sh, the process proceeds from step S26 to step S37, and the valve overlap amount decrease amount c is set so that the valve overlap amount becomes 0 (zero). Set and proceed to step S34. This reduction amount c is set based on the above rO / L or tO / L.

ステップS34では、排気弁閉時期EVCの進角化が可能であるかを判定する。つまり、tEVC又は排気カム角センサ24等により検出される実際のEVCが最進角値を除く値であるかを判定する。EVCの進角化が可能であれば、ステップS35へ進み、上記の減少量bの分、目標排気弁閉時期tEVCを進角側へ補正する。ステップS34においてEVCの進角化が不可能と判定されれば、ステップS36へ進み、上記の減少量b又はc、あるいはこの減少量b又はcからEVCの進角量を差し引いた分、目標吸気弁開時期tIVOを遅角側へ補正する。   In step S34, it is determined whether the exhaust valve closing timing EVC can be advanced. That is, it is determined whether the actual EVC detected by tEVC or the exhaust cam angle sensor 24 is a value excluding the most advanced value. If the advance of EVC is possible, the process proceeds to step S35, and the target exhaust valve closing timing tEVC is corrected to the advance side by the amount of decrease b. If it is determined in step S34 that advancement of EVC is impossible, the process proceeds to step S36, and the target intake air amount is obtained by subtracting the advancement amount of EVC from the reduction amount b or c or the reduction amount b or c. Correct the valve opening timing tIVO to the retard side.

次に、図11〜図13のタイムチャートを参照して、本実施例の作用効果について説明する。   Next, the effect of the present embodiment will be described with reference to the time charts of FIGS.

図12に誇張して示すように、新気吹き抜け量の変化ΔSが増加方向である場合には、上記ステップS29〜S32により、バルブオーバーラップ量が漸次増加されていく。一方、図11に示すように、新気吹き抜け量S2の変化ΔSが減少方向であると、上記のステップS33〜S36により、バルブオーバーラップ量が減少される。従って、掃気作用に直接的に関連する新気吹き抜け量を精度良く増大することができ、掃気作用を最大限に活用して筒内残留ガス量を低減し、ノッキング性能や機関出力(トルク)性能を向上することができる。しかも、1サイクル毎に得られる新気吹き抜け量S2に基づいてバルブオーバーラップ量を増減するために、極めて応答性に優れており、加速過渡期のような状況でも良好な制御性を得ることができる。 As exaggeratedly shown in FIG. 12, when the change ΔS of the fresh air blow-off amount is in the increasing direction, the valve overlap amount is gradually increased by the above steps S29 to S32. On the other hand, as shown in FIG. 1 1, the change ΔS in the fresh air flowing amount S2 is in the decreasing direction, the above steps S33 to S36, the valve overlap amount is reduced. Therefore, the amount of fresh air blown directly related to the scavenging action can be increased with high accuracy, the scavenging action is utilized to the maximum to reduce the residual gas amount in the cylinder, and the knocking performance and engine output (torque) performance. Can be improved. Moreover, since the valve overlap amount is increased or decreased based on the fresh air blow-off amount S2 obtained every cycle, it is extremely excellent in responsiveness, and good controllability can be obtained even in a situation such as an acceleration transition period. it can.

また、図11に示すように、新気吹き抜け量S2が判定値Sh以下となると、もはやバルブオーバーラップによる掃気効果を期待できず、逆に、排気通路からの吹き戻しによって筒内残留ガス量が増大するおそれがあるものの、本実施例によれば、上記のステップS37及びS34〜S36の処理によって、バルブオーバーラップ量が0(ゼロ)となるように減少されるので、このような不具合を招くおそれがない。   Further, as shown in FIG. 11, when the fresh air blow-off amount S2 becomes equal to or less than the determination value Sh, the scavenging effect due to the valve overlap can no longer be expected, and conversely, the in-cylinder residual gas amount is increased by the blowback from the exhaust passage. Although there is a possibility of increase, according to the present embodiment, the valve overlap amount is reduced to 0 (zero) by the processing of steps S37 and S34 to S36 described above. There is no fear.

このようにバルブオーバーラップを減少する際には、上記のステップS3〜S3の処理によって、図11にも示すように、先ず排気弁閉時期EVCの進角化が優先的に行われ、もやは排気弁閉時期EVCの進角が不可能である場合に限り、吸気弁開時期IVOの遅角化が行われる。このため、吸気弁開時期IVOの遅角化による充填効率の低下を有効に抑制することができる。逆に、バルブオーバーラップを増加する際には、上記のステップS3〜S3の処理によって、図12にも示すように、先ず吸気弁開時期IVOの進角化が優先的に行われ、もやは吸気弁開時期IVOの進角化が不可能である場合に限り、排気弁閉時期EVCの遅角化を行うようにしている。従って、吸気弁開時期IVOの角化による充填効率の向上効果を最大限に活用することができる。 Thus, when reducing the valve overlap, first, the advancement of the exhaust valve closing timing EVC is preferentially performed by the processing of steps S3 4 to S3 6 as shown in FIG. Only when the advance of the exhaust valve closing timing EVC is impossible, the intake valve opening timing IVO is retarded. For this reason, it is possible to effectively suppress a decrease in charging efficiency due to the retarding of the intake valve opening timing IVO. Conversely, when increasing the valve overlap, in step S3 0 to S3 2 processing described above, as shown in FIG. 12, first, the advance of the intake valve opening timing IVO is performed preferentially, Only when the intake valve opening timing IVO cannot be advanced, the exhaust valve closing timing EVC is retarded. Therefore, the effect of improving the charging efficiency due to the advancement of the intake valve opening timing IVO can be fully utilized.

以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、上記実施例では燃焼室内に直接燃料を噴射する筒内噴射型の内燃機関に本発明を適用しているが、これに限らず、吸気ポートに燃料を噴射するポート噴射型の内燃機関に本発明を適用することも可能である。この場合、吸気通路から排気通路へ吹き抜ける新気が混合気となる。この場合であっても、上記実施例と同様、空燃比センサにより検出される酸素濃度に基づいて、新気吹き抜け量を推定することが可能である。また、上記実施例では、排気タービン1Bによる影響を排除して新気吹き抜け量の推定精度を高めるために、空燃比センサ5を排気タービン1Bよりも上流側(燃焼室寄り)に配置しているが、空燃比センサの設置位置はこれに限られるものではなく、例えば新気吹き抜け量の推定精度を確保できる場合には排気タービン1Bの下流側に配置するようにしても良い。   As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the above-described embodiments, and includes various modifications and changes without departing from the spirit of the present invention. . For example, in the above embodiment, the present invention is applied to an in-cylinder injection type internal combustion engine that injects fuel directly into the combustion chamber. However, the present invention is not limited to this, and a port injection type internal combustion engine that injects fuel into an intake port. It is also possible to apply the present invention. In this case, fresh air blown from the intake passage to the exhaust passage becomes the air-fuel mixture. Even in this case, the fresh air blow-off amount can be estimated based on the oxygen concentration detected by the air-fuel ratio sensor as in the above embodiment. Further, in the above embodiment, the air-fuel ratio sensor 5 is arranged on the upstream side (near the combustion chamber) of the exhaust turbine 1B in order to eliminate the influence of the exhaust turbine 1B and increase the estimation accuracy of the fresh air blow-off amount. However, the installation position of the air-fuel ratio sensor is not limited to this, and may be arranged downstream of the exhaust turbine 1B, for example, when the estimation accuracy of the fresh air blow-off amount can be ensured.

本発明の一実施例が適用された内燃機関のシステム構成図。1 is a system configuration diagram of an internal combustion engine to which one embodiment of the present invention is applied. 本実施例の新気吹き抜け量の推定制御の流れを示すフローチャート。The flowchart which shows the flow of estimation control of the fresh air blow-through amount of a present Example. クランク角に対する排気ガス流量を示す制御マップの一例を示す特性図。The characteristic view which shows an example of the control map which shows the exhaust gas flow volume with respect to a crank angle. 機関回転数と応答遅れ時間との関係を示す制御マップの一例を示す特性図。The characteristic view which shows an example of the control map which shows the relationship between an engine speed and response delay time. 機関回転数とサンプリング時間との関係を示す制御マップの一例を示す特性図。The characteristic view which shows an example of the control map which shows the relationship between an engine speed and sampling time. バルブオーバーラップ期間でのA/Fセンサの出力変化を示す説明図。Explanatory drawing which shows the output change of the A / F sensor in a valve overlap period. A/Fセンサの出力と排気ガス流量とを示す説明図。Explanatory drawing which shows the output and exhaust gas flow volume of an A / F sensor. 新気吹き抜け量を利用したバルブオーバーラップ量の制御の流れを示すフローチャート。The flowchart which shows the flow of control of the valve overlap amount using the new air blow-through amount. 目標吸気弁開時期の設定に用いられる制御マップの一例を示す特性図。The characteristic view which shows an example of the control map used for the setting of the target intake valve opening timing. バルブオーバーラップ要求量の設定に用いられる制御マップの一例を示す特性図。The characteristic view which shows an example of the control map used for the setting of valve overlap requirement amount. 本実施例の作用効果を説明するためのタイムチャート。The time chart for demonstrating the effect of a present Example. 同じく本実施例の作用効果を説明するためのタイムチャート The time chart for demonstrating the effect of a present Example similarly .

符号の説明Explanation of symbols

1…ターボ過給機
5…空燃比センサ(酸素濃度検出手段)
6…燃料噴射弁
7…点火プラグ
11…吸気通路
12…排気通路
13…制御部
21…吸気バルブタイミング変更機構(吸気バルブタイミング変更手段)
22…排気バルブタイミング変更機構(排気バルブタイミング変更手段)
23…吸気カム角センサ
24…排気カム角センサ
DESCRIPTION OF SYMBOLS 1 ... Turbocharger 5 ... Air-fuel ratio sensor (oxygen concentration detection means)
6 ... Fuel injection valve 7 ... Spark plug 11 ... Intake passage 12 ... Exhaust passage 13 ... Control unit 21 ... Intake valve timing changing mechanism (intake valve timing changing means)
22 ... Exhaust valve timing changing mechanism (exhaust valve timing changing means)
23 ... Intake cam angle sensor 24 ... Exhaust cam angle sensor

Claims (8)

吸気弁と排気弁がともに開弁するバルブオーバーラップ量を変更可能なバルブタイミング変更手段と、
吸気通路から排気通路への新気吹き抜け量を推定する新気吹き抜け量推定手段と、
上記推定する新気吹き抜け量が多いほど、バルブオーバーラップ量を大きくするように制御する制御部と、
を有することを特徴とする内燃機関の制御装置。
A valve timing changing means capable of changing a valve overlap amount in which both the intake valve and the exhaust valve are opened; and
New air blow-through amount estimation means for estimating the amount of new air blow-through from the intake passage to the exhaust passage;
A control unit that controls the valve overlap amount to increase as the estimated amount of fresh air blown out increases,
A control apparatus for an internal combustion engine, comprising:
上記バルブタイミング変更手段が、吸気弁の開閉時期を変更する吸気バルブタイミング変更手段と、排気弁の開閉時期を変更する排気バルブタイミング変更手段と、を有し、
上記制御部は、バルブオーバーラップ量を減少するときには、吸気弁開時期の遅角化に比して排気弁閉時期の進角化を優先的に行うことを特徴とする請求項1に記載の内燃機関の制御装置。
The valve timing changing means has an intake valve timing changing means for changing the opening / closing timing of the intake valve, and an exhaust valve timing changing means for changing the opening / closing timing of the exhaust valve,
2. The control unit according to claim 1, wherein, when the valve overlap amount is decreased, the control unit prioritizes the advancement of the exhaust valve closing timing as compared with the retarding of the intake valve opening timing. Control device for internal combustion engine.
上記バルブタイミング変更手段が、吸気弁の開閉時期を変更する吸気バルブタイミング変更手段と、排気弁の開閉時期を変更する排気バルブタイミング変更手段と、を有し、
上記制御部は、バルブオーバーラップ量を増加するときには、排気弁閉時期の遅角化に比して吸気弁開時期の進角化を優先的に行うことを特徴とする請求項1又は2に記載の内燃機関の制御装置。
The valve timing changing means has an intake valve timing changing means for changing the opening / closing timing of the intake valve, and an exhaust valve timing changing means for changing the opening / closing timing of the exhaust valve,
3. The control unit according to claim 1 or 2, wherein when the valve overlap amount is increased, the intake valve opening timing is advanced as compared with the retarding of the exhaust valve closing timing. The internal combustion engine control device described.
上記制御部は、新気吹き抜け量が所定の判定値以下の場合、バルブオーバーラップ量を0とすることを特徴とする請求項1〜3のいずれかに記載の内燃機関の制御装置。   The control device for an internal combustion engine according to any one of claims 1 to 3, wherein the control unit sets the valve overlap amount to 0 when the fresh air blow-through amount is equal to or less than a predetermined determination value. 上記制御部は、新気吹き抜け量が増加中か減少中を判定し、増加中の場合にはバルブオーバーラップ量を増加させ、減少中の場合にはバルブオーバーラップ量を減少させることを特徴とする請求項1〜4のいずれかに記載の内燃機関の制御装置。   The controller determines whether the fresh air blow-through amount is increasing or decreasing, and increases the valve overlap amount when increasing, and decreases the valve overlap amount when decreasing. The control apparatus for an internal combustion engine according to any one of claims 1 to 4. 排気通路内の酸素濃度を検出する酸素濃度検出手段を有し、
上記新気吹き抜け量推定手段が、上記酸素濃度に基づいて新気吹き抜け量を推定することを特徴とする請求項1〜5のいずれかに記載の内燃機関の制御装置。
Having oxygen concentration detecting means for detecting the oxygen concentration in the exhaust passage;
6. The control apparatus for an internal combustion engine according to claim 1, wherein the fresh air blow-off amount estimating means estimates a fresh air blow-off amount based on the oxygen concentration.
排気通路内の酸素濃度を検出する空燃比センサと、An air-fuel ratio sensor for detecting the oxygen concentration in the exhaust passage;
機関回転数に基づいて、燃焼室から排出された排気ガスが上記空燃比センサへ到達するまでの遅れ時間を算出する遅れ時間算出手段と、A delay time calculating means for calculating a delay time until the exhaust gas discharged from the combustion chamber reaches the air-fuel ratio sensor based on the engine speed;
上記空燃比センサにより検出される排気通路内の酸素濃度と、上記遅れ時間算出手段により検出される遅れ時間と、に基づいて、1サイクル中に排気弁のみが開弁する非オーバーラップ期間の酸素濃度と、1サイクル中に吸気弁と排気弁とがともに開弁するオーバーラップ期間の酸素濃度と、を算出する酸素濃度算出手段と、Based on the oxygen concentration in the exhaust passage detected by the air-fuel ratio sensor and the delay time detected by the delay time calculation means, oxygen in a non-overlap period in which only the exhaust valve opens during one cycle Oxygen concentration calculating means for calculating the concentration and the oxygen concentration in the overlap period in which both the intake valve and the exhaust valve are opened during one cycle;
を有し、Have
上記新気吹き抜け量推定手段は、上記非オーバーラップ期間の酸素濃度と、上記オーバーラップ期間の酸素濃度と、に基づいて、1サイクル中の上記新気吹き抜け量を逐次推定することを特徴とする請求項6に記載の内燃機関の制御装置。The fresh air blow-off amount estimating means sequentially estimates the fresh air blow-off amount in one cycle based on the oxygen concentration in the non-overlap period and the oxygen concentration in the overlap period. The control apparatus for an internal combustion engine according to claim 6.
吸気弁と排気弁がともに開弁するバルブオーバーラップ量を変更可能なバルブタイミング変更手段を備える内燃機関の制御方法であって、
吸気通路から排気通路への新気吹き抜け量を推定し、
この新気吹き抜け量が多いほど、バルブオーバーラップ量を大きくするように制御することを特徴とする内燃機関の制御方法。
A control method for an internal combustion engine comprising valve timing changing means capable of changing a valve overlap amount in which both an intake valve and an exhaust valve are opened,
Estimate the amount of fresh air blown from the intake passage to the exhaust passage,
A control method for an internal combustion engine, wherein control is performed such that the valve overlap amount increases as the amount of fresh air blow-through increases.
JP2006092712A 2006-03-30 2006-03-30 Control device and control method for internal combustion engine Expired - Fee Related JP4779757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092712A JP4779757B2 (en) 2006-03-30 2006-03-30 Control device and control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092712A JP4779757B2 (en) 2006-03-30 2006-03-30 Control device and control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007263083A JP2007263083A (en) 2007-10-11
JP4779757B2 true JP4779757B2 (en) 2011-09-28

Family

ID=38636300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092712A Expired - Fee Related JP4779757B2 (en) 2006-03-30 2006-03-30 Control device and control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4779757B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816785B2 (en) 2009-02-20 2011-11-16 マツダ株式会社 Control method and control device for engine with turbocharger
JP5384396B2 (en) * 2010-02-15 2014-01-08 株式会社デンソー Engine waste heat control device
JP5447696B2 (en) 2011-01-24 2014-03-19 トヨタ自動車株式会社 Control device for an internal combustion engine with a supercharger
JP2012251535A (en) 2011-06-07 2012-12-20 Nissan Motor Co Ltd Internal combustion engine
WO2013080362A1 (en) 2011-12-01 2013-06-06 トヨタ自動車株式会社 Control device for internal combustion engine
JP5844227B2 (en) * 2012-07-17 2016-01-13 本田技研工業株式会社 Scavenging gas amount calculation device and internal EGR amount calculation device for internal combustion engine
RU2601323C2 (en) * 2012-07-25 2016-11-10 Тойота Дзидося Кабусики Кайся Control device for supercharged engines
JP6406300B2 (en) * 2016-03-29 2018-10-17 マツダ株式会社 Engine control device
SE541558C2 (en) * 2016-10-19 2019-10-29 Scania Cv Ab Method and system for controlling the intake and exhaust valves in an internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518057B2 (en) * 1989-09-29 1996-07-24 トヨタ自動車株式会社 Fuel injection control device for two-cycle internal combustion engine
JP3632986B2 (en) * 1994-03-31 2005-03-30 マツダ株式会社 HC emission calculation method and valve timing setting method in supercharged engine
JP4039239B2 (en) * 2002-12-26 2008-01-30 三菱自動車工業株式会社 Variable valve control device for internal combustion engine
WO2005056995A1 (en) * 2003-12-12 2005-06-23 Hitachi, Ltd. Engine control unit
JP2005240750A (en) * 2004-02-27 2005-09-08 Toyota Motor Corp Valve characteristic control device for internal combustion engine with supercharger

Also Published As

Publication number Publication date
JP2007263083A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4779757B2 (en) Control device and control method for internal combustion engine
JP5103459B2 (en) Engine control device
US10400697B2 (en) Control apparatus of engine
JP5115629B2 (en) Control device for internal combustion engine
JP4006015B2 (en) ENGINE OPERATION CONTROL DEVICE, VEHICLE HAVING THE SAME, METHOD FOR CALCULATION OF COMBUSTION CENTER OF ENGINE IN ENGINE AND ENGINE OPERATION CONTROL
JP2005307847A (en) Air amount calculation device for internal combustion engine
WO2013080362A1 (en) Control device for internal combustion engine
JP2010138722A (en) Device for controlling timing for stopping ignition in stop of internal combustion engine
JP4655980B2 (en) Control device and control method for internal combustion engine
JP2013185536A (en) Internal combustion engine control device
JP4154972B2 (en) Internal EGR amount estimation device for internal combustion engine
JP4761072B2 (en) Ignition timing control device for internal combustion engine
US20200386170A1 (en) Control method and control device for internal combustion engine
JP6296430B2 (en) Engine control device
JP6468212B2 (en) Control device for internal combustion engine
WO2009096072A1 (en) Controlling apparatus for internal combustion engine
JP5800090B2 (en) Control device for internal combustion engine
JP5303349B2 (en) EGR control device for internal combustion engine
JP4155036B2 (en) Internal EGR amount estimation device for internal combustion engine
JP2006322363A (en) Estimation method of engine internal egr rate
JP6406185B2 (en) Engine control device
JP2006017053A (en) Fuel injection timing control device for internal combustion engine with supercharger
JP6406300B2 (en) Engine control device
JP4175320B2 (en) Engine ignition timing control device
JP5467928B2 (en) Ignition timing correction control method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees