JPH03117020A - Output buffer circuit for integrated circuit - Google Patents

Output buffer circuit for integrated circuit

Info

Publication number
JPH03117020A
JPH03117020A JP1254275A JP25427589A JPH03117020A JP H03117020 A JPH03117020 A JP H03117020A JP 1254275 A JP1254275 A JP 1254275A JP 25427589 A JP25427589 A JP 25427589A JP H03117020 A JPH03117020 A JP H03117020A
Authority
JP
Japan
Prior art keywords
output
output unit
circuit
transistor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1254275A
Other languages
Japanese (ja)
Inventor
Yukihisa Ogata
小形 幸久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1254275A priority Critical patent/JPH03117020A/en
Publication of JPH03117020A publication Critical patent/JPH03117020A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018585Coupling arrangements; Interface arrangements using field effect transistors only programmable

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)
  • Dram (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To select the current ability of an output buffer circuit and to improve the characteristics of an integrated circuit or to reduce energy consumption by parallelly providing plural output units and setting some of the output units to a high impedance state according to a control signal. CONSTITUTION:A first output unit 41 composed of a CMOS inverter is provided and a second output unit 42 is provided parallelly with the first output unit 41 while including the serial connecting constitution of a pMOS transistor Mp2 and an nMOS transistor Mn2. Further, a control circuit 3 is provided to generate signals for inverting an input signal corresponding to the logical level of a control signal and impressing the signal to the gates of the pMOS transistor Mp2 and the nMOS transistor Mn2 or setting the second output unit 42 to the high impedance state. Thus, the output current can be changed and the optimum current can be supplied to respective various external loads. Then, the characteristic such as operating speed, etc., of the integrated circuit is improved and the energy consumption can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路の出カバ・777回路に関し、特にM
O8集積回路の出力回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an output cover/777 circuit of an integrated circuit, and in particular to an M
This invention relates to an output circuit of an O8 integrated circuit.

〔従来の技術〕[Conventional technology]

従来のこの種の出力バッファ回路について図面を参照し
そ説明する。第4図は従来の出カッく・ンファ回路の回
路図で、第5図はレイアウト図である。この種の出力バ
ッファ回路では、入力信号1が′H°゛のとき、インバ
ータ11の出力がII L IIとなり、pMOSトラ
ンジスタM p 1をオン、n M OS )ランジメ
タMn工をオフすることにより、゛′Hルベルを出力す
る。また、入力信号がII L IIのときは、インバ
ータ出力が”H”となるため、pMOSトランジスタM
 p 1がオフ、nM○SトランジスタMnlがオンと
なり“′L′°レベルを出力する。
A conventional output buffer circuit of this type will be explained with reference to the drawings. FIG. 4 is a circuit diagram of a conventional output/input amplifier circuit, and FIG. 5 is a layout diagram. In this type of output buffer circuit, when the input signal 1 is 'H°', the output of the inverter 11 becomes II L II, and by turning on the pMOS transistor Mp1 and turning off the range metal Mn (nMOS),゛′H level is output. Also, when the input signal is II L II, the inverter output becomes "H", so the pMOS transistor M
p1 is turned off, and the nM○S transistor Mnl is turned on, outputting the "'L'° level.

またこの回路のレイアウトの概略は第5図のようになる
。従って“H”を出力するときの電流能力はpMOSト
ランジスタMp1のゲート幅で、“L ”を出力すると
きの電流能力は、nMO3)ランジスタのMn1のゲー
ト幅で決定される。
The layout of this circuit is schematically shown in FIG. Therefore, the current capability when outputting "H" is determined by the gate width of the pMOS transistor Mp1, and the current capability when outputting "L" is determined by the gate width of Mn1 of the nMO3) transistor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の出力バッファ回路では、出力電流が回路
設計時に決定され、変化させることができないため、異
なる外部負荷それぞれに対し最適な電流を供給すること
ができないため、集積回路の動作速度などの特性又は消
費電力の少なくとも一方を犠牲にしなければならないと
いう欠点がある。
In the conventional output buffer circuits mentioned above, the output current is determined at the time of circuit design and cannot be changed, so it is not possible to supply the optimal current for each different external load, which affects characteristics such as the operating speed of the integrated circuit. However, there is a drawback that at least one of power consumption must be sacrificed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の集積回路の出力バッファ回路は、相補型インバ
ータからなる第1の出力ユニットと、前記第1の出力ユ
ニットと並列に設けられ、pM。
The output buffer circuit of the integrated circuit of the present invention includes a first output unit consisting of a complementary inverter, and is provided in parallel with the first output unit, and has a pM.

Sトランジスタ及びnMOSトランジスタの直列接続構
成を含む第2の出力ユニットと、制御信号の論理レベル
に応じて入力信号を反転して前記pMOSトランジスタ
及びnMOSトランジスタのゲートに印加するか又は前
記第2の出力ユニットをハイインピーダンス状態にする
信号を発生する制御回路とを有するというものである。
a second output unit including a series connection configuration of an S transistor and an nMOS transistor; and a second output unit that inverts an input signal and applies it to the gates of the pMOS transistor and nMOS transistor depending on the logic level of the control signal; The device also includes a control circuit that generates a signal that puts the unit in a high impedance state.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

この実施例はCMOSインバータからなる第1の出力ユ
ニット41と、第1の出力ユニット41と並列に設けら
れ、pMOSトランジスタM P 2及びn M OS
 )ランジスタMn2の直列接続構成を含む第2の出力
ユニット42と、制御信号の論理レベルに応じて入力信
号を反転して9MO8)ランジスタM ]) 2及びn
MO3)ランジスタMn2のゲートに印加するか又は第
2の出力ユニット42をハイインピータンス状態にする
信号を発生する制御回路3とを有するというものである
In this embodiment, a first output unit 41 consisting of a CMOS inverter is provided in parallel with the first output unit 41, and pMOS transistors M P 2 and n MOS transistors are provided.
) a second output unit 42 comprising a series connection configuration of transistors Mn2 and inverting the input signal depending on the logic level of the control signal 9MO8) transistors M ]) 2 and n
MO3) The control circuit 3 generates a signal to be applied to the gate of the transistor Mn2 or to bring the second output unit 42 into a high impedance state.

第3の出力ユニット43は第2の出力ユニット42と同
一構成を有している。制御回路は否定論理積ゲートNA
ND1 、・・・と否定論理和ゲートN。
The third output unit 43 has the same configuration as the second output unit 42. The control circuit is a NAND gate NA
ND1, . . . and a negative OR gate N.

R1、・・・よりなり、入力信号端1はNAND 1゜
NAND2.N0RI、N0R2に接続され、第1の制
御信号端21はそのままNAND 1に又インバータを
介してN0RIに接続されている。
R1, . . . and the input signal end 1 is NAND 1°NAND2. The first control signal end 21 is directly connected to NAND 1 and to N0RI via an inverter.

次にこの実施例の動作について説明する。Next, the operation of this embodiment will be explained.

この回路では制御信号が“L”(例えば制御信号端を接
地端に接続すればよい)のとき出力ユニットの9MO8
)ランジスタに接続された制御回路中の2人力否定論理
積ゲートは” H”を出力し、出力ユニットのnMOS
トランジスタに接続された制御回路中の2人力否定論理
ゲートは” L ”を出力する。従って、トランジスタ
・ペアで構成される出力ユニットはハイインピーダンス
状態となる。また、制御信号が“H′° (制御信号端
を電源端に接続すればよい)のとき、第2、第3の出力
ユニットのトランジスタには入力信号の反転信号が入力
され、それらの出力ユニットからは入力信号に従った出
力信号を出力する。
In this circuit, when the control signal is "L" (for example, the control signal terminal should be connected to the ground terminal), the output unit 9MO8
) The two-manual NAND gate in the control circuit connected to the transistor outputs "H", and the nMOS of the output unit
A two-way negative logic gate in the control circuit connected to the transistor outputs "L". Therefore, the output unit consisting of the transistor pair is in a high impedance state. Furthermore, when the control signal is "H'°" (the control signal end should be connected to the power supply end), the inverted signal of the input signal is input to the transistors of the second and third output units, and these output units outputs an output signal according to the input signal.

従って第2、第3の出力ユニットはそれぞれに対応した
第1、第2の制御信号がH”のときに限り入力信号に従
った出力を出し、II L Ilのときはハイインピー
ダンス状態となる。
Therefore, the second and third output units output an output according to the input signal only when the corresponding first and second control signals are H'', and enter a high impedance state when II L Il.

一 次に、第1図の出力回路をレイアウト図に置きかえた図
を第2図に示す。この図では例として制御信号は2本と
する。
First, FIG. 2 shows a diagram in which the output circuit in FIG. 1 is replaced with a layout diagram. In this figure, two control signals are used as an example.

この場合第1、第2の制御信号端21.22の電位がH
”の場合、制御回路3を介して、入力信号の反転信号が
それぞれの出力ユニットに入力される。このとき、外部
から内部を見込んだインピーダンスは各トランジスタの
ゲート幅の和で決定される。一方、n M OS )ラ
ンジスタMn3のゲート電極GP3には“H″’ 、n
MOSトランジスタMn3のゲート電極Gn3にはL°
”が入力される。従ってこのときの外部から見込んだイ
ンピーダンスは、第1の出力ユニット41、第2の出力
ユニット42のトランジスタのゲート幅の相で決定され
、第2の制御信号がIl、 H”′の場合よりも大きく
なり、消費電流を小さくすることができる。
In this case, the potential of the first and second control signal terminals 21.22 is H.
”, an inverted signal of the input signal is input to each output unit via the control circuit 3. At this time, the impedance looking inside from the outside is determined by the sum of the gate widths of each transistor. , n MOS) "H"', n to the gate electrode GP3 of the transistor Mn3.
L° is applied to the gate electrode Gn3 of the MOS transistor Mn3.
" is input. Therefore, the impedance seen from the outside at this time is determined by the phase of the gate width of the transistors of the first output unit 41 and the second output unit 42, and the second control signal is Il, H This is larger than in the case of ``'', and the current consumption can be reduced.

このように、この実施例の場合、出力バッファ回路の電
流能力を3通りに設定可能である。
In this way, in this embodiment, the current capacity of the output buffer circuit can be set in three ways.

第3図は本発明の第2の実施例の回路図である。FIG. 3 is a circuit diagram of a second embodiment of the present invention.

この実施例では制御信号を出力端5から取っている。制
御回路2は、2人力否定論理積ゲートNAND3.2人
力否定論理和ゲートNOR3、インバータI2よりなっ
ている。
In this embodiment, the control signal is taken from the output terminal 5. The control circuit 2 is composed of two manually operated NAND gates NAND3, two manually operated NOR gates NOR3, and an inverter I2.

本実施例では、入力信号(1)と出力信号(5)が一致
しているとき、第2の出力ユニット42はハイインピー
ダンス状態となり、消費電流は第1の出力ユニット41
を構成するトランジスタのゲート幅だけで決まる。一方
過渡状態において、入力信号がII HII、出力信号
がL“のときは第1の出力ユニット41、第2の出力ユ
ニット42の両方のpMOSトランジスタがONL、入
力信号が“’L”、出力信号が“H”のときは第1の出
力ユニット41、第2の出力ユニット42の両方の0M
O3)ランジスタがONする。
In this embodiment, when the input signal (1) and the output signal (5) match, the second output unit 42 is in a high impedance state, and the current consumption is lower than that of the first output unit 41.
It is determined only by the gate width of the transistors that make up the circuit. On the other hand, in a transient state, when the input signal is II HII and the output signal is L, both the PMOS transistors of the first output unit 41 and the second output unit 42 are ONL, the input signal is "'L", and the output signal is is “H”, both the first output unit 41 and the second output unit 42 are 0M.
O3) The transistor turns on.

従って入力信号と出力信号が一致していないときは、第
1の出力ユニットを構成するトランジスタのゲート幅と
第2の出力ユニットを構成するトランジスタのゲート幅
の和で、電流能力が決定され、第1の出力ユニットだけ
で決まるときよりもその能力が向上する。言い替えると
、信号の立上り又は立下りの過渡状態において電流能力
が大きくなるので、動作速度が速い割には消費電力は小
さい出力バッファ回路が得られる。
Therefore, when the input signal and the output signal do not match, the current capacity is determined by the sum of the gate width of the transistor that makes up the first output unit and the gate width of the transistor that makes up the second output unit. Its ability is improved compared to when it is determined by only one output unit. In other words, since the current capacity increases in the transient state of rising or falling signals, an output buffer circuit that operates at high speed but consumes little power can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、複数の出力ユニットを並
列に設け、制御信号により前述の出力ユニットのうちい
くつかをハイインピーダンス状態にすることにより、出
力バッファ回路の電流能力を選択することができるので
集積回路の特性向上又は消費電力の低減化を図ることか
できる効果がある。
As explained above, in the present invention, the current capacity of the output buffer circuit can be selected by providing a plurality of output units in parallel and placing some of the output units in a high impedance state using a control signal. Therefore, there is an effect that the characteristics of the integrated circuit can be improved or the power consumption can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の回路図、第2図は第1
の実施例のレイアウト図、第3図は本発明の第2の実施
例の回路図、第4図は従来例の回路図、第5図は従来例
のレイアウト図である。 1・・・入力信号、21・・・第1の制御信号端、22
・・・第2の制御信号端、3・・・制御回路、4・・・
出力回路、41・・・第1の出力ユニット、42・・・
第2の出力ユニット、43・・・第3の出力ユニット、
5・・・出力信号端、Dn・・・nMOSトランジスタ
のドレイン、DP・・・9MO8)ランジスタのトレイ
ン電極、Gnl、Gn2.Gn3−・−nMOSトラン
ジスタのゲート電極、GND・・・接地配線、GPI。 GP2.GP3・・・9MO8)ランジスタのゲート電
極、■1・・・インバータ、NAND 1〜NAND3
・・・否定論理積ゲート、N0RI〜NOR3・・・否
定論理和ゲート、Mn1 、Mn2 、Mng −・n
M○Sトランジスタ、Mp、、Mp2.Mp、・・・9
MO8)ランジスタ、P・・・パッド(出力信号端)、
Sn・・・nMOSトランジスタのソース電極、SP・
・・9MO8)ランジスタのソース電極、vcc・・・
電源配線。
FIG. 1 is a circuit diagram of a first embodiment of the present invention, and FIG. 2 is a circuit diagram of a first embodiment of the present invention.
FIG. 3 is a circuit diagram of the second embodiment of the present invention, FIG. 4 is a circuit diagram of a conventional example, and FIG. 5 is a layout diagram of a conventional example. 1... Input signal, 21... First control signal end, 22
...Second control signal end, 3...Control circuit, 4...
Output circuit, 41... first output unit, 42...
second output unit, 43... third output unit,
5... Output signal terminal, Dn... Drain of nMOS transistor, DP...9MO8) Train electrode of transistor, Gnl, Gn2. Gn3-.-nMOS transistor gate electrode, GND...ground wiring, GPI. GP2. GP3...9MO8) Gate electrode of transistor, ■1... Inverter, NAND 1 to NAND3
...NOR gate, N0RI~NOR3...NOR gate, Mn1, Mn2, Mng -・n
M○S transistor, Mp, , Mp2. Mp...9
MO8) transistor, P... pad (output signal end),
Sn... Source electrode of nMOS transistor, SP
...9MO8) Source electrode of transistor, vcc...
Power wiring.

Claims (2)

【特許請求の範囲】[Claims] (1)相補型インバータからなる第1の出力ユニットと
、前記第1の出力ユニットと並列に設けられ、pMOS
トランジスタ及びnMOSトランジスタの直列接続構成
を含む第2の出力ユニットと、制御信号の論理レベルに
応じて入力信号を反転して前記pMOSトランジスタ及
びnMOSトランジスタのゲートに印加するか、又は前
記第2の出力ユニットをハイインピーダンス状態にする
信号を発生する制御回路とを有することを特徴とする集
積回路の出力バッファ回路。
(1) A first output unit consisting of a complementary inverter, provided in parallel with the first output unit, and a pMOS
a second output unit including a series connection configuration of a transistor and an nMOS transistor; and an input signal inverted depending on a logic level of a control signal and applied to the gates of the pMOS transistor and nMOS transistor, or the second output unit; 1. An output buffer circuit for an integrated circuit, comprising: a control circuit that generates a signal that puts the unit in a high impedance state.
(2)出力信号を制御信号として使用する請求項(1)
記載の集積回路の出力バッファ回路。
(2) Claim (1) in which the output signal is used as a control signal
Output buffer circuit of the integrated circuit described.
JP1254275A 1989-09-28 1989-09-28 Output buffer circuit for integrated circuit Pending JPH03117020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254275A JPH03117020A (en) 1989-09-28 1989-09-28 Output buffer circuit for integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254275A JPH03117020A (en) 1989-09-28 1989-09-28 Output buffer circuit for integrated circuit

Publications (1)

Publication Number Publication Date
JPH03117020A true JPH03117020A (en) 1991-05-17

Family

ID=17262708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254275A Pending JPH03117020A (en) 1989-09-28 1989-09-28 Output buffer circuit for integrated circuit

Country Status (1)

Country Link
JP (1) JPH03117020A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0520687A1 (en) * 1991-06-28 1992-12-30 AT&T Corp. Digitally controlled element sizing
EP0523833A1 (en) * 1991-07-16 1993-01-20 Samsung Semiconductor, Inc. Programmable output drive circuit
EP0608615A2 (en) * 1993-01-29 1994-08-03 Advanced Micro Devices, Inc. Clock driver circuits
EP0717501A1 (en) * 1994-12-15 1996-06-19 Advanced Micro Devices, Inc. Programmable drive buffer
US5742832A (en) * 1996-02-09 1998-04-21 Advanced Micro Devices Computer system with programmable driver output's strengths responsive to control signal matching preassigned address range
WO1998047230A1 (en) * 1997-04-11 1998-10-22 Xilinx, Inc. Input/output buffer supporting multiple i/o standards
JPH10308096A (en) * 1997-04-30 1998-11-17 Samsung Electron Co Ltd Operation period adaptive type data output buffer
US5877632A (en) * 1997-04-11 1999-03-02 Xilinx, Inc. FPGA with a plurality of I/O voltage levels
EP0913937A2 (en) * 1997-10-29 1999-05-06 Hewlett-Packard Company Clock driver apparatus with programmable output characteristics
US5991908A (en) * 1997-09-29 1999-11-23 Xilinx, Inc. Boundary scan chain with dedicated programmable routing
US6071314A (en) * 1997-09-29 2000-06-06 Xilinx, Inc. Programmable I/O cell with dual boundary scan
US6120551A (en) * 1997-09-29 2000-09-19 Xilinx, Inc. Hardwire logic device emulating an FPGA
US6625788B1 (en) 1998-06-26 2003-09-23 Xilinx, Inc. Method for verifying timing in a hard-wired IC device modeled from an FPGA

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0520687A1 (en) * 1991-06-28 1992-12-30 AT&T Corp. Digitally controlled element sizing
EP0523833A1 (en) * 1991-07-16 1993-01-20 Samsung Semiconductor, Inc. Programmable output drive circuit
US5319258A (en) * 1991-07-16 1994-06-07 Samsung Semiconductor, Inc. Programmable output drive circuit
EP0608615A2 (en) * 1993-01-29 1994-08-03 Advanced Micro Devices, Inc. Clock driver circuits
EP0608615A3 (en) * 1993-01-29 1995-01-25 Advanced Micro Devices Inc Clock driver circuits.
EP0717501A1 (en) * 1994-12-15 1996-06-19 Advanced Micro Devices, Inc. Programmable drive buffer
US5663664A (en) * 1994-12-15 1997-09-02 Advanced Micro Devices, Inc. Programmable drive strength output buffer with slew rate control
US5742832A (en) * 1996-02-09 1998-04-21 Advanced Micro Devices Computer system with programmable driver output's strengths responsive to control signal matching preassigned address range
US5958026A (en) * 1997-04-11 1999-09-28 Xilinx, Inc. Input/output buffer supporting multiple I/O standards
US6204691B1 (en) 1997-04-11 2001-03-20 Xilinx, Inc. FPGA with a plurality of input reference voltage levels grouped into sets
US5877632A (en) * 1997-04-11 1999-03-02 Xilinx, Inc. FPGA with a plurality of I/O voltage levels
US6448809B2 (en) 1997-04-11 2002-09-10 Xilinx, Inc. FPGA with a plurality of input reference voltage levels
WO1998047230A1 (en) * 1997-04-11 1998-10-22 Xilinx, Inc. Input/output buffer supporting multiple i/o standards
US6294930B1 (en) 1997-04-11 2001-09-25 Xilinx, Inc. FPGA with a plurality of input reference voltage levels
US6049227A (en) * 1997-04-11 2000-04-11 Xilinx, Inc. FPGA with a plurality of I/O voltage levels
JPH10308096A (en) * 1997-04-30 1998-11-17 Samsung Electron Co Ltd Operation period adaptive type data output buffer
US5991908A (en) * 1997-09-29 1999-11-23 Xilinx, Inc. Boundary scan chain with dedicated programmable routing
US6120551A (en) * 1997-09-29 2000-09-19 Xilinx, Inc. Hardwire logic device emulating an FPGA
US6134517A (en) * 1997-09-29 2000-10-17 Xilinx, Inc. Method of implementing a boundary scan chain
US6071314A (en) * 1997-09-29 2000-06-06 Xilinx, Inc. Programmable I/O cell with dual boundary scan
US6226779B1 (en) 1997-09-29 2001-05-01 Xilinx, Inc. Programmable IC with gate array core and boundary scan capability
US6353921B1 (en) 1997-09-29 2002-03-05 Xilinx, Inc. Hardwire logic device emulating any of two or more FPGAs
EP0913937A3 (en) * 1997-10-29 2000-02-02 Hewlett-Packard Company Clock driver apparatus with programmable output characteristics
EP0913937A2 (en) * 1997-10-29 1999-05-06 Hewlett-Packard Company Clock driver apparatus with programmable output characteristics
US6625788B1 (en) 1998-06-26 2003-09-23 Xilinx, Inc. Method for verifying timing in a hard-wired IC device modeled from an FPGA

Similar Documents

Publication Publication Date Title
JPH03117020A (en) Output buffer circuit for integrated circuit
KR100379610B1 (en) On-chip system with voltage level converting device capable of preventing leakage current owing to voltag level difference
JPH11214961A (en) Latch circuit and flip-flop circuit
JPH10163826A (en) Driving method of cmos inverter and schmitt trigger circuit
US11646735B2 (en) Apparatus with electronic circuitry having reduced leakage current and associated methods
JPH05167364A (en) Semiconductor circuit
US7429872B2 (en) Logic circuit combining exclusive OR gate and exclusive NOR gate
JPH04357710A (en) Logic circuit
JPH11312969A (en) Semiconductor circuit
JPH0496369A (en) Gate array type lsi
US5859800A (en) Data holding circuit and buffer circuit
KR100188015B1 (en) Apparatus for a bit comparator
KR20000043230A (en) Data input buffer
JP2022160355A (en) low skew complementary signal generator
JP2003179476A (en) Semiconductor integrated circuit
JP2712432B2 (en) Majority logic
JPH03283815A (en) Output buffer circuit
JPH0492292A (en) Semiconductor integrated circuit device
KR100728776B1 (en) Level shifter
JP2004282660A (en) Semiconductor integrated circuit
JPH11261395A (en) Output buffer
JPH0567961A (en) Output buffer circuit
JPH04127466A (en) Complementary mos output circuit
JPH11214981A (en) Level shift circuit
JPS6249440A (en) Carry generating circuit