JPH03116795A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH03116795A
JPH03116795A JP25429089A JP25429089A JPH03116795A JP H03116795 A JPH03116795 A JP H03116795A JP 25429089 A JP25429089 A JP 25429089A JP 25429089 A JP25429089 A JP 25429089A JP H03116795 A JPH03116795 A JP H03116795A
Authority
JP
Japan
Prior art keywords
active layer
iii
semiconductor laser
impurity
edge side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25429089A
Other languages
Japanese (ja)
Inventor
Akiko Gomyo
明子 五明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25429089A priority Critical patent/JPH03116795A/en
Publication of JPH03116795A publication Critical patent/JPH03116795A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32325Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm red laser based on InGaP

Abstract

PURPOSE:To prevent deterioration and optical damages at an edge side and to enable formation of a semiconductor laser of high reliability and high output with good yield at a low cost by forming an active layer of ternary or more III-V compound mixed crystal whose combination length between III-group atom and V-group atom in crystal differs each other and by introducing a specified or more carrier density of silicon (Si) as impurity to at least an active layer near the edge side which becomes a reflection face or a projection face of light. CONSTITUTION:Si is introduced as impurity about 1X10<17>cm<-3> or more to ternary or more III-V compound mixed crystal whose combination length between III-group atom and V-group atom differs each other; then, a value of energy gap is recovered which is decided by composition rate of mixed crystal. By using this, Si is introduced to a reflection face or a projection face of light of a semiconductor laser to enlarge energy gap; thereby, a semiconductor laser having a window construction can be acquired. An n-type (Al0.4Ga0.6)0.5In0.5P clad layer 2, a Ga0.85In0.5P active layer 3, a p-type (Al0.4Ga0.6)0.5In0.5P clad layer 4, and a p<+>-type GaAs cap layer 9 are formed one by one on an N-type GaAs substrate 1 by MOVPE method. A V/III rate is made 400 and non-dope. Si is ion-implanted as impurity only to an area near an edge side 8 and annealing is carried out. Thereby, an active layer part at an area near the edge side is allowed to have a carrier concentration of 2X10<7>cm<-3>.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高信頼、高出力の半導体レーザに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a highly reliable and high output semiconductor laser.

(従来の技術) III + V化合物混晶のエネルギギャップは、従来
その組成により一義的に決まると考えられてきた。
(Prior Art) It has been conventionally believed that the energy gap of a III+V compound mixed crystal is uniquely determined by its composition.

しかし、例えば有機金属熱分解気相成長法(MOVPE
法)で成長したGaInPやAIGaInPのように、
成長温度、気相中V族原料対III族原料比(V/II
I比)、不純物ドーピングなどによって、その混晶組成
が一定でもエネルギギャップが異なり得ることが示され
ている(例えば1987年春季第34回応用物理学関係
連合講演会講演予稿集第1分冊、講演番号28p−ZA
−4および28p−ZA−5(1987年))。つまり
、ある成長温度とV/III比の値の組み合せを用いる
と、GaInPやAIGaInPのエネルギギャップが
、通常混晶に対する値として知られているものよりも最
大50〜80meV小さくなる。また、5X1017〜
1刈い8cm−3以上の不純物導入(n型でもp型でも
よい)を行な°うと、小さくなったエネルギギャップの
値はもとの混晶の値に回復する。これは、GaInP中
のGa−PとIn−PあるいはAIGaInP中のAI
−PとIn−P、Ga−PとIn−Pのようにそれぞれ
の結合長が異なることにより非混和領域に関連して生じ
ている。従って、AlGaAs中のAl−AsとGa−
Asのように結合長がほぼ等しいものでは顕著にみられ
なかった現象である。GaInAsやAlGaInAs
、或いはGaAsSbなどのように、結晶中III族−
■族の結合長の異なるものより構成されているものでは
、同様の現象がおきている。
However, for example, metal organic pyrolytic vapor phase epitaxy (MOVPE)
Like GaInP and AIGaInP grown by
Growth temperature, group V raw material to group III raw material ratio in gas phase (V/II
It has been shown that even if the mixed crystal composition is constant, the energy gap can vary depending on impurity doping, etc. (for example, the 34th Spring 1987 Applied Physics Conference Lecture Proceedings Volume 1, Lecture). Number 28p-ZA
-4 and 28p-ZA-5 (1987)). That is, using a certain combination of growth temperature and V/III ratio value, the energy gap of GaInP or AIGaInP is at most 50 to 80 meV smaller than the value normally known for mixed crystals. Also, 5X1017~
When impurities (n-type or p-type may be used) are introduced in an amount of 8 cm -3 or more per cut, the reduced energy gap value is restored to the original value of the mixed crystal. This is due to Ga-P in GaInP and In-P or AI in AIGaInP.
This occurs in association with immiscible regions due to different bond lengths between -P and In-P, and between Ga-P and In-P. Therefore, Al-As in AlGaAs and Ga-
This phenomenon was not observed significantly in materials with almost equal bond lengths, such as As. GaInAs and AlGaInAs
, or GaAsSb, etc., in which group III-
■A similar phenomenon occurs in structures composed of groups with different bond lengths.

このような現象を利用してGaInPやAIGaInP
のような結晶中でIII族原子と■族原子間の結合長が
互いに異なる3元以上のIII + V化合物混晶を活
性層とする半導体レーザにおいて光の反射面や出射面の
端面近傍の少なくとも活性層に不純物をキャリア濃度5
×1017cm=以上入れた半導体レーザが特願昭62
−171525号明細書(特開昭64−014986号
公報)に記載されている。この従来例の半導体レーザの
構造を第2図に示す。この半導体レーザでは端面近傍の
活性層に亜鉛(Zn)を1.5 X 1018cm−3
程度導入している。このZnは拡散領域11ではGa□
、5In□、5P活性層のバンドギャップが結晶成長後
の1.85eVから混晶の組成比で決まる値である1、
92eVに回復する。つますZn拡散領域5の活性層は
発光部の活性層よりバンドギャップが大きくなり、発振
光に対して吸収がない。つまりウィンドウ構造を持つ半
導体レーザとなっている。
Using this phenomenon, GaInP and AIGaInP
In a semiconductor laser whose active layer is a ternary or more III+V compound mixed crystal in which the bond lengths between group III atoms and group II atoms are different from each other in a crystal such as Add impurities to the active layer at a carrier concentration of 5
×1017cm=A patent application was made in 1983 for a semiconductor laser with a diameter of
-171525 (Japanese Unexamined Patent Publication No. 64-014986). The structure of this conventional semiconductor laser is shown in FIG. In this semiconductor laser, zinc (Zn) is deposited at 1.5 x 1018 cm-3 in the active layer near the end facet.
It has been introduced to some extent. This Zn is Ga□ in the diffusion region 11
, 5In□, 5P active layer has a band gap of 1.85 eV after crystal growth, which is a value determined by the composition ratio of the mixed crystal 1,
It recovers to 92eV. The active layer of the continuous Zn diffusion region 5 has a larger band gap than the active layer of the light emitting part, and does not absorb oscillated light. In other words, it is a semiconductor laser with a window structure.

(発明が解決しようとする課題) 前述の従来技術ではウィンドウ構造を形成するために、
半導体レーザ端面に不純物を5×1017cm−3以上
導入していた。典型的な例として不純物を亜鉛(Zn)
として1.5×1018cm−3ドーピングしている。
(Problem to be Solved by the Invention) In the prior art described above, in order to form a window structure,
Impurities were introduced into the semiconductor laser end face in an amount of 5×10 17 cm −3 or more. A typical example is zinc (Zn) as an impurity.
It is doped with 1.5 x 1018 cm-3.

不純物を導入していないアンドープ活性層のキャリア濃
度は通常1×1016cm−3のオーダである。従って
不純物拡散領域と発光部の活性層の界面では10倍程度
の濃度差があり、半導体レーザを長時間動作した場合、
不純物が発光部の活性層に拡散しゃすくレーザ特性の劣
化、信頼性の低下をおこす懸念がある。また通常1.5
 X 10”cm−3以上の不純物を導入しているので
、端面に不純物に起因する欠陥が発生しやすく半導体レ
ーザの長期信頼性、高出力特性を悪くする懸念がある。
The carrier concentration of an undoped active layer into which impurities are not introduced is usually on the order of 1.times.10.sup.16 cm.sup.-3. Therefore, there is a concentration difference of about 10 times at the interface between the impurity diffusion region and the active layer of the light emitting part, and when the semiconductor laser is operated for a long time,
There is a concern that impurities may diffuse into the active layer of the light emitting section, causing deterioration of laser characteristics and reliability. Also usually 1.5
Since impurities of X 10''cm-3 or more are introduced, defects caused by the impurities are likely to occur on the end facets, and there is a concern that the long-term reliability and high output characteristics of the semiconductor laser will be deteriorated.

本発明の目的は、上述の課題を克服し、高信頼高出力の
半導体レーザを提供することにある。
An object of the present invention is to overcome the above-mentioned problems and provide a highly reliable and high output semiconductor laser.

(課題を解決するための手段) 本発明の半導体レーザは活性層を含む多層構造を備え結
晶中でIII族原子と■族原子間の結合長が互いに異な
る3元以上のIII + V化合物混晶を活性層とし、
光の反射面或いは出射面となる端面近傍の少なくとも活
性層にシリコン(Si)を不純物としてキャリア密度を
I X 1017cm−3以上導入したことを特徴とす
る。
(Means for Solving the Problems) The semiconductor laser of the present invention has a multilayer structure including an active layer, and is a ternary or more III + V compound mixed crystal in which the bond lengths between group III atoms and group II atoms are different from each other in the crystal. is the active layer,
It is characterized in that silicon (Si) is introduced as an impurity into at least the active layer in the vicinity of the end face, which serves as a light reflection surface or an emission surface, to have a carrier density of I.times.10.sup.17 cm.sup.-3 or more.

(作用) III族原子とV族原子間の結合長が互いに異なる3元
以上のIII +V化合物混晶にSiを不純物として1
×1017cm−3程度以上導入すると混晶の組成比で
決まるエネルギーギャップの値に回復する。例えばGa
o、5In□、5PにSiを不純物として導入するとそ
の濃度が1.0刈17cm−3でエネルギーギャップが
1.85eVから組成で決まる値1.92eVに回復す
る。これを利用して半導体レーザの光の反射面或いは出
射面にSiを導入して、そこでのエネルギーギャップを
大きくすることによりウィンドウ構造をもつ半導体レー
ザが得られる。従来と異なり1×10170m−3と低
濃度でよいので、Siを導入した領域から発光部の活性
層へのSiの拡散は非常に小さく活性層の劣化はなく、
また端面でのSiを導入したことに起因する欠陥も発生
しない。従って端面での光損傷を抑えられるので、高出
力動作が可能となる。このようにGaInPやAIGa
InP等のような材料においてSiを不純物としてI 
X 1017〜5X1017cm ”程度導入すること
により高出力で高信頼な半導体レーザが得られる。
(Function) Si is added as an impurity to a ternary or more III+V compound mixed crystal in which the bond lengths between group III atoms and group V atoms are different from each other.
When it is introduced at a level of about 1017 cm-3 or more, the energy gap recovers to the value determined by the composition ratio of the mixed crystal. For example, Ga
When Si is introduced as an impurity into o, 5In□, and 5P, the energy gap recovers from 1.85 eV to 1.92 eV, which is determined by the composition, at a concentration of 1.0 cm -3 and 5P. Taking advantage of this, a semiconductor laser having a window structure can be obtained by introducing Si into the light reflection surface or emission surface of the semiconductor laser and increasing the energy gap there. Unlike the conventional method, the concentration is as low as 1×10170 m-3, so the diffusion of Si from the region where Si is introduced into the active layer of the light emitting part is very small, and there is no deterioration of the active layer.
Furthermore, defects caused by the introduction of Si at the end faces do not occur. Therefore, optical damage at the end face can be suppressed, allowing high output operation. In this way, GaInP and AIGa
In materials such as InP, I
A high output and highly reliable semiconductor laser can be obtained by introducing a semiconductor laser with a diameter of about 1017 cm to 5 x 1017 cm.

(実施例) 図面を参照しながら本発明の実施例について説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の実施例の半導体レーザを側面から見た
断面図である。波長600nm帯のAIGaInP系可
視光半導体レーザを例として示す。まず製造工程につい
て述べる。n型GaAs基板1上に有機金属気相成長法
(MOVPE法)によりn型(Alo、4Gao、s)
o、5Ino、5Pクラッド層2、Gao、5In□、
5P活性層3、p型(A10.4G80.6)0.51
1’10.5Pクラッド層4、p+型GaAsキャップ
層9を順に成長する。活性層3の成長条件は温度650
°C1V/III比を400、ノンドープとした。端面
8の近傍にのみ不純物としてSiをイオン注入し、so
o’cで1時間程度アニールする。こうして端面近傍の
活性層部分が2×1017cm=のキャリア濃度をもつ
ようにする。イオン注入フロントはn−(Alo、4G
a□、6)0.5In□、5Pクラッド層2に若干はい
ってもよい。共振器全長は200〜300μm、端面近
傍のSiイオン注入領域5は端面から約20pm内側ま
でとした。端面8は襞間でつくる。n型電極7を基板1
側に、Siイオン注入領域5の上部のp +−GaAs
キャップ層9の表面だけを5i02膜10で絶縁し、p
型電極6をp+−GaAsキャップ層9上に形成する。
FIG. 1 is a sectional side view of a semiconductor laser according to an embodiment of the present invention. An AIGaInP visible light semiconductor laser with a wavelength band of 600 nm is shown as an example. First, we will discuss the manufacturing process. An n-type (Alo, 4Gao, s) is formed on an n-type GaAs substrate 1 by metal organic vapor phase epitaxy (MOVPE).
o, 5Ino, 5P cladding layer 2, Gao, 5In□,
5P active layer 3, p type (A10.4G80.6) 0.51
A 1'10.5P cladding layer 4 and a p+ type GaAs cap layer 9 are grown in this order. The growth conditions for active layer 3 are a temperature of 650°C.
The C1V/III ratio was 400 and non-doped. Si is ion-implanted as an impurity only in the vicinity of the end face 8, and so
Anneal at o'c for about 1 hour. In this way, the active layer portion near the end face has a carrier concentration of 2×10 17 cm. The ion implantation front is n-(Alo, 4G
a□, 6) 0.5In□, 5P cladding layer 2 may be slightly penetrated. The total length of the resonator was 200 to 300 μm, and the Si ion implantation region 5 near the end face was approximately 20 pm inside from the end face. The end face 8 is made between the folds. The n-type electrode 7 is connected to the substrate 1.
On the side, p + -GaAs above the Si ion implantation region 5
Only the surface of the cap layer 9 is insulated with a 5i02 film 10, and p
A type electrode 6 is formed on the p+-GaAs cap layer 9.

こうして得られた半導体レーザは不純物注入領域のない
半導体レーザと比べて発振閾値は上昇は5%以下であっ
た。本発明の半導体レーザでは端面劣化が軽減されるの
で、信頼性が大幅に向上した。また端面の光学的損傷を
妨げるので最大光出力が数倍向上した。またこの構造を
つくる場合Siを入れる深さの制御が厳しくなく製造プ
ロセスが容易である。従って製造歩留りがよく安価に製
作できる。
The oscillation threshold of the thus obtained semiconductor laser increased by 5% or less compared to a semiconductor laser without an impurity implanted region. In the semiconductor laser of the present invention, end face deterioration is reduced, so reliability is significantly improved. Furthermore, since optical damage to the end face is prevented, the maximum optical output is improved several times. Furthermore, when creating this structure, the depth of Si insertion is not strictly controlled and the manufacturing process is easy. Therefore, the manufacturing yield is high and it can be manufactured at low cost.

Siのイオン注入領域の濃度は効果を十分発揮し、かつ
結晶の品質を高く保つためlX1017cm ”〜5 
X 1017cm−3程度が適当である。またSiでは
1刈い7cm−3と低い濃度で効果があるので、導入方
法の制限はなくまた制御も容易であり、またSiを導入
した回りの領域の品質を落とすことはない。導入方法は
拡散、結晶成長のドーピング等地の方法でもよい。
The concentration of the Si ion implantation region is set to 1×1017 cm”~5 to fully demonstrate the effect and maintain high crystal quality.
Approximately X 1017 cm-3 is appropriate. Furthermore, since Si is effective at a low concentration of 7 cm -3 per cutting, there are no restrictions on the introduction method, control is easy, and the quality of the area around where Si is introduced will not be degraded. The introduction method may be diffusion, crystal growth doping, or other methods.

本発明はGaInAs、 AlGaInAs、 GaA
sSb、 InGaAsP等の他の材料でもよい。また
レーザ構造は本実施例の構造とは限らず、埋め込み型レ
ーザや回折格子をもつDFBレーザ等どのような構造で
も適用できる。
The present invention relates to GaInAs, AlGaInAs, GaA
Other materials such as sSb and InGaAsP may also be used. Further, the laser structure is not limited to the structure of this embodiment, and any structure such as a buried laser or a DFB laser having a diffraction grating can be applied.

(発明の効果) このように本発明によれば端面での劣化や光学損傷を防
ぐことができ従来よりも高信頼、高出力の半導体レーザ
を歩留り良く安価に実現できる。
(Effects of the Invention) As described above, according to the present invention, deterioration and optical damage at the end face can be prevented, and a semiconductor laser with higher reliability and higher output than conventional semiconductor lasers can be realized at a higher yield and at a lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の半導体レーザの側面から見た
断面図、第2図は従来例の側面から見た断面図である。 各図において、 1−n−GaAs基板、 2−−・n−(AIo、4Ga□、6)0.5In□、
5Pクラッド層、3−Ga□、5In□、5P活性層、 ”・p−(AIo、4Ga□、6)o、5In□、5P
クラッド層、5・・・Siイオン注入領域、6・・・p
型電極、7・・・n型電極、8・・・端面、9・・・p
 ”−GaAsキャップ層、10・・・5i02膜、1
1・・・Zn拡散領域である。
FIG. 1 is a sectional view of a semiconductor laser according to an embodiment of the present invention as seen from the side, and FIG. 2 is a sectional view of a conventional example as seen from the side. In each figure, 1-n-GaAs substrate, 2--.n-(AIo, 4Ga□, 6)0.5In□,
5P cladding layer, 3-Ga□, 5In□, 5P active layer, "・p-(AIo, 4Ga□, 6)o, 5In□, 5P
Cladding layer, 5...Si ion implantation region, 6...p
type electrode, 7... n-type electrode, 8... end surface, 9... p
”-GaAs cap layer, 10...5i02 film, 1
1...Zn diffusion region.

Claims (1)

【特許請求の範囲】[Claims] 活性層を含む多層構造を備え、結晶中でIII族原子とV
族原子間の結合長が互いに異なる3元以上のIII−V化
合物混晶を活性層とし、光の反射面或いは出射面となる
端面近傍の少なくとも活性層にシリコン(Si)を不純
物としてキャリア濃度を1×10^1^7cm^−^3
以上導入したことを特徴とする半導体レーザ。
It has a multilayer structure including an active layer, and contains group III atoms and V atoms in the crystal.
The active layer is a ternary or more III-V compound mixed crystal with different bond lengths between group atoms, and the carrier concentration is increased by impurity silicon (Si) in at least the active layer near the end face, which is the reflection surface or emission surface of light. 1 x 10^1^7cm^-^3
A semiconductor laser characterized by the above introduction.
JP25429089A 1989-09-28 1989-09-28 Semiconductor laser Pending JPH03116795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25429089A JPH03116795A (en) 1989-09-28 1989-09-28 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25429089A JPH03116795A (en) 1989-09-28 1989-09-28 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH03116795A true JPH03116795A (en) 1991-05-17

Family

ID=17262914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25429089A Pending JPH03116795A (en) 1989-09-28 1989-09-28 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH03116795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852417A2 (en) * 1997-01-07 1998-07-08 Sumitomo Electric Industries, Ltd. Semiconductor laser and method of making the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852417A2 (en) * 1997-01-07 1998-07-08 Sumitomo Electric Industries, Ltd. Semiconductor laser and method of making the same
EP0852417A3 (en) * 1997-01-07 1998-09-23 Sumitomo Electric Industries, Ltd. Semiconductor laser and method of making the same
US6005881A (en) * 1997-01-07 1999-12-21 Sumitomo Electric Industries, Ltd. Semiconductor laser and method of making the same

Similar Documents

Publication Publication Date Title
US4630083A (en) Light-emitting semiconductor device
US4425650A (en) Buried heterostructure laser diode
EP0833395A2 (en) Method of fabricating a device including compound semiconductor crystal and method of fabricating a compound semiconductor layer structure
EP0177221B1 (en) Semiconductor laser
US5020068A (en) Semiconductor laser device
US5556804A (en) Method of manufacturing semiconductor laser
JP2997573B2 (en) Semiconductor laser device
EP0293000B1 (en) Light emitting device
US5270246A (en) Manufacturing method of semiconductor multi-layer film and semiconductor laser
US6639926B1 (en) Semiconductor light-emitting device
EP0701309B1 (en) Semiconductor laser diode
JP2758598B2 (en) Semiconductor laser
JPH03116795A (en) Semiconductor laser
JP2001185809A (en) Semiconductor optical device and manufacturing method therefor
JP3381976B2 (en) Semiconductor laser device
JP2702964B2 (en) Semiconductor laser device
JPH0278290A (en) Semiconductor laser device
JPH07106701A (en) Visible light semiconductor laser and its manufacture
JP2001251015A (en) Semiconductor laser device and method of manufacturing the same
JPH08125280A (en) Semiconductor laser and manufacture thereof
JP2001053381A (en) Semiconductor laser and manufacture thereof
JP2771318B2 (en) Semiconductor laser
JP2527024B2 (en) Semiconductor laser
JP2928304B2 (en) Compound semiconductor device
JPS61171185A (en) Semiconductor laser device