JPH0311626A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0311626A
JPH0311626A JP14405389A JP14405389A JPH0311626A JP H0311626 A JPH0311626 A JP H0311626A JP 14405389 A JP14405389 A JP 14405389A JP 14405389 A JP14405389 A JP 14405389A JP H0311626 A JPH0311626 A JP H0311626A
Authority
JP
Japan
Prior art keywords
film
pmma
ion
gate electrode
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14405389A
Other languages
Japanese (ja)
Inventor
Akiyo Murayama
村山 明代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP14405389A priority Critical patent/JPH0311626A/en
Publication of JPH0311626A publication Critical patent/JPH0311626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enable accurate control of the film thickness of a lateral-wall spacer by a method wherein an ion-impermeable film to be the spacer is deposited only on one side to be the drain side of a gate electrode by a Langmuir-Blodgett(LB) method and ion implantation is conducted with this film used as a mask. CONSTITUTION:A polymethyl methacrylate (PMMA) monomolecular film 7 is formed by developing PMMA dissolved in benzene on the surface of pure water 6, and this film is transferred onto the surface of the drain side of a polycrystalline silicon layer 3 and a photoresist layer 4 of an MOS gate pattern of a semiconductor substrate 1 by the LB method. On the occasion, the transition surface of the semiconductor substrate 1 is moved vertically with an angle of 85 deg. to 90 deg. maintained to the water surface, and thereby the PMMA monomolecular film 7 is deposited, so that a PMMA film 8 having a film thickness of about 700 A be formed. The film thickness of the PMMA film 8 can be controlled for angstrom (A) by the number of times of deposition of the PMMA monomolecular film 7. According to this method, the film thickness of an ion impermeable film formed on one side of a gate electrode is controlled very accurately.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体基板の製造方法に関し、さらに具体的
に述べれば、選択的領域にイオン注入法で不純物を注入
する方法を含む半導体装置の製造方法に関するものであ
る。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor substrate, and more specifically, a method for manufacturing a semiconductor device including a method of implanting impurities into selective regions by ion implantation. This relates to a manufacturing method.

(従来の技術) 半導体素子、とりわけ、微細化が進み、その最小寸法が
サブミクロンを基準にするようになったMOSトランジ
スタでは、ドレイン領域近傍の高電界領域で発生したホ
ットキャリアが、半導体装置の不安定性を増長させる原
因となり、しばしばMOSトランジスタのしきい値電圧
の変動、相互コンダクタンスの低下などを発生させるよ
うになった。ドレイン電界を緩和する代表的な対策とし
て、いわゆる、低濃度拡散ドレイン(以下LDDと称す
)構造がある。このLDD構造は、低濃度(n−)拡散
領域が実効的なドレイン電圧を低くする。
(Prior Art) In semiconductor devices, especially MOS transistors whose minimum dimensions have become sub-micron standard due to progress in miniaturization, hot carriers generated in the high electric field region near the drain region can cause damage to the semiconductor device. This has become a cause of increased instability, often causing fluctuations in the threshold voltage of MOS transistors and reductions in mutual conductance. A typical measure for relaxing the drain electric field is a so-called low concentration diffusion drain (hereinafter referred to as LDD) structure. In this LDD structure, the low concentration (n-) diffusion region lowers the effective drain voltage.

この種のLDD構造を有するMOSトランジスタの従来
の製造方法は、まず、シリコン基板にゲート電極を形成
した後、これをマスクとして、ヒ素(As)をイオン注
入し低濃度(n−)拡散領域を形成し、次に、化学的気
相成長(以下CVDと称す)法と反応性イオンエツチン
グ(以下RIEと称す)法を用いて、ゲート電極の側壁
に二酸化ケイ素(SxOz )からなるスペーサを形成
した後、ゲート電極をスペーサをマスクとしてリン(P
)をイオン注入して高濃度(n9)拡散領域を形成して
いた。
The conventional manufacturing method for a MOS transistor having this type of LDD structure is to first form a gate electrode on a silicon substrate, and then use this as a mask to implant arsenic (As) ions to form a low concentration (n-) diffusion region. Then, spacers made of silicon dioxide (SxOz) were formed on the side walls of the gate electrode using chemical vapor deposition (hereinafter referred to as CVD) and reactive ion etching (hereinafter referred to as RIE). After that, the gate electrode was formed using phosphorus (P) using the spacer as a mask.
) was ion-implanted to form a high concentration (n9) diffusion region.

(発明が解決しようとする課題) しかしながら、従来の製造方法では、ゲート電極の側壁
スペーサの形成に不可欠のCVD法は、膜厚の正確な制
御が難しいという問題があった。
(Problems to be Solved by the Invention) However, in the conventional manufacturing method, the CVD method, which is essential for forming the sidewall spacer of the gate electrode, has a problem in that it is difficult to accurately control the film thickness.

本発明は、上記の問題を解決するもので、側壁スペーサ
の膜厚を正確に制御できる半導体装置の製造方法を提供
するものである。
The present invention solves the above-mentioned problems and provides a method for manufacturing a semiconductor device in which the thickness of a sidewall spacer can be accurately controlled.

(課題を解決するための手段) 上記の課題を解決するため、本発明はゲート電極のドレ
イン側となる片側のみに、ラングミュア・プロジェット
(以下LBと称す)法を用いて、スペーサとなるイオン
不透過膜を堆積し、これをマスクとしてイオン注入を行
った後、上記のイオン不透過膜を除去するものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention uses the Langmuir-Prodgett (hereinafter referred to as LB) method on only one side of the gate electrode, which is the drain side, to form ions that will become spacers. After depositing an impermeable film and performing ion implantation using this as a mask, the ion-impermeable film is removed.

(作 用) 上記構成により、ゲート電極の片側に形成されたイオン
不透過膜の膜厚は極めて正確に制御できるので、セルフ
ァライン方式によるマスク工程のままの設計通りの特性
を有するMOSトランジスタが得られる。
(Function) With the above configuration, the thickness of the ion-impermeable film formed on one side of the gate electrode can be controlled extremely accurately, so a MOS transistor can be obtained that has the characteristics as designed in the mask process using the self-line method. It will be done.

(実施例) 本発明の一実施例を、第1図(a)ないしくd)ならび
に第2図により説明する。
(Example) An example of the present invention will be described with reference to FIGS. 1(a) to d) and FIG.

第1図(a)ないしくd)は、本発明による半導体装置
の製造方法を工程順に示す要部拡大断面図、第2図はL
B法でイオン不透過膜を堆積する工程の断面図である。
FIGS. 1(a) to d) are enlarged cross-sectional views of main parts showing the manufacturing method of a semiconductor device according to the present invention in the order of steps, and FIG. 2 is an L
FIG. 3 is a cross-sectional view of the step of depositing an ion-impermeable film using Method B.

まずp形半導体基板1の表面にゲート絶縁膜となる膜厚
約400人の二酸化ケイ素膜2と、ゲート電極となる膜
厚約4000人の多結晶シリコン層3を積層に形成する
。その上に、回転塗布方法によって、膜厚が約1.2μ
mのポジ形のホトレジスト層4を形成した後、ホトリソ
グラフィ技術により、所望のMOSゲート電極パターン
とし、さらに、これをマスクとして上記の多結晶シリコ
ン層3をエツチングして、所望のMOSゲートパ3 4 ターンの多結晶シリコン層3を形成する。続いて、イオ
ン注入法によりヒ素(As)を注入し、ヒ素イオン注入
領域5を形成する(第1図(a))。このとき、ヒ素の
イオンの注入量は1014〜10”/1ffl程度とし
、そのヒ素イオン注入領域5が拡散熱処理後に低濃度(
n−)拡散層となるように設定する。
First, on the surface of a p-type semiconductor substrate 1, a silicon dioxide film 2 with a thickness of about 4000 thick, which will serve as a gate insulating film, and a polycrystalline silicon layer 3, with a thickness of about 4000 thick, which will serve as a gate electrode, are formed in a laminated manner. On top of that, the film thickness is approximately 1.2μ by spin coating method.
After forming a positive photoresist layer 4 of m, a desired MOS gate electrode pattern is formed using photolithography technology, and the polycrystalline silicon layer 3 is etched using this as a mask to form a desired MOS gate electrode pattern 34. A polycrystalline silicon layer 3 with turns is formed. Subsequently, arsenic (As) is implanted by an ion implantation method to form an arsenic ion implantation region 5 (FIG. 1(a)). At this time, the amount of arsenic ions implanted is about 1014 to 10"/1ffl, and the arsenic ion implanted region 5 is at a low concentration (
n-) Set to become a diffusion layer.

次に、第2図に示すように、純水6の表面にベンゼンに
溶かしたポリメタクリル酸メチル(以下PMMAと称す
)を展開してPMMA単分子膜7を形成し、これをLB
法によって、半導体基板1のMOSゲートパターンの多
結晶シリコン層3とホトレジスト層4のドレイン側の表
面に移す。この場合、半導体基板1の遷移表面を、水面
に対して85°ないし90°の角度を保って上下し、P
MMA単分子膜7を累積し、膜厚約700人のPMMA
膜8を形成する(第1図(b))。なお、上記のPMM
A膜8の膜厚はPMMA単分子膜7の累積回数によって
、オングストローム(人)単位で制御することができる
Next, as shown in FIG. 2, polymethyl methacrylate (hereinafter referred to as PMMA) dissolved in benzene is spread on the surface of the pure water 6 to form a PMMA monomolecular film 7, and this is LB.
The MOS gate pattern of the semiconductor substrate 1 is transferred to the drain-side surfaces of the polycrystalline silicon layer 3 and the photoresist layer 4 by a method. In this case, the transition surface of the semiconductor substrate 1 is raised and lowered at an angle of 85° to 90° with respect to the water surface, and the
MMA monomolecular film 7 is accumulated, and the PMMA film thickness is approximately 700.
A film 8 is formed (FIG. 1(b)). In addition, the above PMM
The thickness of the A-film 8 can be controlled in angstrom units by the cumulative number of times the PMMA monomolecular film 7 is applied.

次に、RIE法により異方性エツチングを行ない、多結
晶シリコン層3とホトレジスト層4のドレイン側の側壁
にのみPMMA膜8を残し、続いて、多結晶シリコン層
3、ホトレジスト層4およびPMMA膜8をマスクとし
てイオン注入法によりリン(P)を注入し、リンイオン
注入領域9を形成する(第1図(C))。
Next, anisotropic etching is performed using the RIE method, leaving the PMMA film 8 only on the sidewalls of the polycrystalline silicon layer 3 and the photoresist layer 4 on the drain side. Using 8 as a mask, phosphorus (P) is implanted by an ion implantation method to form a phosphorus ion implantation region 9 (FIG. 1(C)).

このとき、リンイオンの注入量は、1015〜1016
/d程度とし、拡散熱処理後にリンイオン注入領域9が
高濃度(n+)拡散層になるように設定する。
At this time, the amount of phosphorus ions implanted is 1015 to 1016
/d, and the phosphorus ion implantation region 9 is set to become a high concentration (n+) diffusion layer after the diffusion heat treatment.

次に、ホトレジスト層4とPMMA膜8を灰化処理によ
り除去した後、温度900℃で30分程度拡散熱処理を
施すと、第1図(d)に示すように、セルファライン方
式によるマスク工程のまま、高濃度(n+)拡散領域1
0aおよび低濃度(n−)拡散領域10bをもったn形
拡散領域10が形成される。
Next, after removing the photoresist layer 4 and the PMMA film 8 by ashing, a diffusion heat treatment is performed at a temperature of 900°C for about 30 minutes, and as shown in FIG. 1(d), a self-line mask process is completed. High concentration (n+) diffusion region 1
An n-type diffusion region 10 is formed having a low concentration (n-) diffusion region 10a and a low concentration (n-) diffusion region 10b.

なお、本実施例では、ゲート絶縁膜として二酸化ケイ素
膜2を用いたが、これは窒化ケイ素膜でもよく、また、
ゲート電極の材料も、多結晶シリコンに限らず、高融点
金属ないし、そのケイ化物などセルファライン方式が可
能な電極材料が、全て利用できる。また、LB法で形成
するイオン不透過膜の材料としてP M M Aを用い
たが、金属イオンを含まないメタクリル酸系およびアク
リル酸系で純水上に展開して単分子膜を得られ且つ、イ
オン不透過膜として利用可能なポリマならば、全て利用
できる。
In this example, the silicon dioxide film 2 was used as the gate insulating film, but a silicon nitride film may also be used.
The material for the gate electrode is not limited to polycrystalline silicon, but any electrode material that can be used in the self-line method, such as high melting point metals or their silicides, can be used. In addition, although PMMA was used as the material for the ion-impermeable membrane formed by the LB method, it was also possible to obtain a monomolecular membrane by developing it on pure water with a methacrylic acid-based or acrylic acid-based material that does not contain metal ions. Any polymer that can be used as an ion-impermeable membrane can be used.

(発明の効果) 以」二説明したように、本発明によれば、LB@により
、精密に膜厚を制御したイオン不透過膜を、ゲート電極
のドレイン側の側壁に形成できるので、セルファライン
方式によるマスク工程のまま安定して、設定通りの特性
のMOSトランジスタが得られる半導体装置の製造方法
が可能となる。
(Effects of the Invention) As explained above, according to the present invention, an ion-impermeable film with precisely controlled film thickness can be formed on the side wall of the gate electrode on the drain side by using LB@. A method for manufacturing a semiconductor device that can stably obtain a MOS transistor with the set characteristics using the mask process according to the method becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の半導体装置の製造方法
を工程順に示す要部拡大断面図、第2図はLB法でイオ
ン不透過膜形成工程を示す断面図である。 1・・p形半導体基板、 2・・・二酸化ケイ素膜、 
 3・・・多結晶シリコン層、 4・・ホトレジスト層
、 5・・・ヒ素イオン注入領域、 6・・・純水、 
7・・・PMMA単分子膜、 8・・PMMA膜(イオ
ン不透過膜)、  9・・・リンイオン注入領域、 1
o・・n形拡散領域、 10a・・高濃度(n+)拡散
領域、 10b・・・低濃度(n−)拡散領域。
1(a) to 1(d) are enlarged cross-sectional views of essential parts showing the method of manufacturing a semiconductor device according to the present invention in order of steps, and FIG. 2 is a cross-sectional view showing a step of forming an ion-impermeable film using the LB method. 1...p-type semiconductor substrate, 2... silicon dioxide film,
3... Polycrystalline silicon layer, 4... Photoresist layer, 5... Arsenic ion implantation region, 6... Pure water,
7... PMMA monomolecular film, 8... PMMA membrane (ion-impermeable membrane), 9... phosphorus ion implantation region, 1
o: n-type diffusion region, 10a: high concentration (n+) diffusion region, 10b: low concentration (n-) diffusion region.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板にゲート電極を形成する工程と、第1
の不純物を、イオン注入する工程と、上記のゲート電極
の片側の側面を除いて、ラングミュアプロジェット法を
用いて、イオン不透過膜を堆積する工程と、反応性イオ
ンエッチング法によりゲート電極側壁にイオン不透過膜
を残す工程と、第2の不純物を上記の半導体基板にイオ
ン注入する工程と、上記のイオン不透過膜を除去する工
程とを備えた半導体装置の製造方法。
(1) A step of forming a gate electrode on a semiconductor substrate, and a step of forming a gate electrode on a semiconductor substrate;
A process of ion-implanting impurities, a process of depositing an ion-impermeable film using the Langmuir-Prodgett method except for one side of the gate electrode, and a process of depositing an ion-impermeable film on the side wall of the gate electrode using a reactive ion etching method. A method for manufacturing a semiconductor device, comprising: leaving an ion-impermeable film; ion-implanting a second impurity into the semiconductor substrate; and removing the ion-impermeable film.
(2)ラングミュア・プロジェット法でイオン不透過膜
を堆積する工程において、半導体基板表面と水面の角度
が90゜以下であることを特徴とする請求項(1)記載
の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim (1), wherein in the step of depositing the ion-impermeable film by the Langmuir-Prodgett method, the angle between the semiconductor substrate surface and the water surface is 90° or less.
JP14405389A 1989-06-08 1989-06-08 Manufacture of semiconductor device Pending JPH0311626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14405389A JPH0311626A (en) 1989-06-08 1989-06-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14405389A JPH0311626A (en) 1989-06-08 1989-06-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0311626A true JPH0311626A (en) 1991-01-18

Family

ID=15353220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14405389A Pending JPH0311626A (en) 1989-06-08 1989-06-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0311626A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184515A (en) * 2005-12-30 2007-07-19 Hynix Semiconductor Inc Method of forming mask pattern for ion implantation and manufacturing method of semiconductor element
JP2010255192A (en) * 2009-04-21 2010-11-11 Ibigawa Concrete Kogyo Kk Bending block
JP2011091362A (en) * 2009-09-28 2011-05-06 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and substrate processing apparatus
US10427828B2 (en) 2015-06-03 2019-10-01 Rengo Co., Ltd. Corrugated paperboard box, perforation forming method for perforating corrugated paperboard sheet, and perforation forming device and perforation forming unit for perforating corrugated paperboard sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184515A (en) * 2005-12-30 2007-07-19 Hynix Semiconductor Inc Method of forming mask pattern for ion implantation and manufacturing method of semiconductor element
JP2010255192A (en) * 2009-04-21 2010-11-11 Ibigawa Concrete Kogyo Kk Bending block
JP2011091362A (en) * 2009-09-28 2011-05-06 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and substrate processing apparatus
US10427828B2 (en) 2015-06-03 2019-10-01 Rengo Co., Ltd. Corrugated paperboard box, perforation forming method for perforating corrugated paperboard sheet, and perforation forming device and perforation forming unit for perforating corrugated paperboard sheet

Similar Documents

Publication Publication Date Title
JPH01274475A (en) Manufacture of semiconductor device
JPH0311626A (en) Manufacture of semiconductor device
JP2859332B2 (en) Method for manufacturing semiconductor device
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
US20020102785A1 (en) Method for forming shallow junctions by increasing width of photoresist and using implanting through poly film
JPH06349856A (en) Thin-film transistor and its manufacture
JP2004247444A (en) Forming method of thin film pattern
JPH0298142A (en) Manufacture of insulated gate field effect transistor
JPS58220431A (en) Method of setting end angle of hole in polycrystalline silicon layer
JPS59119870A (en) Manufacture of semiconductor device
JPH04155932A (en) Production of semiconductor device
JPS63275179A (en) Mis type semiconductor integrated circuit device
KR0184937B1 (en) Method of manufacturing semiconductor device transistor
JPH02137335A (en) Manufacture of field effect transistor
KR100823451B1 (en) Semiconductor device and method of manufacturing the semiconductor device
KR0161848B1 (en) Method for fabricating semiconductor device
JPH04346476A (en) Manufacture of mosfet
JPH07153940A (en) Manufacture of field-effect transistor
KR930001893B1 (en) Cmos transistor manufacturing method
KR930008902B1 (en) Manufacturing method of semiconductor device without sidewall
JPS6243341B2 (en)
JPH03231456A (en) Manufacture of semiconductor device
KR100979712B1 (en) Method for manufacturing transistor of a semiconductor device
JPH04360540A (en) Manufacture of semiconductor device
TW436908B (en) Method to form a smooth gate polysilicon sidewall in the fabrication of integrated circuits