JPH03114706A - Molding material and its mixture - Google Patents

Molding material and its mixture

Info

Publication number
JPH03114706A
JPH03114706A JP25443589A JP25443589A JPH03114706A JP H03114706 A JPH03114706 A JP H03114706A JP 25443589 A JP25443589 A JP 25443589A JP 25443589 A JP25443589 A JP 25443589A JP H03114706 A JPH03114706 A JP H03114706A
Authority
JP
Japan
Prior art keywords
polycarbonate resin
fiber
molding material
molding
poise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25443589A
Other languages
Japanese (ja)
Other versions
JP2646029B2 (en
Inventor
Tomohito Koba
木場 友人
Toshiyuki Nakakura
中倉 敏行
Hideo Sakai
坂井 英男
Misao Masuda
益田 操
Satoshi Kishi
岸 智
Chiaki Maruko
千明 丸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP25443589A priority Critical patent/JP2646029B2/en
Publication of JPH03114706A publication Critical patent/JPH03114706A/en
Application granted granted Critical
Publication of JP2646029B2 publication Critical patent/JP2646029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve drastically mechanical strength by making fiber dispersion favor able and reducing a breakage or a rapture of a fiber at the time of molding irrespec tive of a fact that a fiber reinforcement material is filled in high density into the title material, by a method wherein melt viscosity of polycarbonate resin is made into 3000 poise or more and 7000 poise or less under the condition that a temperature and shearing stress are respectively 300 deg.C and 10<6>dyn/cm<2>. CONSTITUTION:A fibrous reinforcement material constituted of a single fiber 22 is covered with polycarbonate resin 21. Furthermore, a boardlike body comprised by infiltrating the polycarbonate resin 21 into the fibrous reinforcement material 22 is cut off and a desired molding material 20 is obtained. In this instance, a loading of the fibrous reinforcement material 22 to the molding material 20 is made into 50wt.% or more and 90wt.% or less and a length of the fibrous reinforcement is made into 1-30mm. Furthermore, at least one side of the boardlike material and a specific surface area of the molding material 20 are made into respectively 1mm or less and at least 20cm<2>/g. In this instance, melt viscosity of the polycarbonate resin 21 is made into 3000 poise or more and 7000 poise or less under the condition that a temperature and shearing stress are respectively 300 deg.C and 10<6>dyn/cm<2>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成形材料及びその混合物に関し、詳しくは射出
成形、押出成形、圧縮成形等に使用され、成形時の分散
性が良好であって、繊維の破断が少なく、機械強度が大
幅に向上した成形品を提供し得る成形材料及びその混合
物に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molding material and a mixture thereof, and more specifically, it is used in injection molding, extrusion molding, compression molding, etc., and has good dispersibility during molding, and The present invention relates to a molding material and a mixture thereof that can provide a molded product with less fiber breakage and significantly improved mechanical strength.

〔従来の技術〕[Conventional technology]

従来、繊維によって強化されたポリカーボネート樹脂組
成物の製造方法としては、次の二つに大別される。
Conventionally, methods for producing polycarbonate resin compositions reinforced with fibers can be roughly divided into the following two types.

■その一つの方法は、ポリカーボネート樹脂に例えば3
ml11程度の長さのガラス繊維をトライブレンドして
トライブレンド物を作り、これを押出機で混練・造粒等
してペレットにする方法である。
■One method is to add, for example, 3 to polycarbonate resin.
This method involves tri-blending glass fibers with a length of approximately 11 ml to produce a tri-blend product, which is then kneaded and granulated using an extruder to form pellets.

■他の一つの方法は、ガラス繊維等の連続体をダイス穿
孔内に通し、押出機で溶融したポリカーボネート樹脂を
上記ダイス穿孔内に導き、前記繊維束を被覆し、冷却後
一定長に切断して円筒状の成形材料を得る方法である。
■Another method is to pass a continuous body such as glass fiber through a die hole, introduce polycarbonate resin melted by an extruder into the die hole, cover the fiber bundle, and cut it into a certain length after cooling. This is a method to obtain a cylindrical molding material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように得られた成形材料のガラスm維の充填率は
、■前者の場合、混練時の繊維の分散性の問題から通常
30重量%が上限とされていた。又■後者の場合もダイ
ス穿孔内での繊維引き抜き抵抗の問題から通常が40重
量%が上限とされている。従って、これ以上の高充填率
の成形材料を得ることができないという課題があった。
In the former case, the upper limit of the filling rate of glass m-fibers in the molding material obtained as described above was usually set at 30% by weight due to problems with the dispersibility of the fibers during kneading. Also in the latter case, the upper limit is usually set at 40% by weight due to the problem of resistance to pulling out the fibers within the die hole. Therefore, there was a problem that it was not possible to obtain a molding material with a higher filling rate.

また従来、成形材料に用いられるポリカーボネート樹脂
は成形後の成形品の物性を考慮して一般に高分子量即ち
高溶融粘度であり、このため■前者の場合には混練時に
押出機内バレルとスクリューとの間で発生する剪断力の
ために繊維の破断が起こり、得られる成形材料中の平均
繊維長は0.3〜0.5)と短くなる課題があった。
Conventionally, polycarbonate resins used as molding materials generally have a high molecular weight, that is, high melt viscosity, considering the physical properties of the molded product after molding. There was a problem that the fibers were broken due to the shear force generated, and the average fiber length in the resulting molding material was shortened to 0.3 to 0.5).

一方■後渚の場合においても成形材料中の繊維長さは、
成形材料のそれと同一であり、長く保たれているものの
、上記高溶融粘度であること並びに成形材料の形状が一
般に円筒であり、単位重量当りの成形材料の衷面積、即
ち比表面積が小さくて押出機供給ゾーンにおけるポリカ
ーボネート樹脂の可塑化に時間を要するため、成形時に
繊維が破断して成形品中の平均繊維が0.3〜0.5m
mと短くなるばかりでなく、繊fdtの分散不良という
課題も生じる。
On the other hand, even in the case of Gonagisa, the fiber length in the molding material is
Although it is the same as that of the molding material and is maintained for a long time, it has the above-mentioned high melt viscosity and the shape of the molding material is generally cylindrical, and the lining area of the molding material per unit weight, that is, the specific surface area is small, making it difficult to extrude. Because it takes time to plasticize the polycarbonate resin in the machine feeding zone, the fibers break during molding, resulting in an average fiber size of 0.3 to 0.5 m in the molded product.
In addition to being short (m), there is also the problem of poor dispersion of the fibers fdt.

以上のように従来技術では、繊維の充填率、破損、分散
性の面から繊維の補強効果を十分に発揮し得ないという
課題があった。
As described above, the conventional technology has a problem in that the reinforcing effect of the fibers cannot be sufficiently exerted from the viewpoints of the filling rate, breakage, and dispersibility of the fibers.

そこで、本発明の目的は、繊維補強材を高濃度に充填し
ているにも拘らず、成形時の繊維分散性が良好であり、
繊維の破断が少なく、機械強度が大幅に向上した成形品
が得られる成形材料及びその混合物を提供することにあ
る。
Therefore, the object of the present invention is to achieve good fiber dispersibility during molding despite being filled with a high concentration of fiber reinforcing material.
It is an object of the present invention to provide a molding material and a mixture thereof, from which a molded article with less fiber breakage and significantly improved mechanical strength can be obtained.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は上記課題を解決すべく鋭意検討した結果、成
形時に押出機内で発生するm維分散不良、あるいはH&
維破断の課題は成形材料中の樹脂の溶融粘度及び比表面
積と密接な関係にあり、またこれらの溶融粘度及び比表
面積を一定条件を満足するように設定することにより、
成形品の物性を損なうことなく、成形時の繊維分散性が
良好であり、繊維の破断が少なく、機械強度が大幅に向
上することを見出し、本発明を完成するに至ったもので
ある。
As a result of intensive studies to solve the above problems, the inventors of the present invention found that the problem of poor dispersion of m-fibers that occurs in the extruder during molding, or H&
The issue of fiber breakage is closely related to the melt viscosity and specific surface area of the resin in the molding material, and by setting these melt viscosity and specific surface area to satisfy certain conditions,
The present invention was completed based on the discovery that fiber dispersibility during molding is good, there is little fiber breakage, and mechanical strength is significantly improved without impairing the physical properties of the molded product.

即ち、本発明に係る成形材料は、単繊維(フィラメント
)から構成される繊維状補強材がポリカーボネート樹脂
によって被覆され、且つ該ポリカーボネート樹脂がm雄
状補強材中に含浸されている構成の板状体を得、前記#
llll袖状補強材填されている該板状体を切断して得
られる成形材料において、 (i)該成形材料に対するm雄状補強材の充填率が50
重量%以上90重量%以下、 (ii)該繊維状補強材の長さが1〜30mm。
That is, the molding material according to the present invention has a plate-like structure in which a fibrous reinforcing material made of single fibers (filaments) is covered with a polycarbonate resin, and the polycarbonate resin is impregnated into the male reinforcing material. Get the body #
In the molding material obtained by cutting the plate-shaped body filled with the sleeve-shaped reinforcing material, (i) the filling ratio of the m male reinforcing material to the molding material is 50
(ii) The length of the fibrous reinforcing material is 1 to 30 mm.

(iii)該板状体の少なくとも一辺が1mm以下。(iii) At least one side of the plate-like body is 1 mm or less.

(iv)該成形材料の比表面積が20cm27g以上(
v)  該ポリカーボネート樹脂の溶融粘度が、温度3
00℃、剪断応力106dyn/cm’の条件において
3000ポイズ以上7000ポイズ以下であることを特
徴とする。
(iv) The specific surface area of the molding material is 20cm27g or more (
v) The melt viscosity of the polycarbonate resin is at a temperature of 3
It is characterized by being 3000 poise or more and 7000 poise or less under the conditions of 00°C and a shear stress of 106 dyn/cm'.

また本発明に係わる成形材料混合物は、上記の成形材料
と繊維未強化ポリカーボネート樹脂とからなり、該繊維
未強化ポリカーボネート樹脂の溶融粘度が前記成形材料
であるポリカーボネート樹脂の溶融粘度の1〜4倍(同
一条件下で測定)であることを特徴とする。
Furthermore, the molding material mixture according to the present invention comprises the above-mentioned molding material and a non-fiber-reinforced polycarbonate resin, and the melt viscosity of the non-fiber-reinforced polycarbonate resin is 1 to 4 times the melt viscosity of the polycarbonate resin that is the molding material. (measured under the same conditions).

以下、本発明について詳説する。The present invention will be explained in detail below.

始めに、本発明の成形材料の一例を第1図及び第2図に
基き説明する。同図において、20は成形材料、21は
ポリカーボネート樹脂、22は単繊維である。
First, an example of the molding material of the present invention will be explained based on FIGS. 1 and 2. In the figure, 20 is a molding material, 21 is a polycarbonate resin, and 22 is a single fiber.

Lは成形材料の長さ、即ち繊維長であり、 1.0〜3
0mmである。1.0mm未満ては繊維長が短く十分な
補強効果が得られず、逆に30m+nを越えるとホッパ
ー内てブリッジ化等を引き起こし成形が困難となるのて
好ましくない。
L is the length of the molding material, that is, the fiber length, 1.0 to 3
It is 0 mm. If the fiber length is less than 1.0 mm, the fiber length is short and a sufficient reinforcing effect cannot be obtained, whereas if it exceeds 30 m+n, bridging etc. occur in the hopper, making molding difficult, which is not preferable.

W及びHは各々成形材料の幅及び厚さであり、次式の比
表面積が一定値以上になるように決定される。
W and H are the width and thickness of the molding material, respectively, and are determined so that the specific surface area of the following formula is greater than or equal to a certain value.

式中L= 成形材料の長さ(cm) W:  成形材料の幅 (cm) H: 成形材料の厚さ(am) p: 成形材料の比重(g/cm3) なお、幅と厚さの内、少なくとも一方を1.0mm以下
、好ましくは0.5mm未満とすることは比表面積を大
きく設定する」−で好ましい。
In the formula, L = length of the molding material (cm) W: width of the molding material (cm) H: thickness of the molding material (am) p: specific gravity of the molding material (g/cm3) , it is preferable to set at least one of them to 1.0 mm or less, preferably less than 0.5 mm, in order to set a large specific surface area.

本発明において、比表面積は20cm2/g以上、好ま
しくは30cm2/g、より好ましくは40cm2/g
以」二である。比表面積が20cm2/g未満では射出
成形や押出成形等の成形時に、押出機内において成形材
料中のポリカーボネート樹脂が溶融状態となる迄に長時
間を要し、押出機供給ゾーンにおいて、繊維分散不良、
繊維破断等の問題が起こり好ましくない。
In the present invention, the specific surface area is 20 cm2/g or more, preferably 30 cm2/g, more preferably 40 cm2/g.
This is 2. If the specific surface area is less than 20 cm2/g, it will take a long time for the polycarbonate resin in the molding material to become molten in the extruder during injection molding, extrusion molding, etc., resulting in poor fiber dispersion and poor fiber dispersion in the extruder supply zone.
This is not preferable as it may cause problems such as fiber breakage.

尚、厚さ11に関してはホッパー内分級、取扱い性の面
からは0.1mm以上に設定することか好ましい。
Note that the thickness 11 is preferably set to 0.1 mm or more in terms of classification in the hopper and ease of handling.

本発明に用いられるポリカーボネート樹脂の製法として
は、例えばヒスフェノールAとホスゲンを反応させるホ
スゲン法、ビスフェノールAとジフェニルカーボネート
を高温、減圧下て反応させるエステル交換法等を挙げる
ことができる。
Examples of the method for producing the polycarbonate resin used in the present invention include the phosgene method in which hisphenol A and phosgene are reacted, and the transesterification method in which bisphenol A and diphenyl carbonate are reacted at high temperature and reduced pressure.

本発明に用いられるポリカーボネート樹脂の溶融粘度は
、直径1mm、長さ10mmのダイを有する高化式フロ
ーテスタを用い、温度300°C,剪断応力]06dy
n/cm’の条件(以下、「本発明の測定条件」という
)において、3000ポイズ以上7000ポイズ以下で
ある。3000ポイズ未満ては得られる成形品の機械強
度か大巾に低下するため好ましくない。又7000ポイ
ズを越えると成形時の繊維分散不良、繊維の破断が起こ
り繊維の補強効果を損なうのて好ましくない。なお一般
にポリカーボネート樹脂の溶融粘度は本発明の測定条件
て測定した場合、2000〜15000ポイズの範囲に
ある。即ち、本発明者は一般の溶融粘度の範囲で、他の
本発明の要件との関係て特定の溶融粘度の範囲を見出し
たのである。
The melt viscosity of the polycarbonate resin used in the present invention was measured using a Koka type flow tester having a die with a diameter of 1 mm and a length of 10 mm at a temperature of 300°C and a shear stress of 06 dy.
n/cm' (hereinafter referred to as "measurement conditions of the present invention"), it is 3000 poise or more and 7000 poise or less. If it is less than 3000 poise, the mechanical strength of the molded product obtained will be greatly reduced, which is not preferable. Moreover, if it exceeds 7,000 poise, it is not preferable because it causes poor fiber dispersion and fiber breakage during molding, impairing the reinforcing effect of the fibers. Generally, the melt viscosity of polycarbonate resin is in the range of 2,000 to 15,000 poise when measured under the measurement conditions of the present invention. That is, the present inventor found a specific melt viscosity range within the general melt viscosity range in relation to other requirements of the present invention.

本発明に用いる繊維状補強材の種類としては、E−ガラ
ス、S−カラス等のカラス繊維、ポリアクリルニトリル
系、ピッチ系、レーヨン系等の炭素繊維、デュポン社の
「ケフラー」 (商標)に代表される芳香族ポリアミド
繊維、日本カーボン社の「ニカロン」 (商標)等の炭
化ケイ素繊維、金属繊維等が挙げられる。これらの繊維
状補強材は、単独或いは組合せて用いることかてきる。
The types of fibrous reinforcing materials used in the present invention include glass fibers such as E-glass and S-glass, carbon fibers such as polyacrylonitrile, pitch, and rayon, and DuPont's "Kefler" (trademark). Examples include aromatic polyamide fibers, silicon carbide fibers such as Nippon Carbon Co., Ltd.'s "Nicalon" (trademark), and metal fibers. These fibrous reinforcing materials can be used alone or in combination.

本発明において繊維径は繊維の種類によっても異なるが
、例えばガラス繊維の場合、通常5〜25gmであるが
、機械特性の面からは細い方が好ましい。また繊維状補
強材を表面処理することはポリカーボネート樹脂との接
着性の面から好ましく、例えばガラス繊維の場合、シラ
ン系、チタネート系カップリング剤て処理することは特
に好ましい。
In the present invention, the fiber diameter varies depending on the type of fiber, but for example, in the case of glass fiber, it is usually 5 to 25 gm, but from the viewpoint of mechanical properties, the smaller the diameter is, the better. In addition, it is preferable to surface-treat the fibrous reinforcing material from the viewpoint of adhesion to the polycarbonate resin. For example, in the case of glass fiber, it is particularly preferable to treat it with a silane-based or titanate-based coupling agent.

本発明において成形材料中の繊維状補強材の充填率は、
50重量%以上90重置火以下である。50重量%未満
ては本発明の効果である繊維の高充填化の特徴か発揮て
きず、また後述するマスターハツチとして用いる場合経
済性の面からみても好ましくない。一方90重量%を越
えると単繊維の表面をポリカーボネート樹脂て十分被覆
することかできず好ましくない。
In the present invention, the filling rate of the fibrous reinforcing material in the molding material is
50% by weight or more and 90% by weight or less. If it is less than 50% by weight, the effect of the present invention of high fiber filling cannot be achieved, and it is also unfavorable from the economic point of view when used as a master hatch as described below. On the other hand, if it exceeds 90% by weight, the surface of the single fiber cannot be sufficiently covered with the polycarbonate resin, which is not preferable.

本発明に係る成形材料は、単繊a(フィラメント)から
構成されるm雌状補強材かポリカーボネート樹脂によっ
て被覆され、且つ該ポリカーボネート樹脂か繊維状補強
材中に含浸されている構成の板状体を得、前記繊維状補
強材か充填されている該板状体を一定長に切断すること
により得られる。
The molding material according to the present invention is a plate-shaped body having a structure in which a female reinforcing material composed of a single fiber a (filament) is coated with a polycarbonate resin, and the polycarbonate resin is impregnated in the fibrous reinforcing material. is obtained by cutting the plate-shaped body filled with the fibrous reinforcing material into a certain length.

本発明においては、前記繊維状補強材の構成単位である
単繊維(フィラメント)の90%以上の表面が、前記ポ
リカーボネート樹脂て被覆されてし入る成形材料を得る
ことか好ましい。
In the present invention, it is preferable to obtain a molding material in which 90% or more of the surface of single fibers (filaments) which are the constituent units of the fibrous reinforcing material are coated with the polycarbonate resin.

本発明において、繊維状補強材中にポリカーフ1(ネー
ト樹脂を含浸して繊維の構成単位である単繊 0 m(フィラメント)の表面をポリカーボネート樹脂で被
覆する方法は、特に限定されない。例えば、溶融状態の
ポリカーボネート樹脂を繊維状補強材に含浸させる溶融
含浸法、粉末状のポリカーボネート樹脂を空気中に浮遊
、または水などの液体中に懸濁させた状態で含浸させる
流動床法が挙げられる。
In the present invention, the method of impregnating polycarbonate resin into the fibrous reinforcing material and coating the surface of a single fiber (filament), which is a structural unit of the fiber, with polycarbonate resin is not particularly limited. For example, melting Examples include a melt impregnation method in which a fibrous reinforcing material is impregnated with a polycarbonate resin in the form of a powder, and a fluidized bed method in which a powdered polycarbonate resin is impregnated while suspended in the air or suspended in a liquid such as water.

溶融含浸法の代表的な例は特開昭61−229534号
、同6]−229535号、同61−229536号及
び特願昭61−215253号に開示されている。
Representative examples of the melt impregnation method are disclosed in Japanese Patent Application Laid-open Nos. 61-229534, 6]-229535, 61-229536, and Japanese Patent Application No. 61-215253.

本発明で採用可能な溶融含浸法の一例を第3図に基き説
明する。
An example of the melt impregnation method that can be employed in the present invention will be explained based on FIG. 3.

複数のボビン1から引き出された長m雄のロービング2
を、整列器3で一方向に整列させた後、張力調整ロール
4,5.6を通過させて繊維シート7とする。なお本発
明においては一方向に整列させた繊維シート以外に、織
布辱の多方向連続繊維を用いることもできる。
Long male roving 2 pulled out from multiple bobbins 1
are aligned in one direction by an aligner 3, and then passed through tension adjustment rolls 4, 5.6 to form a fiber sheet 7. In the present invention, in addition to the fiber sheet aligned in one direction, multidirectional continuous fibers of woven fabric can also be used.

一方、押出機(図示せず)で加熱溶融した樹脂をダイ8
を経由して、加熱ロール9て加熱される1 一ドヘルト]0の表面に塗布する。上ベルト12は加熱
ロール11て加熱される。
On the other hand, the extruder (not shown) heats and melts the resin into a die 8.
It is applied to the surface of the sheet heated by the heating roll 9 via the heating roll 9. The upper belt 12 is heated by a heating roll 11.

次いて、前記シー1〜7は、下ベルト1oと上ベルト1
2の間に挾まれた状態で、加熱された含浸ロール13の
間を、張力をかけられなから、通過する。
Next, the seams 1 to 7 are connected to the lower belt 1o and the upper belt 1o.
2, it passes between heated impregnating rolls 13 without any tension being applied.

このようにして得られた連続繊維/ポリカーボネート樹
脂の複合体14は、そのまま或いは必要により所望の厚
みになるように必要枚数を積層・熱圧した後、所望の幅
に繊維と平行にスリッタ17てスリットした後、所望の
長さに繊維と直角方向に切断!j&18で切断すること
により、角形状の成形材料20を得ることができる。な
お第3図において、15、16は引取用ロールである。
The continuous fiber/polycarbonate resin composite 14 thus obtained can be used as it is or, if necessary, after laminating and hot pressing the required number of sheets to a desired thickness, the composite is slittered with a slitter 17 in parallel with the fibers to a desired width. After slitting, cut perpendicular to the fiber to the desired length! By cutting at j&18, a rectangular molding material 20 can be obtained. In addition, in FIG. 3, 15 and 16 are take-up rolls.

上記積層・熱圧する方法としては、例えば当該複合体1
4の表面をポリカーボネート樹脂の軟化点以上に加熱後
積層するが、或いは積層後加熱炉内で当該樹脂の軟化点
以上に加熱する。次いて当該複合体14を冷ニップロー
ル間を通過させる等して加圧下に当該樹脂の固化温度以
下まで冷却する。
As the method of laminating and hot pressing, for example, the composite 1
After heating the surface of No. 4 to a temperature above the softening point of the polycarbonate resin, the polycarbonate resin is laminated. Alternatively, after lamination, the surface of the polycarbonate resin is heated to a temperature above the softening point of the resin in a heating furnace. Next, the composite 14 is cooled under pressure to a temperature below the solidification temperature of the resin, such as by passing it between cold nip rolls.

 2 このようにして得られた成形材料は、そのまま、或いは
所望の繊維充填率になるように繊維未強化ポリカーボネ
ート樹脂とドライヅレントすることにより成形材料混合
物を得、所謂マスターバッチとして用いることにより、
射出成形、押出成形に供せられる。
2 The molding material thus obtained can be used as it is, or by dry-zulenting it with a non-fiber-reinforced polycarbonate resin to obtain the desired fiber filling rate, a molding material mixture can be obtained and used as a so-called masterbatch.
Can be used for injection molding and extrusion molding.

当該成形材料と繊維未強化ポリカーボネート樹脂とのツ
レンド比に特に制約はなく、当該混合物を成形して得ら
れる成形品の繊維充填率の設定値によって決定されるべ
きである。
There is no particular restriction on the tulend ratio between the molding material and the non-fiber-reinforced polycarbonate resin, and it should be determined by the set value of the fiber filling rate of the molded product obtained by molding the mixture.

本発明に用いられる繊維未強化ポリカーボネート樹脂の
溶融粘度は、本発明の測定条件において前記の成形材料
中のポリカーボネート樹脂の溶融粘度の1〜4倍である
。1倍未満の場合には成形品の物性が大きく低下するた
め好ましくなく、また4倍を越えると成形品中の繊維分
散不良や繊維破損が起こり本発明の効果を発揮できない
ため好ましくない。
The melt viscosity of the fiber-unreinforced polycarbonate resin used in the present invention is 1 to 4 times the melt viscosity of the polycarbonate resin in the molding material described above under the measurement conditions of the present invention. If it is less than 1 time, it is not preferable because the physical properties of the molded article will be greatly deteriorated, and if it exceeds 4 times, it is not preferable because the effects of the present invention cannot be exhibited due to poor fiber dispersion or fiber breakage in the molded article.

なお上記成形材料または成形材料混合物は、上記射出成
形、押出成形以外に、例えば圧縮成形に3 も適用できる。この圧縮成形に適用する場合においても
、成形材料の形状が板状体、即ち鱗片状であるから金型
との密着か良い。また比表面精が大きいため、材料中の
樹脂溶融時間が早く、従来法と比較して短時間に成形か
できる。この場合従来の成形材料が通常円筒状であるの
に対し、当該材料は鱗片状であり、金型上ての位置設定
が容易であるという副次的効果かある。
In addition to the above injection molding and extrusion molding, the above molding material or molding material mixture can also be applied to, for example, compression molding. Even when applied to compression molding, the molding material has a plate-like shape, that is, a scale-like shape, so that it fits well with the mold. Also, because the specific surface precision is high, the resin in the material melts quickly, allowing molding to take place in a shorter time than with conventional methods. In this case, whereas conventional molding materials are usually cylindrical, the material is scale-shaped, which has the secondary effect of facilitating positioning on the mold.

(実施例) 以下、本発明の実施例について説明するが、本発明の範
囲がこれらの実施例によって制限的に解されるものでは
ない。
(Examples) Examples of the present invention will be described below, but the scope of the present invention should not be construed as being limited by these Examples.

実施例1 第3図に示す装置を用い、ポリカーボネート樹脂とガラ
ス#I!維から、次のようにして成形材料を得た。ポリ
カーボネート樹脂の溶融粘度は、直径Inon、長さ1
0mmのタイを有する高化式フローテスタを用い、温度
300℃、剪断応力106dyn/crn”の条件、即
ち本発明の測定条件において、3000ポイズである。
Example 1 Using the apparatus shown in FIG. 3, polycarbonate resin and glass #I! A molding material was obtained from the fiber in the following manner. The melt viscosity of polycarbonate resin is: diameter Inon, length 1
Using a Koka type flow tester with a tie of 0 mm, the temperature is 300° C. and the shear stress is 106 dyn/crn'', that is, the measurement condition of the present invention is 3000 poise.

 4 1圓木のボビン1から引き出されたガラス繊維(繊維径
13pLm 、収束本数1600本)のローピンク21
00本を、整列器3て一方向に整列させた後、張力調整
ロール4,5.6を通過させテ2oo[llIn幅のm
維シート7とした。
4 1 Low pink 21 of glass fiber (fiber diameter 13 pLm, convergence number 1600) drawn from Enki's bobbin 1
After aligning the 00 pieces in one direction using the aligner 3, they are passed through the tension adjustment rolls 4 and 5.
fiber sheet 7.

一方、押出機(図示せず)で2106Cに加熱溶融した
ポリカーボネート樹脂をタイ8を経由して、下ベルト用
ロール9(ここでは2本、9′は加熱せず)で220°
Cに加熱された下ベルト1oの表面に145ルmの厚み
て塗布した。
On the other hand, a polycarbonate resin heated and melted to 2106C in an extruder (not shown) is passed through ties 8 and rolled at 220° with lower belt rolls 9 (here, two rolls, 9' is not heated).
It was applied to the surface of the lower belt 1o heated to C to a thickness of 145 lm.

次いて前記シート7を、下ベルト10と上ベルト12(
2本の上ベルト用ロール11で220 ’Cに加熱され
ている。尚、ロール11′は加熱しない。)に挾んだ状
態で、220°Cに加熱された径240mmの3木の含
浸ロール13の間を、150kgの張力をかけなから5
0cn+/分の速度て通過させた。
Next, the sheet 7 is attached to the lower belt 10 and the upper belt 12 (
It is heated to 220'C by two upper belt rolls 11. Note that the roll 11' is not heated. ) with a tension of 150 kg applied between three wooden impregnated rolls 13 with a diameter of 240 mm heated to 220°C.
It was passed at a speed of 0 cn+/min.

このようにして得られたガラス繊維/ポリカーボネート
樹脂複合体14は100℃まて冷却された後、引取用ロ
ール15.16で引き取った後、スリッタ17で幅5m
m間隔てスリットした後、切断機18で5 長さ3mmに切断して厚み0.24mm、ガラス繊維充
填率70重量%の成形材料を得た。
The glass fiber/polycarbonate resin composite 14 thus obtained was cooled to 100°C, taken off by take-up rolls 15 and 16, and then cut into a 5 m width by a slitter 17.
After slitting at intervals of m, the material was cut into 3 mm pieces using a cutting machine 18 to obtain a molding material having a thickness of 0.24 mm and a glass fiber filling rate of 70% by weight.

得られた成形材料の比表面積を求めたところ55CII
12/gてあった。
The specific surface area of the molding material obtained was found to be 55CII.
It was 12/g.

次いて当該成形材料43重量部と繊維未強化ポリカーボ
ネート樹脂57重量部をトライブレントシて成形材料混
合物を得、射出成形機を用いてガラスミm充填率30重
量%の成形品を作成した。
Next, 43 parts by weight of the molding material and 57 parts by weight of the non-fiber-reinforced polycarbonate resin were mixed to obtain a molding material mixture, and a molded product having a glass filling rate of 30% by weight was produced using an injection molding machine.

成形品の断面を走査型電子顕微鏡で観察したが、繊維の
分散性は良好てあり、またブロッキング化等の現象は見
られなかった。
When the cross section of the molded article was observed using a scanning electron microscope, the dispersibility of the fibers was good and no phenomena such as blocking were observed.

また、当該成形品を用いて引張強度、平均繊維長を測定
した。結果を表1に示す。
Moreover, the tensile strength and average fiber length were measured using the molded product. The results are shown in Table 1.

従来技術量と比較して射出成形時の繊維の折損か少なく
、引張強度も大l]に向上した。
Compared to the conventional technology, fewer fibers were broken during injection molding, and the tensile strength was greatly improved.

実施例2 ベルトへのポリカーボネート樹脂塗布厚みを210pm
に変えた以外は実施例1と同様に処理して繊維充填率5
0%の成形材料を得た。ついで、れられた成形材料をそ
のまま実施例1と同様に成形 6 して繊維充填率50%の成形品を得た。
Example 2 The thickness of polycarbonate resin applied to the belt was 210 pm.
The process was carried out in the same manner as in Example 1 except that the fiber filling rate was 5.
A 0% molding material was obtained. Then, the molding material thus obtained was molded as it was in the same manner as in Example 1 to obtain a molded product with a fiber filling rate of 50%.

成形品の断面を走査型電子顕微鏡でH察したが、繊維の
分散性は良好であり、またブロッキング化等の現象は見
られなかった。また当該成形品を用いて引張強度、平均
繊維長を測定した。結果を表1に示す。
When the cross section of the molded article was examined using a scanning electron microscope, the dispersibility of the fibers was good and no phenomenon such as blocking was observed. Furthermore, the tensile strength and average fiber length of the molded product were measured. The results are shown in Table 1.

比較例1 本発明の31σ定条件における溶融粘度が8(l[l[
lポイズであるポリカーボネート樹脂を用いた以外は実
施例1と同様にしてガラス繊維充填率70重量%、比表
面積が55cm2/Hの成形材料を得た。
Comparative Example 1 The melt viscosity under the 31σ constant conditions of the present invention was 8 (l[l[
A molding material having a glass fiber filling rate of 70% by weight and a specific surface area of 55 cm 2 /H was obtained in the same manner as in Example 1, except that a polycarbonate resin of 1 poise was used.

次いで当該成形材料43重量部と実施例1て用いた繊維
未強化ポリカーボネート樹脂57重量部をトライブレン
ドして成形材料混合物を得、射出成形機を用いてガラス
繊維充填率30重量%の成形品を作成した。
Next, 43 parts by weight of the molding material and 57 parts by weight of the non-fiber-reinforced polycarbonate resin used in Example 1 were triblended to obtain a molding material mixture, and a molded product with a glass fiber filling rate of 30% by weight was made using an injection molding machine. Created.

成形品の断面を走査型電子顕微鏡て観察したが、m維の
分散性は不充分であり、またブロッキング化の現象が見
られた。
When the cross section of the molded product was observed using a scanning electron microscope, it was found that the dispersibility of the m-fibers was insufficient and a blocking phenomenon was observed.

また、当該成形品を用いて引張強度、平均繊維 7 長を測定した。結果を表1に示す。In addition, using the molded product, tensile strength and average fiber 7 The length was measured. The results are shown in Table 1.

実施例1と比較して射出成形時の繊維の折損が激しく、
引張強度も大[1]に低下した。
Compared to Example 1, fiber breakage during injection molding was severe;
The tensile strength also decreased significantly [1].

実施例3〜5 実施例1において、表1に示すポリカーボネート樹脂に
代えて、実施例1と同様にして成形材料を得た。次いて
表1に示す割合て繊維未強化ポリカーボネート樹脂とト
ライブレンド後、成形して表1に示す成形品を得た。
Examples 3 to 5 Molding materials were obtained in the same manner as in Example 1, except that the polycarbonate resin shown in Table 1 was used in Example 1. Next, the mixture was triblended with a non-fiber-reinforced polycarbonate resin in the proportions shown in Table 1, and then molded to obtain the molded products shown in Table 1.

当該成形品を用いて引張強度、平均繊維長を測定した。Using the molded article, tensile strength and average fiber length were measured.

結果を表1に示す。The results are shown in Table 1.

比較例3〜4 実施例1において、表1に示すポリカーボネート樹脂に
代えて、実施例1と同様にして成形材料を得た。次いて
表1に示す割合て繊維未強化ポリカーボネート樹脂と)
へライツレシト後、成形して表1に示す成形品を得た。
Comparative Examples 3 to 4 Molding materials were obtained in the same manner as in Example 1, except that the polycarbonate resin shown in Table 1 was used in Example 1. Next, fiber-unreinforced polycarbonate resin was used in the proportions shown in Table 1).
After the rectification, the molded products shown in Table 1 were obtained by molding.

当該成形品を用いて引張強度、゛平均繊維長を測定した
。結果を表1に示す。
Using the molded article, tensile strength and average fiber length were measured. The results are shown in Table 1.

実施例6 実施例1て得た成形材料を、繊維未強化ポリ 8 カーボネー1〜樹脂と1ヘライツレントして繊維充填率
か30%になるように調整した。このトライツレンド物
を通常の押出成形機を用いて、直径30mmφの丸棒の
成形品を得た。
Example 6 The molding material obtained in Example 1 was adjusted to a fiber filling rate of 30% by blending the molding material with unreinforced fiber-reinforced poly 8 carbonate resin. This Treitzlend product was molded into a round bar with a diameter of 30 mm using a conventional extrusion molding machine.

この成形品の断面を走査型電子顕微鏡て観察したが、繊
維の分散性は良好てあり、またツロッキング化等の現象
は見られなかった。
When the cross section of this molded article was observed using a scanning electron microscope, it was found that the fibers had good dispersibility and no phenomenon such as locking was observed.

実施例7 離型剤(FREKOTE44 、米国FREKOTE 
Inc、製)を塗布した第4図に示す雌金型30内に実
施例1て得た成形材料20を300g均一に置いた後、
上記離型剤を塗布した雄金型31をセットした。
Example 7 Mold release agent (FREKOTE44, FREKOTE, USA)
After uniformly placing 300 g of the molding material 20 obtained in Example 1 into the female mold 30 shown in FIG.
A male mold 31 coated with the above mold release agent was set.

次いて300°Cに加熱した加熱炉内に上記金型を金型
温度か280℃になる迄放置した後、素早く常温の加圧
板を有する圧縮成形機内に移し、50Kg/ cばの圧
力で20分間加圧して、300 x300x2、Omm
の成形品を得た。
Next, the mold was left in a heating furnace heated to 300°C until the mold temperature reached 280°C, and then quickly transferred to a compression molding machine equipped with a pressure plate at room temperature, and molded at a pressure of 50kg/cba for 20 minutes. Pressurize for 300 x 300 x 2, Omm
A molded product was obtained.

成形品の表面を肉眼で観察したが、繊維か表面に浮き出
ることもなく、良好に繊維か分散しており、良好な表面
光沢を有していた。
When the surface of the molded product was visually observed, it was found that no fibers were visible on the surface, the fibers were well dispersed, and the molded product had good surface gloss.

 9 〔発明の効果〕 本発明によれば、繊維補強材を高濃度に充填しているに
も拘らず、成形時の繊維分散性が良好であり、繊維の折
損や破断が少なく、機械強度が大幅に向上した成形品が
得られる成形材料及びその混合物を提供することができ
る。
9 [Effects of the Invention] According to the present invention, despite being filled with a high concentration of fiber reinforcing material, the fiber dispersibility during molding is good, there is little breakage or breakage of fibers, and the mechanical strength is high. It is possible to provide molding materials and mixtures thereof that yield significantly improved molded articles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の成形材料の構造の一例を示す斜視図、
第2図は成形材料の部分拡大図、第3図は本発明の成形
材料を製造する装置の一例を示す概略図、第4図は本発
明が適用される圧縮成形用の金型の一例を示す斜視図で
ある。 20:成形材料 21:ポリカーボネート樹脂 22:単繊維 30:雌金型 31:雄金型
FIG. 1 is a perspective view showing an example of the structure of the molding material of the present invention;
Fig. 2 is a partially enlarged view of the molding material, Fig. 3 is a schematic diagram showing an example of an apparatus for manufacturing the molding material of the present invention, and Fig. 4 is an example of a mold for compression molding to which the present invention is applied. FIG. 20: Molding material 21: Polycarbonate resin 22: Single fiber 30: Female mold 31: Male mold

Claims (1)

【特許請求の範囲】 1、単繊維(フィラメント)から構成される繊維状補強
材がポリカーボネート樹脂によって被覆され、且つ該ポ
リカーボネート樹脂が繊維状補強材中に含浸されている
構成の板状体を得、前記繊維状補強材が充填されている
該板状体を切断して得られる成形材料において、 (i)該成形材料に対する繊維状補強材の充填率が50
重量%以上90重量%以下、 (ii)該繊維状補強材の長さが1〜30mm、(ii
i)該板状体の少なくとも一辺が1mm以下、(iv)
該成形材料の比表面積が20cm^2/g以上(v)該
ポリカーボネート樹脂の溶融粘度が、温度300℃、剪
断応力10^6dyn/cm^2の条件において300
0ポイズ以上7000ポイズ以下 であることを特徴とする成形材料。 2、請求項1記載の成形材料と繊維未強化ポリカーボネ
ート樹脂とからなり、該繊維未強化ポリカーボネート樹
脂の溶融粘度が前記ポリカーボネート樹脂の溶融粘度の
1〜4倍(同一条件下で測定)であることを特徴とする
成形材料混合物。
[Claims] 1. To obtain a plate-shaped body having a structure in which a fibrous reinforcing material composed of single fibers (filaments) is covered with a polycarbonate resin, and the polycarbonate resin is impregnated into the fibrous reinforcing material. , in the molding material obtained by cutting the plate-shaped body filled with the fibrous reinforcing material, (i) the filling ratio of the fibrous reinforcing material to the molding material is 50
% by weight or more and 90% by weight or less, (ii) the length of the fibrous reinforcing material is 1 to 30 mm, (ii)
i) at least one side of the plate-like body is 1 mm or less; (iv)
The specific surface area of the molding material is 20 cm^2/g or more (v) The melt viscosity of the polycarbonate resin is 300 at a temperature of 300°C and a shear stress of 10^6 dyn/cm^2.
A molding material characterized by having a poise of 0 poise or more and 7000 poise or less. 2. It consists of the molding material according to claim 1 and a fiber-unreinforced polycarbonate resin, and the melt viscosity of the fiber-unreinforced polycarbonate resin is 1 to 4 times the melt viscosity of the polycarbonate resin (measured under the same conditions). A molding material mixture characterized by:
JP25443589A 1989-09-28 1989-09-28 Molding materials and mixtures thereof Expired - Lifetime JP2646029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25443589A JP2646029B2 (en) 1989-09-28 1989-09-28 Molding materials and mixtures thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25443589A JP2646029B2 (en) 1989-09-28 1989-09-28 Molding materials and mixtures thereof

Publications (2)

Publication Number Publication Date
JPH03114706A true JPH03114706A (en) 1991-05-15
JP2646029B2 JP2646029B2 (en) 1997-08-25

Family

ID=17264954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25443589A Expired - Lifetime JP2646029B2 (en) 1989-09-28 1989-09-28 Molding materials and mixtures thereof

Country Status (1)

Country Link
JP (1) JP2646029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216565A (en) * 2015-05-18 2016-12-22 三菱瓦斯化学株式会社 Continuous fiber-reinforced polycarbonate resin prepreg

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216565A (en) * 2015-05-18 2016-12-22 三菱瓦斯化学株式会社 Continuous fiber-reinforced polycarbonate resin prepreg

Also Published As

Publication number Publication date
JP2646029B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JP4813654B2 (en) Method of prepreg with resin and novel prepreg produced by the method
JP2569380B2 (en) Fiber reinforced molded product
KR920001646B1 (en) Maruko chiaki
JPS62135537A (en) Flexible composite material and production thereof
KR20140040846A (en) Method for manufacturing molded article by low-pressure molding
JPS6337694B2 (en)
EP3195995B1 (en) Production method for fiber-reinforced thermoplastic resin composite material
JPWO2013187220A1 (en) Carbon fiber composite material, molded product using the same, and production method thereof
JPH03114706A (en) Molding material and its mixture
JPH01214408A (en) Molding material
JP2646028B2 (en) Molding materials and mixtures thereof
JP2008284729A (en) Fiber-containing resin pellet and its manufacturing method
JP2646027B2 (en) Molding material
JPH03179035A (en) Molding material and its mixture
JPH03179034A (en) Molding material and its mixture
JPH05318472A (en) Fiber-reinforced thermoplastic resin sheet
JPH03179032A (en) Molding material and its mixture
JPH03179033A (en) Molding material and its mixture
JPS61229536A (en) Method and apparatus for producing fiber-reinforced resin sheet
CN114806010B (en) Composite sheet
JPH0839560A (en) Manufacture of fiber composite sheet
JPH08309748A (en) Molding material
JP4976610B2 (en) Method for producing a long fiber reinforced thermoplastic resin molding
KR100937231B1 (en) Manufacturing method of Fiber Reinforced Plastic forming goods
JPH03230943A (en) Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor