JP4976610B2 - Method for producing a long fiber reinforced thermoplastic resin molding - Google Patents

Method for producing a long fiber reinforced thermoplastic resin molding Download PDF

Info

Publication number
JP4976610B2
JP4976610B2 JP35498899A JP35498899A JP4976610B2 JP 4976610 B2 JP4976610 B2 JP 4976610B2 JP 35498899 A JP35498899 A JP 35498899A JP 35498899 A JP35498899 A JP 35498899A JP 4976610 B2 JP4976610 B2 JP 4976610B2
Authority
JP
Japan
Prior art keywords
lfrtp
base material
length
melt
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35498899A
Other languages
Japanese (ja)
Other versions
JP2000233421A (en
Inventor
徹 水上
憲吾 尾崎
秀行 東山
Original Assignee
オーウェンスコーニング製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーウェンスコーニング製造株式会社 filed Critical オーウェンスコーニング製造株式会社
Priority to JP35498899A priority Critical patent/JP4976610B2/en
Publication of JP2000233421A publication Critical patent/JP2000233421A/en
Application granted granted Critical
Publication of JP4976610B2 publication Critical patent/JP4976610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面外観性や高強度、高剛性が要求される自動車部品や家電製品、産業資材、土木資材などに適した長繊維強化熱可塑性樹脂(以下「LFRTP」という)成形体の製造方法に関する。
【0002】
【従来技術】
従来より、LFRTP成形体の製造方法において、特定の方向に並んだ強化繊維(以下単に「繊維」という)を含有する熱可塑性樹脂を所定形状に切断した約2〜3mm径のLFRTP基材を加熱溶融させて射出成型法により成形体を製造する方法が知られている。この方法で用いるLFRTP基材は、熱可塑性樹脂と繊維を混練した従来の短繊維強化熱可塑性樹脂基材に比べて、含有されている繊維長が長く、成形体中の繊維長をより長く維持させることが可能であり、また、繊維に熱可塑性樹脂が予め含浸されていることから、これを成形した成形体は機械的強度や表面外観性が優れるものであった。
【0003】
【発明が解決しようとする課題】
しかしながら、上記方法で用いる繊維長の長いLFRTP基材を用いても、圧縮比の高いスクリューによる混練や射出時の高い圧力により、大きな剪断が加わって成形体中の繊維長が短くなり、結果として成形体の衝撃強度、引っ張り強度などの機械的強度が劣るという問題を有していた。
【0004】
さらに、前記LFRTP基材を分散し、これを加熱成形したLFRTP基材シートおよび該シートを加熱溶融後に成形型に導入し、常温または加温プレスして得られる成形体が知られている(特開平9−109310号公報)。この方法では、一旦予備成形されたLFRTP基材シートを作製すれば、該シートを加熱溶融後に成形型にセットして成形するだけの簡便な方法であり、得られる成形体はその中の繊維長を比較的長く維持し、比較的高強度の成形体を得ることができるものであるが、目的の成形体を得るためには、LFRTP基材の作製工程、そのシート化工程およびプレス成形工程と三度にわたる熱可塑性樹脂の溶融軟化が必要であり、エネルギー効率的にも、樹脂の熱劣化の点でも問題を有していた。さらに、成形時の流動性を向上させるためにLFRTP基材シート内部まで十分に加熱溶融させると、上記シートが柔らかいために取扱性が劣り、これを複数枚成形型に積層させる通常の流動成形を行うと、作業が煩雑になるという問題を有していた。
従って、本発明の目的は、上記従来の課題を解決し、得られるLFRTP成形体の機械的強度を向上させるものである。
【0005】
【課題を解決するための手段】
上記目的は、以下の本発明によって達成される。即ち、本発明は、LFRTP基材を単独または該基材を非強化樹脂で希釈して溶融して溶融物を作成し、該溶融物を成形型に供給してプレス成形するLFRTP成形体の製造方法において、上記LFRTP基材が、連続繊維ストランド一本または複数本に熱可塑性樹脂を含浸させてノズルから引き抜き、長さ10〜50mmに切断した径または厚さ0.05〜2.5mm、かつ繊維含有率15〜80容量%のLFRTP基材であり、該基材を加熱搬送機で溶融物中の繊維の平均長が元のLFRTP基材長の40%以上の長さを保持した溶融物を作製し成形することを特徴とするLFRTP成形体の製造方法を提供する。
【0006】
本発明においては、LFRTP基材を加熱搬送する際に、溶融物中の繊維の平均長が元のLFRTP基材長の40%以上の長さを保持した溶融物を作製することで、成形体中の繊維の平均長を長く維持させて成形体の機械的強度を向上させることができる。
【0007】
また、本発明では加熱工程を伴うシート化を経ることなく成形するため、樹脂の熱劣化を抑えると共に、柔らかくなった溶融シートを複数枚成形型に移動させるという従来技術の煩雑な作業を不要にするものである。
【0008】
【発明の実施の形態】
次に好ましい実施の形態を挙げて本発明をさらに詳細に説明する。
本発明で使用する熱可塑性樹脂としては、特に限定はなく一般に市販されている種々のものが使用可能である。例えば、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリスチレンなどが挙げられる。なかでも、含浸性、コスト、物性の点から、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂が本発明において好適である。ポリオレフィン系樹脂としては、例えば、ポリプロピレン、ポリエチレンなど;ポリアミド系樹脂としては、例えば、ナイロン6,6、ナイロン6、ナイロン12、MXDナイロンなど;ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどが挙げられ、これらの樹脂を用いることが、本発明においては特に好ましい。これらの樹脂には着色剤、変性剤、酸化防止剤および耐紫外線剤などの添加剤や、炭酸カルシウム、タルク、マイカなどのフィラーを混合して用いても差し支えない。
【0009】
また、本発明においてLFRTP基材に用いる繊維としては、例えば、ガラス繊維、炭素繊維、アラミド繊維、セラミック繊維などが挙げられ、これらを単独あるいは混合して使用することができる。中でもガラス繊維を用いることが、コストパフォーマンスに優れるので好ましい。
【0010】
上記繊維は、そのモノフィラメントの平均径が通常は6〜23μmであり、さらに10〜17μmであることが好ましい。モノフィラメントの平均径が6μm未満の場合は成形体がコスト高になるとともに、LFRTP基材において繊維の含有率が同じ場合には、繊維の表面積が大きくなり、成形時の流動性が劣るので好ましくない。一方、モノフィラメントの平均径が23μmを超える場合は、最終的に得られるLFRTP成形体の機械的物性が劣るために好ましくない。
【0011】
また、切断前の連続繊維は、フィラメント数が100〜12000本が好ましい。フィラメント数が100本未満であると、後工程において多数本のLFRTP基材が必要となり、作業が煩雑となる。一方、フィラメント数が12000本を超えると、モノフィラメント間にまで熱可塑性樹脂を均一に含浸させることが困難になるとともに、得られるLFRTP基材が太くなり、後述するLFRTP基材径が得られにくくなる。さらに、LFRTP成形体にした場合、繊維の分散性に劣り、最終的に得られるLFRTP成形体において期待する強度を発現することができない。また、後述するLFRTP基材の平均径または平均厚さが0.05〜1.5mmのように細い場合には、繊維の含有量を考慮してフィラメント数が100〜6000本であることが好ましい。
【0012】
また、本発明に用いるLFRTP基材は、その径または厚さが0.05〜2.5mmであることを必須とする。LFRTP基材の径または厚さが0.05mm未満であると、LFRTP基材を作製する際に、フィラメント切れや羽毛立ちが生じ、生産性が劣る。また、2.5mmを超えると、加熱搬送時の加熱効率が劣り、さらに、得られるLFRTP基材が太く、または厚くなって繊維の分散性が劣るために、最終的に得られるLFRTP成形体において期待する機械的強度を発現することができず好ましくない。さらに0.05〜1.5mmであることが好ましい。前記範囲において径または厚みの小さいLFRTP基材を用いると、成形の際に繊維の分散が良好となり、均一で高い強度の成形体を得ることが可能となる。さらに、LFRTP基材の径または厚みを前記範囲において小さくすることで加熱効率を高くし、LFRTP基材を容易に溶融することが可能となり、搬送する際に繊維の破損が低減される。
【0013】
また、本発明に用いるLFRTP基材は、繊維の含有率が通常は15〜80容量%であり、さらに20〜70容量%であることが好ましい。繊維の含有率が15容量%未満の場合は、繊維による成形体の補強効果が低く、一方、繊維の含有率が80容量%を超える場合は、繊維を包むマトリックス(熱可塑性樹脂)の相対量が少なすぎ、後述する樹脂の含浸率を95%以上に確保することが困難となる
【0014】
本発明に用いるLFRTP基材は、前記熱可塑性樹脂の含浸率が95%以上であることが好ましい。得られるLFRTP成形体において前記熱可塑性樹脂の含浸率が95%未満であると、LFRTP基材の作成の際に毛羽の発生や可塑化時のフィラメントの破断が促進されたり、得られた成形体の表面に繊維が浮き出したりするため、あまり好ましくない。ここで樹脂の含浸率とは、LFRTP基材の断面を200倍の電子顕微鏡で観察し、20μmのメッシュをおいて、メッシュのセル中に少しでもボイド(空気の泡)が認められれば、このメッシュのセルをボイド面積として加え、観察した全断面積とボイド面積とから以下の数式によって求めたものである。
{(全断面積−ボイド面積)/全断面積}×100(%)
【0015】
本発明に用いるLFRTP基材の長さは、10〜50mmであることを必須とし、15〜40mmであることが好ましい。本発明のLFRTP基材は連続繊維に熱可塑性樹脂を含浸させて切断したものであるため、LFRTP基材の長さは該基材中の繊維の長さとほぼ等しいものである。従って、切断長が10mm未満の場合には、加熱溶融して得られた溶融物中の繊維の平均長を加熱溶融前のLFRTP基材長の40%以上保持させたとしても、最終的に得られるLFRTP成形体の機械的物性が劣るために好ましくない。一方、切断長が50mmを超える場合は、加熱搬送機に導入する際の取扱い性が劣り、また、LFRTP基材のプレス成形時の流動性が劣るために好ましくない。
【0016】
LFRTP基材を作製する方法は、繊維ストランドを樹脂含浸槽に送り込み、溶融含浸法により樹脂を繊維ストランド中に含浸させた後、1本または複数本の繊維ストランドを1個のノズルにより引き抜いてLFRTP基材を得る方法が好ましい。さらに、スプリットを施すことなく集束した1本の繊維ストランドを1個のノズルから引き抜く方法を採用すると、ノズルからの引き抜きが容易となり、繊維の含有率を高めることができ、かつ、毛羽の発生を少なくすることができるために好ましい。
【0017】
この方法では、より径の小さいLFRTP基材が得られ易い。この得られたLFRTP基材は熱容量が小さく、容易に軟化または固化させることができて、加熱する時間を短縮させることが可能となるため、加熱時の樹脂の熱劣化を最小限に留めることが可能であり、溶融物の残存繊維長を長くすることが可能となる。
【0018】
本発明のLFRTP成形体の製造方法は、前述したLFRTP基材または該基材と非強化樹脂との混合物(以下該混合物も単に「LFRTP基材」という)を用いるか、または該LFRTP基材を集合させた塊状物を、加熱搬送した溶融物中の繊維の平均長を元のLFRTP基材長の40%以上、好ましくは60%以上、さらに好ましくは80%以上に保持するように、加熱溶融しながら搬送して溶融物を作製し、該溶融物を成形型に供給してプレス成形する方法である。上記混合物に用いる非強化樹脂とは、前述した繊維を実質的に含まない熱可塑性樹脂であり、使用する場合の非強化樹脂は、LFRTP基材を構成している熱可塑性樹脂と同種の樹脂を用いることが好ましい。また、その使用量は、混合物中の繊維の量が混合物中で15容量%以上を保持できる量であることが好ましい。
【0019】
本発明で、LFRTP基材を成形型に供給するためには、加熱搬送する工程が必要となる。加熱工程では、用いる熱可塑性樹脂の軟化点温度以上で加熱することで、LFRTP基材に柔軟性を与え、搬送の際に繊維の破損を防止すると共にLFRTP基材同士を容易に融着させることができる。また、搬送工程ではLFRTP基材にできるだけ剪断を加えずに成形型に供給することで、繊維の破損を防止する。
【0020】
述の溶融物中の繊維の平均長は、前記溶融物を600℃で焼失させた後、繊維100本を任意に選んで万能投影機で繊維長を測定し、それらの平均値を求めることにより測定することができる。
【0021】
前記溶融物中の繊維の平均長が、元のLFRTP基材長の40%以上を保持しながら、LFRTP基材を加熱搬送する方法は、スクリュー押出機、プランジャー押出機、ベルトコンベヤーによる搬送方法などが挙げられるが、特に下記の方法が好ましく採用される。
(a)LFRTP基材の長さ以上の径のシリンダーを有し、先端の押出口の絞り率が1.0〜100で、好ましくは1.0〜20であり、かつ押出口の径がLFRTP基材の長さ以上の径を有し押出口にシャッター機能を備えたプランジャー押出機を有する加熱搬送機を用いる方法であり、押出口の絞り率が100を超える場合は、繊維の破断を増大させる。
【0022】
(b)加熱搬送機がLFRTP基材の長さ以上のシリンダー径を有し、押出口にシャッター機能を備えたインラインスクリュー式射出機能を備えたものであり、可塑化部のスクリューの圧縮比が1.1〜1.8であり、先端の押出口の絞り率が1.0〜100で、好ましくは1.0〜20であり、かつ押出口の径がLFRTP基材の長さ以上の径を有し、逆流防止リングを備えていないものを用いる方法であり、この場合、圧縮比が1.1未満であると搬送能力が劣り、1.8を超える場合は剪断力が大きくなり、繊維の破断を増大させる。押出口の絞り率が100を超える場合は、繊維の破断を増大させる。
【0023】
(c)加熱搬送機がLFRTP基材の長さ以上のシリンダー径を有し、押出口にシャッター機能を備えたスクリュープリプラ式射出機能を備えたものであり、可塑化部のスクリューの圧縮比が1.1〜1.8であり、先端の押出口の絞り率が1.0〜100で、好ましくは1.0〜20であり、かつ押出口の径がLFRTP基材の長さ以上の径を有するものを用いる方法であり、この場合、圧縮比が1.1未満であると搬送能力が劣り、1.8を超える場合は剪断力が大きくなり、繊維の破断を増大させる。押出口の絞り率が100を超える場合は、繊維の破断を増大させる。
なお、ここでいう押出口の絞り率とは、押出口を備えたシリンダー断面積/押出口断面積で表され、シリンダー断面積は前記(c)の搬送機の場合、プランジャー部(計量部)のシリンダー断面積を指す。
【0024】
LFRTP基材の搬送にプランジャー押出機を用いる方法(a)の場合には、定量的にLFRTP基材をシリンダーに投入し、加熱しながらLFRTP基材を切断しないようにゆっくり押圧する。また、可塑化するにあたってはシリンダー内に熱風を吹き込むことにより効率的に可塑化することが可能となる。さらに溶融した塊状物を定量的に押出機から押出すことが可能である。
【0025】
LFRTP基材の加熱搬送に際し、(b)および(c)用いる場合のスクリューは、一軸または二軸であることが好ましい。スクリューの形態としては特に限定はないが、スクリューのピッチおよび/またはスクリューの溝深さがLFRTP基材の長さ以上であることが好ましい。ここでいう圧縮比とは、スクリューの溝の深さをhfで表し、スクリューの先端の溝の深さをhmで表したときのhf/hmの値である。
【0026】
また、本発明では、前記スクリューによる可塑化と、プランジャーによる計量押出とを併用するスクリュープリプラ射出機能を備えた方法(c)の場合、LFRTP基材を加熱しながらスクリューで搬送することで、LFRTP基材の樹脂を十分に溶融させてLFRTP基材同士を融着させ、プランジャーにより纏まった溶融塊を計量して成形型へ供給することが可能となる。
【0027】
また、本発明では、必要によりLFRTP基材の搬送にベルトコンベヤーを用いることが可能である。この場合、周りに加熱器や熱風発生機を備えたベルトコンベヤーを用いることが好ましく、さらに、不活性ガス雰囲気下であることがより好ましい。ベルトの素材は四フッ化エチレン樹脂などのフッ素系樹脂やSUSメッシュなどを用いることが好ましい。また、ベルトコンベアーとプランジャー押出を併用することも可能である。
【0028】
上記のように加熱搬送されたLFRTP基材の溶融物は、加熱搬送機で計量するか、または加熱搬送機を経た後に計量し、計量後に直接成形型に供給するか、計量後に溶融物を、例えば、ロボット、人手などで移動させて成形型に供給する。これらの供給方法は、用いる熱可塑性樹脂の流動性、表面外観性、固化時間を考慮して適宜選択することができるが、成形流動性を向上させるために加熱搬送機で溶融物を計量し、溶融物を直接成形型に供給する方法が好ましい。
【0029】
そして成形型に供給された溶融物をプレス成形することにより型内で流動し、成形型に接触され固化され成形体となる。成形型の温度は、熱可塑性樹脂の融点温度以下とし、さらに用いる熱可塑性樹脂の流動性、表面外観性、固化時間を考慮して適宜選択する。本発明により得られた成形体は表面が平滑で、樹脂の熱劣化を多く受けていないため、表面外観や機械的強度が極めて良好となる。
【0030】
【実施例】
次に実施例および比較例を挙げて本発明をさらに具体的に説明する。
実施例1
平均径13μmのモノフィラメントを用いて、フィラメント数(集束本数)600本のガラス繊維ストランド1本を、MI=40の酸変性した溶融ポリプロピレン(260℃)中に導入し、溶融含浸を行った後、内径0.53mmのダイのノズルから50m/minの速度で引き抜き、さらにペレタイザーで長さが20mmとなるように切断してLFRTP基材を得た。得られたLFRTP基材の平均径は0.53mm、ガラス含有率は45.5容量%、樹脂の含浸率はn=5の平均値で100%であった。なお、上記においてnは測定数を表わす。
【0031】
また、LFRTP基材長は、任意に選んだ10本の平均をとり20mmの測定値を得た。ガラス含有率の測定は、まず、得られたLFRTP基材を600℃の電気炉中で加熱して樹脂を焼失させた後、残ったガラスの重量を測定して、ガラス含有率70重量%の測定値を得た。この値から樹脂の比重を0.91、ガラス繊維の比重を2.54として容量%に換算した。
【0032】
ついで得られたLFRTP基材を、内径90mm、押出口内径90mm、押出口絞り率1.0で押出口先端にシャッター機構を備え、230℃に加熱されているシリンダー内に投入し可塑化溶融を行った。溶融物をプランジャーで押すことにより溶融塊を作製し、シャッターを開放させ、さらにプランジャーを押すことにより溶融塊を取り出した。なお、溶融物中の繊維の平均長の測定は、溶融物を600℃で焼失させた後、残ったガラス繊維のモノフィラメントを任意に100本選び、その平均値を測定して、19mmの測定値を得た。繊維の平均長は元のLFRTP基材長の95%であった。
【0033】
つぎに溶融物を、図1に図解的に示すように、上型と下型との間に縦200mm、横200mm、高さ50mmおよび厚さ3mmの箱型のキャビティを成形し得るプレス成形型に移行させた。油圧プレスを用いて150kg/cmの圧力で1分間プレスした。この成形体において溶融物を成形型に移した際、最初に接地した部分(チャージ部)からASTM D256およびD790に準拠した形で試験片を切り出し、各n=3で、曲げ強度、曲げ弾性率およびシャルピー(フラットワイズ)衝撃強度の測定を行った。その平均値を表1に示す。
【0034】
実施例2
ダイのノズル径を1.0mmに変えた以外は実施例1と同様にしてLFRTP基材を得た。得られたLFRTP基材の平均径は1.0mm、ガラス含有率は19.3容量%、樹脂の含浸率はn=5の平均値で98%であった。得られたLFRTP基材を、実施例1と同様に溶融塊を作製した。なお、溶融物中の繊維の平均長の測定は、溶融物を600℃で焼失させた後、残ったガラス繊維のモノフィラメントを任意に100本選び、その平均値を測定して、19mmの測定値を得た。繊維の平均長は元のLFRTP基材長の95%であった。以下実施例1と同様に成形体を得、ASTM D256およびD790に準拠した形で試験片を切り出し、各n=3で、曲げ強度、曲げ弾性率およびシャルピー(フラットワイズ)衝撃強度の測定を行った。その平均値を表1に示す。
【0035】
実施例3
実施例1で得られたLFRTP基材と非強化のポリプロピレン樹脂(MI=40)をドライブレンドし、全体としてのガラス含有率が19.3容量%となるように混合した。この混合物を、押出口先端にシャッター機構を備えたスクリュープリプラ式(可塑化部シリンダー径:90mm、圧縮比1.4、プランジャー部(計量部)シリンダー径150mm、押出口径100mm)の射出機能を備えた加熱搬送機で可塑化を行い、溶融塊を作製した。
【0036】
なお、溶融物中の繊維の平均長の測定は、溶融物を600℃で焼失させた後、残ったガラス繊維のモノフィラメントを任意に100本選び、その平均値を測定して、9mmの測定値を得た。繊維の平均長は元のLFRTP基材長の45%であった。以下実施例1と同様に成形体を得、ASTM D256およびD790に準拠した形で試験片を切り出し、各n=3で、曲げ強度、曲げ弾性率およびシャルピー(フラットワイズ)衝撃強度の測定を行った。その平均値を表1に示す。
【0037】
実施例4
平均径13μmのモノフィラメントを用いて、フィラメント数(集束本数)を600本のガラス繊維ストランドを16本束ねて、MI=40の酸変性した溶融ポリプロピレン(260℃)中に導入し、溶融含浸を行った後、内径2.2mmのダイのノズルから30m/minの速度で引き抜き、さらにペレタイザーで長さが20mmとなるように切断してLFRTP基材を得た。得られたLFRTP基材の平均径は2.2mm、ガラス含有率は45.5容量%、樹脂の含浸率はn=5の平均値で98%であった。なお、上記においてnは測定数を表わす。得られたLFRTP基材と非強化のポリプロピレン樹脂(MI=40)をドライブレンドし、ガラス含有率が19.3容量%となるように混合した。
【0038】
この混合物を、先端にシャッター機構を備え逆流防止リングのないインラインスクリュー式(シリンダー径90mm、圧縮比1.4、押出口径90mm)の射出機能を備えた加熱搬送機で可塑化を行い、溶融塊を作製した。なお、溶融物中の繊維の平均長の測定は、溶融物を600℃で焼失させた後、残ったガラス繊維のモノフィラメントを任意に100本選び、その平均値を測定して、8.2mmの測定値を得た。繊維の平均長は元のLFRTP基材長の41%であった。以下実施例1と同様に成形体を得、ASTM D256およびD790に準拠した形で試験片を切り出し、各n=3で、曲げ強度、曲げ弾性率およびシャルピー(フラットワイズ)衝撃強度の測定を行った。その平均値を表1に示す。
【0039】
比較例1
平均径13μmのモノフィラメントを用いて、フィラメント数(集束本数)を600本のガラス繊維ストランドを30本束ねて、MI=40の酸変性した溶融ポリプロピレン(260℃)中に導入し、溶融含浸を行った後、内径3.0mmのダイのノズルから15m/minの速度で引き抜き、さらにペレタイザーで長さが20mmとなるように切断してLFRTP基材を得た。得られたLFRTP基材の平均径は3.0mm、ガラス含有率は45.5容量%、樹脂の含浸率はn=5の平均値で94%であった。なお、上記においてnは測定数を表わす。
【0040】
ついで得られたLFRTP基材を、押出口先端にシャッター機構を備え230℃に加熱されている内径90mmのシリンダー内に投入し可塑化を行った。溶融物をプランジャーで押すことにより溶融塊を作製し、シャッターを開放させ、さらにプランジャーを押すことにより溶融塊を取り出した。
【0041】
なお、溶融物中の繊維の平均長の測定は、溶融物を600℃で焼失させた後、残ったガラス繊維のモノフィラメントを任意に100本選び、その平均値を測定して、19mmの測定値を得た。繊維の平均長は元のLFRTP基材長の95%であった。以下実施例1と同様に成形体を得、ASTM D256およびD790に準拠した形で試験片を切り出し、各n=3で、曲げ強度、曲げ弾性率およびシャルピー(フラットワイズ)衝撃強度の測定を行った。その平均値を表1に示す。
【0042】
比較例2
比較例1で得られたLFRTP基材と非強化のポリプロピレン樹脂(MI=40)をドライブレンドし、ガラス含有率が19.3容量%となるように混合した。
【0043】
この混合物を、実施例4と同様なインラインスクリュー式の射出機能を備えた加熱搬送機で可塑化を行い、溶融塊を作製した。なお、溶融物中の繊維の平均長の測定は、溶融物を600℃で焼失させた後、残ったガラス繊維のモノフィラメントを任意に100本選び、その平均値を測定して、7.0mmの測定値を得た。繊維の平均長は元のLFRTP基材長の35%であった。以下実施例1と同様に成形体を得、ASTM D256およびD790に準拠した形で試験片を切り出し、各n=3で、曲げ強度、曲げ弾性率およびシャルピー(フラットワイズ)衝撃強度の測定を行った。その平均値を表1に示す。
【0044】
比較例3
比較例1で得られたLFRTP基材と非強化のポリプロピレン樹脂(MI=40)をドライブレンドし、ガラス含有率が19.3容量%となるように混合した。この混合物を、実施例3と同様なスクリュープリプラ式の射出機能を備えた加熱搬送機で可塑化を行い、溶融塊を作製した。なお、溶融物中の繊維の平均長の測定は、溶融物を600℃で焼失させた後、残ったガラス繊維のモノフィラメントを任意に100本選び、その平均値を測定して、6.8mmの測定値を得た。繊維の平均長は元のLFRTP基材長の34%であった。以下実施例1と同様に成形体を得、ASTM D256およびD790に準拠した形で試験片を切り出し、各n=3で、曲げ強度、曲げ弾性率およびシャルピー(フラットワイズ)衝撃強度の測定を行った。その平均値を表1に示す。
【0045】
比較例4
比較例1で得られたLFRTP基材と非強化のポリプロピレン樹脂(MI=40)をドライブレンドし、ガラス含有率が19.3容量%となるように混合した。この混合物を、逆流防止リングを備えたインライン式(シリンダー径90mm、圧縮比2.4、押出口径5.0mm)の射出機能を備えた加熱搬送機を用いて可塑化を行い、溶融塊を作成した。なお、溶融物中の繊維の平均長の測定は、溶融物を600℃で焼失させた後、残ったガラス繊維のモノフィラメントを任意に100本選び、その平均値を測定して2.8mmの測定値を得た。繊維の平均長は元のLFRTP基材長の14%であった。以下実施例1と同様に成形体を得、ASTM D256およびD790に準拠した形で試験片を切り出し、各n=3で、曲げ強度、曲げ弾性率およびシャルピー(フラットワイズ)衝撃強度の測定を行った。その平均値を表1に示す。
【0046】
比較例5
実施例1と同様のLFRTP基材を均一分散して、一旦、平板プレスで5kg/cm2の圧力で押圧することにより、3.8mm厚のシートを作成した後、縦176mm、横176mmに切り出したシート状の予備成形体を作成し、このシートを十分加熱し、実施例で用いたと同じプレス成形型に2枚重ねて移送し、150kg/cm2の圧力で1分間プレスしてLFRTP成形体を得た。ASTMD256およびD790に準拠した形で試験片を切り出し、各n=3で、曲げ強度、曲げ弾性率およびシャルピー(フラットワイズ)衝撃強度の測定を行った。その平均値を表1に示す。この方法では上記のようにシート化工程を経るために生産効率が劣るものであった。
【0047】

Figure 0004976610
【0048】
Figure 0004976610
【0049】
【発明の効果】
本発明によれば、あまり剪断を加えずにLFRTP基材を加熱搬送することにより、成形体中の繊維を長く保持することが可能となり、成形体の機械的強度、特に衝撃強度を向上させると共に、繊維のモノフィラメント化を低減させて成形時の溶融物の流動性を良好にすることができる。
さらに、本発明では加熱工程を伴うシート化を経ることなく成形するため、樹脂の熱劣化を抑えると共に、柔らかくなった溶融シートを複数枚成形型に移動させるという従来技術の煩雑な作業を不要にするものである。
【図面の簡単な説明】
【図1】 本発明の方法を図解的に説明する図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a molded article of a long fiber reinforced thermoplastic resin (hereinafter referred to as “LFRTP”) suitable for automobile parts, home appliances, industrial materials, civil engineering materials and the like that require surface appearance, high strength, and high rigidity. About.
[0002]
[Prior art]
Conventionally, in an LFRTP molded body manufacturing method, an LFRTP base material having a diameter of about 2 to 3 mm, which is obtained by cutting a thermoplastic resin containing reinforcing fibers arranged in a specific direction (hereinafter simply referred to as “fiber”) into a predetermined shape, is heated. A method is known in which a molded body is produced by melting and injection molding. The LFRTP base material used in this method has a longer fiber length than the conventional short fiber reinforced thermoplastic resin base material in which thermoplastic resin and fibers are kneaded, and maintains the fiber length in the molded body longer. In addition, since the fiber was impregnated with the thermoplastic resin in advance, the molded body obtained by molding the fiber was excellent in mechanical strength and surface appearance.
[0003]
[Problems to be solved by the invention]
However, even when the LFRTP base material having a long fiber length used in the above method is used, a large shear is applied due to kneading with a screw having a high compression ratio and a high pressure at the time of injection, and the fiber length in the molded body is shortened. There was a problem that the mechanical strength such as impact strength and tensile strength of the molded product was inferior.
[0004]
Furthermore, an LFRTP base material sheet in which the LFRTP base material is dispersed and heat-molded, and a molded body obtained by heating and melting the sheet and introducing the sheet into a mold and heating or pressing at room temperature are known (special features). (Kaihei 9-109310). In this method, once a pre-formed LFRTP base sheet is prepared, it is a simple method in which the sheet is heated and melted and then set in a molding die and molded. Can be obtained for a relatively long time and a relatively high strength molded product can be obtained. In order to obtain the desired molded product, the LFRTP substrate production process, the sheet forming process and the press molding process It has been necessary to melt and soften the thermoplastic resin three times, which has problems in terms of energy efficiency and thermal degradation of the resin. Furthermore, when the LFRTP base sheet is sufficiently heated and melted to improve the fluidity at the time of molding, the sheet is so soft that the handling property is inferior. Doing so has the problem of complicating work.
Accordingly, an object of the present invention is to solve the above conventional problems and improve the mechanical strength of the obtained LFRTP molded body.
[0005]
[Means for Solving the Problems]
  The above object is achieved by the present invention described below. That is, the present invention provides an LFRTP molded body in which an LFRTP base material is used alone or the base material is diluted with an unreinforced resin and melted to prepare a melt, and the melt is supplied to a mold and press-molded. In the method, the LFRTP base material is impregnated with a thermoplastic resin in one or more continuous fiber strands and pulled out from a nozzle.lengthCut to 10-50mmDiameter or thicknessAn LFRTP base material having a fiber content of 15 to 80% by volume of 0.05 to 2.5 mm, and the average length of the fibers in the melt is 40% of the original LFRTP base material length by heating and conveying the base material. Provided is a method for producing an LFRTP molded article, which comprises producing and molding a melt having the above length.
[0006]
In the present invention, when the LFRTP substrate is heated and conveyed, a molded product is produced by preparing a melt in which the average length of fibers in the melt is 40% or more of the original LFRTP substrate length. It is possible to improve the mechanical strength of the molded body by keeping the average length of the fibers therein long.
[0007]
In addition, in the present invention, since the sheet is formed without a heating step, the heat deterioration of the resin is suppressed, and the complicated work of the conventional technique of moving the softened molten sheet to a plurality of molds is unnecessary. To do.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to preferred embodiments.
The thermoplastic resin used in the present invention is not particularly limited, and various commercially available resins can be used. For example, polyolefin resin, polyamide resin, polyester resin, polycarbonate resin, polyphenylene sulfide resin, polystyrene and the like can be mentioned. Of these, polyolefin resins, polyamide resins, and polyester resins are suitable in the present invention in terms of impregnation properties, cost, and physical properties. Examples of polyolefin resins include polypropylene and polyethylene; examples of polyamide resins include nylon 6,6, nylon 6, nylon 12, and MXD nylon; examples of polyester resins include polyethylene terephthalate and polybutylene terephthalate. It is particularly preferable in the present invention to use these resins. These resins may be used in admixture with additives such as colorants, modifiers, antioxidants and UV-resistant agents, and fillers such as calcium carbonate, talc and mica.
[0009]
Moreover, as a fiber used for a LFRTP base material in this invention, glass fiber, carbon fiber, an aramid fiber, a ceramic fiber etc. are mentioned, for example, These can be used individually or in mixture. Among these, it is preferable to use glass fiber because it is excellent in cost performance.
[0010]
The fiber has an average monofilament diameter of usually 6 to 23 μm, more preferably 10 to 17 μm. When the average diameter of the monofilament is less than 6 μm, the molded body is expensive, and when the fiber content is the same in the LFRTP base material, the surface area of the fiber becomes large and the fluidity during molding is not preferable. . On the other hand, when the average diameter of the monofilament exceeds 23 μm, it is not preferable because the mechanical properties of the finally obtained LFRTP molded product are inferior.
[0011]
Moreover, as for the continuous fiber before a cutting | disconnection, 100-12000 filament number is preferable. If the number of filaments is less than 100, a large number of LFRTP base materials are required in the subsequent process, and the operation becomes complicated. On the other hand, when the number of filaments exceeds 12,000, it becomes difficult to uniformly impregnate the thermoplastic resin between the monofilaments, and the obtained LFRTP substrate becomes thick, making it difficult to obtain the LFRTP substrate diameter described later. . Furthermore, when the LFRTP molded body is used, the dispersibility of the fibers is inferior, and the expected strength cannot be expressed in the finally obtained LFRTP molded body. Moreover, when the average diameter or average thickness of the LFRTP base material described later is as thin as 0.05 to 1.5 mm, the number of filaments is preferably 100 to 6000 in consideration of the fiber content. .
[0012]
  The LFRTP base material used in the present invention isDiameter or thicknessIs required to be 0.05 to 2.5 mm. LFRTP base materialDiameter or thicknessWhen the thickness is less than 0.05 mm, when the LFRTP substrate is produced, filament breakage and feathering occur, resulting in poor productivity. Further, if it exceeds 2.5 mm, the heating efficiency at the time of heating and conveyance is inferior, and furthermore, since the obtained LFRTP base material is thick or thick and the dispersibility of the fibers is inferior, in the finally obtained LFRTP molded product It is not preferable because the expected mechanical strength cannot be expressed. Furthermore, it is preferable that it is 0.05-1.5 mm. When an LFRTP base material having a small diameter or thickness in the above range is used, the dispersion of fibers becomes good at the time of molding, and a molded body having a uniform and high strength can be obtained. Furthermore, by reducing the diameter or thickness of the LFRTP substrate within the above range, the heating efficiency can be increased, and the LFRTP substrate can be easily melted, and fiber breakage is reduced during transportation.
[0013]
The LFRTP base material used in the present invention has a fiber content of usually 15 to 80% by volume, more preferably 20 to 70% by volume. When the fiber content is less than 15% by volume, the effect of reinforcing the molded body by the fiber is low. On the other hand, when the fiber content exceeds 80% by volume, the relative amount of the matrix (thermoplastic resin) that wraps the fiber. Is too small, and it becomes difficult to ensure that the resin impregnation rate described below is 95% or more..
[0014]
The LFRTP base material used in the present invention preferably has an impregnation ratio of the thermoplastic resin of 95% or more. In the obtained LFRTP molded article, if the impregnation ratio of the thermoplastic resin is less than 95%, generation of fuzz at the time of producing the LFRTP base material or breakage of the filament during plasticization is promoted, or the obtained molded article This is not preferable because the fibers are raised on the surface of the film. Here, the resin impregnation rate means that the cross section of the LFRTP substrate is observed with an electron microscope of 200 times, a 20 μm mesh is placed, and if any void (air bubbles) is observed in the mesh cell, The mesh cell is added as a void area, and is calculated from the observed total cross-sectional area and void area by the following formula.
{(Total cross-sectional area−void area) / total cross-sectional area} × 100 (%)
[0015]
The length of the LFRTP base material used in the present invention is required to be 10 to 50 mm, and preferably 15 to 40 mm. Since the LFRTP base material of the present invention is obtained by impregnating a continuous fiber with a thermoplastic resin and cut, the length of the LFRTP base material is substantially equal to the length of the fiber in the base material. Therefore, when the cutting length is less than 10 mm, even if the average length of the fibers in the melt obtained by heating and melting is maintained at 40% or more of the LFRTP base material length before heating and melting, it is finally obtained. This is not preferable because the mechanical properties of the LFRTP molded product obtained are inferior. On the other hand, when the cutting length exceeds 50 mm, the handling property when introduced into a heating / conveying machine is inferior, and the fluidity during press molding of the LFRTP base material is inferior.
[0016]
The method for producing the LFRTP substrate is to send fiber strands into a resin impregnation tank, impregnate the resin into the fiber strands by a melt impregnation method, and then pull out one or more fiber strands with a single nozzle. A method for obtaining a substrate is preferred. Furthermore, if a method of pulling one bundle of fiber strands without splitting from one nozzle is adopted, it is easy to pull out from the nozzle, the fiber content can be increased, and the generation of fluff is prevented. This is preferable because it can be reduced.
[0017]
In this method, an LFRTP base material having a smaller diameter is easily obtained. Since the obtained LFRTP base material has a small heat capacity, it can be easily softened or solidified, and the heating time can be shortened, so that thermal degradation of the resin during heating can be kept to a minimum. It is possible to lengthen the remaining fiber length of the melt.
[0018]
The method for producing an LFRTP molded body of the present invention uses the aforementioned LFRTP base material or a mixture of the base material and a non-reinforced resin (hereinafter, the mixture is also simply referred to as “LFRTP base material”), or uses the LFRTP base material. Heat and melt the aggregated mass so that the average length of the fibers in the melt conveyed by heating is maintained at 40% or more, preferably 60% or more, more preferably 80% or more of the original LFRTP substrate length. In this method, a melt is produced by conveying the melt while being fed, and the melt is supplied to a mold and press-molded. The non-reinforced resin used in the above mixture is a thermoplastic resin that does not substantially contain the above-described fibers. When used, the non-reinforced resin is the same type of resin as the thermoplastic resin that constitutes the LFRTP base material. It is preferable to use it. Moreover, it is preferable that the usage-amount is the quantity which the quantity of the fiber in a mixture can hold | maintain 15 volume% or more in a mixture.
[0019]
In the present invention, in order to supply the LFRTP base material to the mold, a heating and conveying step is required. In the heating step, the LFRTP base material is given flexibility by heating at a temperature equal to or higher than the softening point temperature of the thermoplastic resin used, and the LFRTP base materials are easily fused together while preventing fiber breakage during transportation. Can do. Moreover, in a conveyance process, damage to a fiber is prevented by supplying to a shaping | molding die, applying as little shear as possible to a LFRTP base material.
[0020]
in frontAverage length of fibers in the melt described aboveIsAfter the melt was burned off at 600 ° C., 100 fibers were arbitrarily selected and the fiber length was measured with a universal projector.It can be measured by determining the average value.
[0021]
The method of heating and conveying the LFRTP substrate while maintaining the average length of the fibers in the melt at 40% or more of the original LFRTP substrate length is a conveyance method using a screw extruder, a plunger extruder, or a belt conveyor. The following methods are particularly preferably employed.
(A) It has a cylinder with a diameter equal to or longer than the length of the LFRTP base material, the drawing rate of the extrusion port at the tip is 1.0 to 100, preferably 1.0 to 20, and the diameter of the extrusion port is LFRTP. It is a method using a heating and conveying machine having a plunger extruder having a diameter greater than the length of the substrate and having a shutter function at the extrusion port. When the squeezing rate of the extrusion port exceeds 100, the fiber breaks. Increase.
[0022]
(B) The heating / conveying machine has a cylinder diameter equal to or longer than the length of the LFRTP base material, and has an inline screw type injection function with a shutter function at the extrusion port. 1.1 to 1.8, the squeezing rate of the extrusion port at the tip is 1.0 to 100, preferably 1.0 to 20, and the diameter of the extrusion port is equal to or larger than the length of the LFRTP substrate. In this case, when the compression ratio is less than 1.1, the conveying ability is inferior, and when it exceeds 1.8, the shearing force increases, and the fiber Increase the breakage of When the squeezing rate of the extrusion port exceeds 100, the fiber breakage is increased.
[0023]
(C) The heating / conveying machine has a cylinder diameter equal to or longer than the length of the LFRTP base material, and has a screw pre-plastic injection function with a shutter function at the extrusion port, and the compression ratio of the screw of the plasticizing part is 1.1 to 1.8, the squeezing rate of the extrusion port at the tip is 1.0 to 100, preferably 1.0 to 20, and the diameter of the extrusion port is equal to or larger than the length of the LFRTP substrate. In this case, if the compression ratio is less than 1.1, the conveying ability is inferior, and if it exceeds 1.8, the shearing force increases and the fiber breakage increases. When the squeezing rate of the extrusion port exceeds 100, the fiber breakage is increased.
Here, the squeezing rate of the extrusion port is represented by the cross-sectional area of the cylinder provided with the extrusion port / the cross-sectional area of the extrusion port. ) Refers to the cross-sectional area of the cylinder.
[0024]
In the case of the method (a) in which the plunger extruder is used for transporting the LFRTP base material, the LFRTP base material is quantitatively charged into the cylinder and slowly pressed so as not to cut the LFRTP base material while heating. Further, when plasticizing, it is possible to efficiently plasticize by blowing hot air into the cylinder. Further, the molten mass can be quantitatively extruded from the extruder.
[0025]
When the LFRTP base material is heated and conveyed, the screws used in (b) and (c) are preferably uniaxial or biaxial. Although there is no limitation in particular as a form of a screw, it is preferable that the pitch of a screw and / or the groove depth of a screw are more than the length of a LFRTP base material. The compression ratio here is a value of hf / hm when the depth of the groove of the screw is represented by hf and the depth of the groove at the tip of the screw is represented by hm.
[0026]
Further, in the present invention, in the case of the method (c) having a screw pre-plastic injection function that uses both the plasticization by the screw and the metering extrusion by the plunger, the LFRTP substrate is conveyed by the screw while being heated, The resin of the LFRTP base material is sufficiently melted so that the LFRTP base materials are fused together, and the molten mass collected by the plunger can be measured and supplied to the mold.
[0027]
Moreover, in this invention, it is possible to use a belt conveyor for conveyance of a LFRTP base material as needed. In this case, it is preferable to use a belt conveyor provided with a heater and a hot air generator around it, and more preferably in an inert gas atmosphere. The material of the belt is preferably a fluorine resin such as tetrafluoroethylene resin or SUS mesh. Moreover, it is also possible to use a belt conveyor and plunger extrusion together.
[0028]
The melt of the LFRTP base material heated and transported as described above is weighed by a heat transport machine or weighed after passing through a heat transport machine, and directly supplied to the mold after the measurement, or the melt after the measurement, For example, it is moved by a robot or a human hand and supplied to the mold. These supply methods can be appropriately selected in consideration of the fluidity, surface appearance, and solidification time of the thermoplastic resin to be used, but in order to improve the molding fluidity, the melt is measured with a heating and conveying machine, A method of supplying the melt directly to the mold is preferred.
[0029]
Then, the melt supplied to the mold is press-molded to flow in the mold, and is contacted with the mold and solidified to form a molded body. The temperature of the molding die is set to be equal to or lower than the melting point temperature of the thermoplastic resin, and is appropriately selected in consideration of the fluidity, surface appearance, and solidification time of the thermoplastic resin used. Since the molded body obtained by the present invention has a smooth surface and does not receive much heat deterioration of the resin, the surface appearance and mechanical strength are extremely good.
[0030]
【Example】
Next, the present invention will be described more specifically with reference to examples and comparative examples.
Example 1
Using monofilaments with an average diameter of 13 μm, one glass fiber strand with 600 filaments (number of bundles) was introduced into acid-modified molten polypropylene (260 ° C.) with MI = 40, and after melt impregnation, The LFRTP base material was obtained by pulling out from a die nozzle with an inner diameter of 0.53 mm at a speed of 50 m / min and further cutting with a pelletizer to a length of 20 mm. The obtained LFRTP base material had an average diameter of 0.53 mm, a glass content of 45.5% by volume, and an impregnation rate of the resin of 100% as an average value of n = 5. In the above, n represents the number of measurements.
[0031]
Moreover, the LFRTP base material length took the average of 10 arbitrarily selected, and obtained the measured value of 20 mm. The glass content was measured by first heating the obtained LFRTP substrate in an electric furnace at 600 ° C. to burn out the resin, then measuring the weight of the remaining glass, and measuring the glass content of 70% by weight. Measurements were obtained. From this value, the specific gravity of the resin was 0.91 and the specific gravity of the glass fiber was 2.54, which was converted to volume%.
[0032]
Next, the obtained LFRTP base material has an inner diameter of 90 mm, an extrusion port inner diameter of 90 mm, an extrusion port squeeze ratio of 1.0 and a shutter mechanism at the tip of the extrusion port. went. The molten mass was produced by pushing the melt with a plunger, the shutter was opened, and the molten mass was taken out by further pushing the plunger. In addition, the measurement of the average length of the fiber in a melt is a measurement value of 19 mm by measuring 100 monofilaments of the remaining glass fiber arbitrarily after burning off the melt at 600 ° C. and measuring the average value. Got. The average fiber length was 95% of the original LFRTP substrate length.
[0033]
Next, as schematically shown in FIG. 1, a press mold capable of forming a box-shaped cavity having a length of 200 mm, a width of 200 mm, a height of 50 mm, and a thickness of 3 mm between the upper mold and the lower mold. It was moved to. 150kg / cm using a hydraulic press2For 1 minute. When the melt was transferred to the mold in this molded body, a test piece was cut out from the first grounded part (charge part) in a form conforming to ASTM D256 and D790, and each n = 3, bending strength, flexural modulus. And Charpy (flatwise) impact strength was measured. The average value is shown in Table 1.
[0034]
Example 2
An LFRTP substrate was obtained in the same manner as in Example 1 except that the die nozzle diameter was changed to 1.0 mm. The obtained LFRTP base material had an average diameter of 1.0 mm, a glass content of 19.3% by volume, and a resin impregnation rate of 98% as an average value of n = 5. A molten lump was produced from the obtained LFRTP substrate in the same manner as in Example 1. In addition, the measurement of the average length of the fiber in a melt is a measurement value of 19 mm by measuring 100 monofilaments of the remaining glass fiber arbitrarily after burning off the melt at 600 ° C. and measuring the average value. Got. The average fiber length was 95% of the original LFRTP substrate length. Thereafter, a molded body is obtained in the same manner as in Example 1, and a test piece is cut out in a form conforming to ASTM D256 and D790, and bending strength, bending elastic modulus and Charpy (flatwise) impact strength are measured at each n = 3. It was. The average value is shown in Table 1.
[0035]
Example 3
The LFRTP base material obtained in Example 1 and an unreinforced polypropylene resin (MI = 40) were dry blended and mixed so that the total glass content was 19.3 vol%. The mixture has an injection function of a screw pre-plastic type (plasticizer cylinder diameter: 90 mm, compression ratio 1.4, plunger part (metering part) cylinder diameter 150 mm, extrusion port diameter 100 mm) equipped with a shutter mechanism at the tip of the extrusion port. Plasticization was performed with the equipped heating and conveying machine to produce a molten lump.
[0036]
In addition, the measurement of the average length of the fibers in the melt was performed by burning out the melt at 600 ° C., and then arbitrarily selecting 100 monofilaments of the remaining glass fibers, measuring the average value, and measuring 9 mm. Got. The average fiber length was 45% of the original LFRTP substrate length. Thereafter, a molded body is obtained in the same manner as in Example 1, and a test piece is cut out in a form conforming to ASTM D256 and D790, and bending strength, bending elastic modulus and Charpy (flatwise) impact strength are measured at each n = 3. It was. The average value is shown in Table 1.
[0037]
Example 4
Using monofilaments with an average diameter of 13 μm, 16 glass fiber strands with 600 filaments (number of bundles) are bundled and introduced into acid-modified molten polypropylene (260 ° C.) with MI = 40 to perform melt impregnation. After that, it was pulled out from the nozzle of the die having an inner diameter of 2.2 mm at a speed of 30 m / min, and further cut with a pelletizer to a length of 20 mm to obtain an LFRTP base material. The obtained LFRTP base material had an average diameter of 2.2 mm, a glass content of 45.5% by volume, and a resin impregnation rate of 98% as an average value of n = 5. In the above, n represents the number of measurements. The obtained LFRTP base material and non-reinforced polypropylene resin (MI = 40) were dry blended and mixed so that the glass content was 19.3 vol%.
[0038]
This mixture is plasticized by a heating and conveying machine equipped with an inline screw type (cylinder diameter 90 mm, compression ratio 1.4, extrusion port diameter 90 mm) with a shutter mechanism at the tip and no backflow prevention ring. Was made. In addition, the measurement of the average length of the fibers in the melt was performed by burning out the melt at 600 ° C., then arbitrarily selecting 100 monofilaments of the remaining glass fibers, measuring the average value, and measuring 8.2 mm. Measurements were obtained. The average fiber length was 41% of the original LFRTP substrate length. Thereafter, a molded body is obtained in the same manner as in Example 1, and a test piece is cut out in a form conforming to ASTM D256 and D790, and bending strength, bending elastic modulus and Charpy (flatwise) impact strength are measured at each n = 3. It was. The average value is shown in Table 1.
[0039]
Comparative Example 1
Using monofilaments with an average diameter of 13 μm, 30 glass fiber strands with 600 filaments (number of bundles) are bundled and introduced into acid-modified molten polypropylene (260 ° C.) with MI = 40 to perform melt impregnation. After that, the LFRTP substrate was obtained by pulling out from the nozzle of the die having an inner diameter of 3.0 mm at a speed of 15 m / min, and further cutting with a pelletizer so that the length became 20 mm. The obtained LFRTP base material had an average diameter of 3.0 mm, a glass content of 45.5% by volume, and a resin impregnation rate of 94% as an average value of n = 5. In the above, n represents the number of measurements.
[0040]
Subsequently, the obtained LFRTP base material was put into a cylinder having an inner diameter of 90 mm and provided with a shutter mechanism at the tip of the extrusion port and heated to 230 ° C., and plasticized. The molten mass was produced by pushing the melt with a plunger, the shutter was opened, and the molten mass was taken out by further pushing the plunger.
[0041]
In addition, the measurement of the average length of the fiber in a melt is a measurement value of 19 mm by measuring 100 monofilaments of the remaining glass fiber arbitrarily after burning off the melt at 600 ° C. and measuring the average value. Got. The average fiber length was 95% of the original LFRTP substrate length. Thereafter, a molded body is obtained in the same manner as in Example 1, and a test piece is cut out in a form conforming to ASTM D256 and D790, and bending strength, bending elastic modulus and Charpy (flatwise) impact strength are measured at each n = 3. It was. The average value is shown in Table 1.
[0042]
Comparative Example 2
The LFRTP base material obtained in Comparative Example 1 and a non-reinforced polypropylene resin (MI = 40) were dry blended and mixed so that the glass content was 19.3 vol%.
[0043]
This mixture was plasticized with a heating and conveying machine having an inline screw type injection function similar to that in Example 4 to prepare a molten lump. In addition, the measurement of the average length of the fibers in the melt was performed by burning the melt at 600 ° C., and then arbitrarily selecting 100 monofilaments of the remaining glass fibers, measuring the average value, and measuring 7.0 mm. Measurements were obtained. The average fiber length was 35% of the original LFRTP substrate length. Thereafter, a molded body is obtained in the same manner as in Example 1, and a test piece is cut out in a form conforming to ASTM D256 and D790, and bending strength, bending elastic modulus and Charpy (flatwise) impact strength are measured at each n = 3. It was. The average value is shown in Table 1.
[0044]
Comparative Example 3
The LFRTP base material obtained in Comparative Example 1 and a non-reinforced polypropylene resin (MI = 40) were dry blended and mixed so that the glass content was 19.3 vol%. The mixture was plasticized with a heating and conveying machine having a screw pre-pull type injection function similar to that in Example 3 to prepare a molten lump. In addition, the measurement of the average length of the fibers in the melt was performed by burning the melt at 600 ° C., and then arbitrarily selecting 100 monofilaments of the remaining glass fibers, measuring the average value, and measuring 6.8 mm. Measurements were obtained. The average fiber length was 34% of the original LFRTP substrate length. Thereafter, a molded body is obtained in the same manner as in Example 1, and a test piece is cut out in a form conforming to ASTM D256 and D790, and bending strength, bending elastic modulus and Charpy (flatwise) impact strength are measured at each n = 3. It was. The average value is shown in Table 1.
[0045]
Comparative Example 4
The LFRTP base material obtained in Comparative Example 1 and a non-reinforced polypropylene resin (MI = 40) were dry blended and mixed so that the glass content was 19.3 vol%. This mixture is plasticized using a heating and conveying machine equipped with an in-line type (cylinder diameter 90 mm, compression ratio 2.4, extrusion port diameter 5.0 mm) equipped with a backflow prevention ring to create a molten lump. did. In addition, the measurement of the average length of the fiber in a melt is a measurement of 2.8 mm by arbitrarily selecting 100 monofilaments of the remaining glass fiber after burning the melt at 600 ° C. and measuring the average value. Got the value. The average fiber length was 14% of the original LFRTP substrate length. Thereafter, a molded body is obtained in the same manner as in Example 1, and a test piece is cut out in a form conforming to ASTM D256 and D790, and bending strength, bending elastic modulus and Charpy (flatwise) impact strength are measured at each n = 3. It was. The average value is shown in Table 1.
[0046]
Comparative Example 5
The same LFRTP substrate as in Example 1 was uniformly dispersed, and once with a flat plate press, 5 kg / cm.2After creating a 3.8 mm thick sheet by pressing at a pressure of 176 mm, a sheet-shaped preform formed in a length of 176 mm and a width of 176 mm was created, and this sheet was sufficiently heated, the same as used in the examples. 150 kg / cm2The LFRTP molded body was obtained by pressing at a pressure of 1 min. Test pieces were cut out according to ASTM D256 and D790, and the bending strength, bending elastic modulus, and Charpy (flatwise) impact strength were measured at each n = 3. The average value is shown in Table 1. In this method, the production efficiency is inferior because the sheet forming process is performed as described above.
[0047]
Figure 0004976610
[0048]
Figure 0004976610
[0049]
【The invention's effect】
According to the present invention, by heating and conveying the LFRTP base material without applying much shear, it becomes possible to hold the fibers in the molded body for a long time, and improve the mechanical strength, particularly the impact strength, of the molded body. In addition, it is possible to improve the fluidity of the melt during molding by reducing the formation of fibers into monofilaments.
Furthermore, in the present invention, since the molding is performed without a heating process, the heat deterioration of the resin is suppressed, and the complicated work of the conventional technique of moving the softened molten sheet to a plurality of molds is unnecessary. To do.
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating a method of the present invention.

Claims (4)

長繊維強化熱可塑性樹脂(LFRTP)基材を単独または該基材を非強化樹脂で希釈して溶融して溶融物を作成し、該溶融物を成形型に供給してプレス成形するLFRTP成形体の製造方法において、
上記LFRTP基材が、連続強化繊維ストランド一本または複数本に熱可塑性樹脂を含浸させてノズルから引き抜き、長さ10〜50mmに切断した、径または厚さ0.05〜2.5mm、強化繊維含有率15〜80容量%、熱可塑性樹脂含浸率95%以上のLFRTP基材であり、
LFRTP基材の長さ以上の径のシリンダーを有し、先端の押出口の絞り率が1.0〜100であり、押出口の径がLFRTP基材の長さ以上を有し、押出口先端にシャッター機構を備えたプランジャー押出機を用いて、前記LFRTP基材を加熱搬送し、溶融物中の強化繊維の平均長が元のLFRTP基材長の40%以上の長さを保持した溶融物を作製して成形することを特徴とするLFRTP成形体の製造方法。
An LFRTP molded body in which a long fiber reinforced thermoplastic resin (LFRTP) base material alone or the base material is diluted with a non-reinforced resin and melted to prepare a melt, and the melt is supplied to a mold and press-molded. In the manufacturing method of
The LFRTP base material has one or more continuous reinforcing fiber strands impregnated with a thermoplastic resin, drawn from a nozzle, and cut to a length of 10 to 50 mm, a diameter or thickness of 0.05 to 2.5 mm, a reinforcing fiber It is an LFRTP base material with a content of 15 to 80% by volume and a thermoplastic resin impregnation rate of 95% or more,
It has a cylinder with a diameter equal to or greater than the length of the LFRTP base material, the squeezing rate of the extrusion port at the tip is 1.0 to 100, the diameter of the extrusion port is at least the length of the LFRTP base material, and the tip of the extrusion port Using a plunger extruder equipped with a shutter mechanism, the LFRTP base material is heated and conveyed, and the average length of the reinforcing fibers in the melt is 40% or more of the original LFRTP base material length. A method for producing an LFRTP molded article, comprising producing and molding a product.
長繊維強化熱可塑性樹脂(LFRTP)基材を単独または該基材を非強化樹脂で希釈して溶融して溶融物を作成し、該溶融物を成形型に供給してプレス成形するLFRTP成形体の製造方法において、
上記LFRTP基材が、連続強化繊維ストランド一本または複数本に熱可塑性樹脂を含浸させてノズルから引き抜き、長さ10〜50mmに切断した径または厚さ0.05〜2.5mm、強化繊維含有率15〜80容量%、熱可塑性樹脂含浸率95%以上のLFRTP基材であり、
LFRTP基材の長さ以上のシリンダー径を有し、押出口先端にシャッター機構を備えたインラインスクリュー式射出機能を備え、可塑化部のスクリューの圧縮比が1.1〜1.8で、先端の押出口の絞り率が1.0〜100で、押出口の径がLFRTP基材の長さ以上の径を有し、逆流防止リングを備えていない加熱搬送機を用いて、前記LFRTP基材を加熱搬送し、溶融物中の強化繊維の平均長が元のLFRTP基材長の40%以上の長さを保持した溶融物を作製して成形することを特徴とするLFRTP成形体の製造方法。
An LFRTP molded body in which a long fiber reinforced thermoplastic resin (LFRTP) base material alone or the base material is diluted with a non-reinforced resin and melted to prepare a melt, and the melt is supplied to a mold and press-molded. In the manufacturing method of
The LFRTP base material is impregnated with one or more continuous reinforcing fiber strands with a thermoplastic resin, drawn from a nozzle, and cut into a length of 10 to 50 mm or a thickness of 0.05 to 2.5 mm, containing reinforcing fibers LFRTP base material having a rate of 15 to 80% by volume and a thermoplastic resin impregnation rate of 95% or more,
It has a cylinder diameter that is longer than the length of the LFRTP base material, has an inline screw type injection function with a shutter mechanism at the tip of the extrusion port, and has a compression ratio of 1.1 to 1.8 at the plasticizing part. The squeezing rate of the extrusion port is 1.0 to 100, the diameter of the extrusion port is equal to or larger than the length of the LFRTP base material, and the heating and conveying machine not provided with the backflow prevention ring is used. And producing a melt in which the average length of reinforcing fibers in the melt is 40% or more of the original LFRTP substrate length, and molding the melt. .
長繊維強化熱可塑性樹脂(LFRTP)基材を単独または該基材を非強化樹脂で希釈して溶融して溶融物を作成し、該溶融物を成形型に供給してプレス成形するLFRTP成形体の製造方法において、
上記LFRTP基材が、連続強化繊維ストランド一本または複数本に熱可塑性樹脂を含浸させてノズルから引き抜き、長さ10〜50mmに切断した径または厚さ0.05〜2.5mm、強化繊維含有率15〜80容量%、熱可塑性樹脂含浸率95%以上のLFRTP基材であり、
LFRTP基材の長さ以上のシリンダー径を有し、押出口先端にシャッター機構を備えたスクリュープリプラ式射出機能を備え、可塑化部のスクリューの圧縮比が1.1〜1.8で、先端の押出口の絞り率が1.0〜100で、押出口の径がLFRTP基材の長さ以上の径を有する加熱搬送機を用いて、前記LFRTP基材を加熱搬送し、溶融物中の強化繊維の平均長が元のLFRTP基材長の40%以上の長さを保持した溶融物を作製して成形することを特徴とするLFRTP成形体の製造方法。
An LFRTP molded body in which a long fiber reinforced thermoplastic resin (LFRTP) base material alone or the base material is diluted with a non-reinforced resin and melted to prepare a melt, and the melt is supplied to a mold and press-molded. In the manufacturing method of
The LFRTP base material is impregnated with one or more continuous reinforcing fiber strands with a thermoplastic resin, drawn from a nozzle, and cut into a length of 10 to 50 mm or a thickness of 0.05 to 2.5 mm, containing reinforcing fibers LFRTP base material having a rate of 15 to 80% by volume and a thermoplastic resin impregnation rate of 95% or more,
It has a cylinder diameter greater than the length of the LFRTP base material, has a screw pre-pull type injection function with a shutter mechanism at the tip of the extrusion port, and has a compression ratio of 1.1 to 1.8 in the plasticizing part, The LFRTP substrate is heated and conveyed using a heating and conveying machine having a diameter of the extrusion port of 1.0 to 100 and the diameter of the extrusion port having a diameter equal to or greater than the length of the LFRTP substrate. A method for producing an LFRTP molded article, comprising producing and molding a melt in which the average length of reinforcing fibers is 40% or more of the original LFRTP base material length.
LFRTP基材の径または厚さが0.05〜1.5mmである請求項1〜3のいずれか1項に記載のLFRTP成形体の製造方法。The method for producing an LFRTP molded body according to any one of claims 1 to 3, wherein the diameter or thickness of the LFRTP base material is 0.05 to 1.5 mm .
JP35498899A 1998-12-15 1999-12-14 Method for producing a long fiber reinforced thermoplastic resin molding Expired - Fee Related JP4976610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35498899A JP4976610B2 (en) 1998-12-15 1999-12-14 Method for producing a long fiber reinforced thermoplastic resin molding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP35678398 1998-12-15
JP1998356783 1998-12-15
JP10-356783 1998-12-15
JP35498899A JP4976610B2 (en) 1998-12-15 1999-12-14 Method for producing a long fiber reinforced thermoplastic resin molding

Publications (2)

Publication Number Publication Date
JP2000233421A JP2000233421A (en) 2000-08-29
JP4976610B2 true JP4976610B2 (en) 2012-07-18

Family

ID=26580190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35498899A Expired - Fee Related JP4976610B2 (en) 1998-12-15 1999-12-14 Method for producing a long fiber reinforced thermoplastic resin molding

Country Status (1)

Country Link
JP (1) JP4976610B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6376555B2 (en) * 2014-06-09 2018-08-22 東洋機械金属株式会社 Composite press molding system and kneading extruder used therefor
JP2016016582A (en) * 2014-07-08 2016-02-01 東洋機械金属株式会社 Press molding system for composite material, and metered amount extruder for compound

Also Published As

Publication number Publication date
JP2000233421A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
CN101935420B (en) Automobile bottom deflector made of LFT-D (Fiber Reinforce Thermoplastic-Direct) material and manufacture method thereof
JP7156766B2 (en) Fiber-reinforced molding compound and method of forming and using same
JP2012056173A (en) Method for manufacturing fiber-reinforced resin material
JP2013203941A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material
JPS646227B2 (en)
JP4976610B2 (en) Method for producing a long fiber reinforced thermoplastic resin molding
HU216514B (en) Method for producing of reinforced thermoplastic products
TW201406842A (en) Carbon fiber composite material and molded article formed by the same, and manufacturing method of these
KR102323052B1 (en) Fiber-reinforced thermoplastic resin kneading method, plasticizer and extruder
JP2000141502A (en) Manufacture of long fiber reinforced thermoplastic resin sheet and long fiber reinforced thermoplastic resin sheet
JP2524941B2 (en) Continuous glass fiber reinforced thermoplastic resin pellets and method for producing the same
JP2008284729A (en) Fiber-containing resin pellet and its manufacturing method
JPH0365311A (en) Carbon fiber chop
CN111093928B (en) Method and apparatus for molding molded article containing fiber-reinforced thermoplastic resin
JP2906595B2 (en) Method for producing fiber-reinforced thermoplastic resin pellets
AU2019205991B1 (en) The twin-screw extrusion of long carbon fibre reinforced polylactic acid filaments for 3D printing
JP2019059081A (en) Extruder for fiber reinforced thermoplastic resin
JPH10329190A (en) Manufacture of fiber reinforced thermoplastic resin molded body
CN112831109B (en) Moldable high performance thermoplastic composite material with single fiber length distribution
JP2952977B2 (en) Molding method of fiber reinforced resin
EP1498245A1 (en) Spheroidally shaped fibre reinforced thermoplastic pellets
JPH081670A (en) Recycling of fiber reinforced thermoplastic resin molded object
JPH0647740A (en) Continuous glass filament thermoplastic resin pellet
CN116674232A (en) Preparation method of thermoplastic composite material product
JP3333448B2 (en) Long fiber glass reinforced thermoplastic resin composite substrate and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091001

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4976610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees