JP2000233421A - Preparation of long fiber-reinforced thermoplastic resin molded body - Google Patents

Preparation of long fiber-reinforced thermoplastic resin molded body

Info

Publication number
JP2000233421A
JP2000233421A JP11354988A JP35498899A JP2000233421A JP 2000233421 A JP2000233421 A JP 2000233421A JP 11354988 A JP11354988 A JP 11354988A JP 35498899 A JP35498899 A JP 35498899A JP 2000233421 A JP2000233421 A JP 2000233421A
Authority
JP
Japan
Prior art keywords
lfrtp
base material
length
diameter
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11354988A
Other languages
Japanese (ja)
Other versions
JP4976610B2 (en
Inventor
Toru Mizukami
徹 水上
Kengo Ozaki
憲吾 尾崎
Hideyuki Higashiyama
秀行 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP35498899A priority Critical patent/JP4976610B2/en
Publication of JP2000233421A publication Critical patent/JP2000233421A/en
Application granted granted Critical
Publication of JP4976610B2 publication Critical patent/JP4976610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve mechanical strength of a long fiber-reinforced thermoplastic(LFRTP) molded body obtd. SOLUTION: In this method for preparation, an LFRTP base material is used alone or the base material is diluted with a non-reinforcing resin and a melted article is prepd. by means of a heating delivering machine in such a way that mean length of the fiber in the melted article is held at a length being at least 40% of the length of the original LFRTP base material and the melted article is fed into a mold to perform press molding. The LFRTP base material is an LFRTP base material with a mean diameter or a mean thickness of 0.05-2.5 mm and a fiber content of 15-80 vol.% which is prepd. by impregnating one or a plurality of continuous filament strands with a thermoplastic resin and performing pultrusion thereof from a nozzle and cutting it into a mean length of 10-50 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面外観性や高強
度、高剛性が要求される自動車部品や家電製品、産業資
材、土木資材などに適した長繊維強化熱可塑性樹脂(以
下「LFRTP」という)成形体の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a long fiber reinforced thermoplastic resin (hereinafter referred to as "LFRTP") suitable for automobile parts, home appliances, industrial materials, civil engineering materials and the like which require surface appearance, high strength and high rigidity. ).

【0002】[0002]

【従来技術】従来より、LFRTP成形体の製造方法に
おいて、特定の方向に並んだ強化繊維(以下単に「繊
維」という)を含有する熱可塑性樹脂を所定形状に切断
した約2〜3mm径のLFRTP基材を加熱溶融させて
射出成型法により成形体を製造する方法が知られてい
る。この方法で用いるLFRTP基材は、熱可塑性樹脂
と繊維を混練した従来の短繊維強化熱可塑性樹脂基材に
比べて、含有されている繊維長が長く、成形体中の繊維
長をより長く維持させることが可能であり、また、繊維
に熱可塑性樹脂が予め含浸されていることから、これを
成形した成形体は機械的強度や表面外観性が優れるもの
であった。
2. Description of the Related Art Conventionally, in a method for producing an LFRTP molded article, an LFRTP having a diameter of about 2 to 3 mm obtained by cutting a thermoplastic resin containing reinforcing fibers (hereinafter simply referred to as "fibers") arranged in a specific direction into a predetermined shape. There is known a method in which a base material is heated and melted to produce a molded body by an injection molding method. The LFRTP base material used in this method has a longer fiber length than the conventional short fiber reinforced thermoplastic resin base material obtained by kneading a thermoplastic resin and fibers, and maintains the fiber length in a molded body longer. Since the fiber was previously impregnated with the thermoplastic resin, the molded article formed from the fiber had excellent mechanical strength and surface appearance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記方
法で用いる繊維長の長いLFRTP基材を用いても、圧
縮比の高いスクリューによる混練や射出時の高い圧力に
より、大きな剪断が加わって成形体中の繊維長が短くな
り、結果として成形体の衝撃強度、引っ張り強度などの
機械的強度が劣るという問題を有していた。
However, even when the LFRTP base material having a long fiber length used in the above method is used, a large shear is applied due to the high pressure at the time of kneading or injection by a screw having a high compression ratio, so that the molded product has a large length. The fiber length of the molded article was shortened, and as a result, there was a problem that the mechanical strength such as the impact strength and the tensile strength of the molded article was inferior.

【0004】さらに、前記LFRTP基材を分散し、こ
れを加熱成形したLFRTP基材シートおよび該シート
を加熱溶融後に成形型に導入し、常温または加温プレス
して得られる成形体が知られている(特開平9−109
310号公報)。この方法では、一旦予備成形されたL
FRTP基材シートを作製すれば、該シートを加熱溶融
後に成形型にセットして成形するだけの簡便な方法であ
り、得られる成形体はその中の繊維長を比較的長く維持
し、比較的高強度の成形体を得ることができるものであ
るが、目的の成形体を得るためには、LFRTP基材の
作製工程、そのシート化工程およびプレス成形工程と三
度にわたる熱可塑性樹脂の溶融軟化が必要であり、エネ
ルギー効率的にも、樹脂の熱劣化の点でも問題を有して
いた。さらに、成形時の流動性を向上させるためにLF
RTP基材シート内部まで十分に加熱溶融させると、上
記シートが柔らかいために取扱性が劣り、これを複数枚
成形型に積層させる通常の流動成形を行うと、作業が煩
雑になるという問題を有していた。従って、本発明の目
的は、上記従来の課題を解決し、得られるLFRTP成
形体の機械的強度を向上させるものである。
[0004] Further, there is known an LFRTP base material sheet obtained by dispersing the above LFRTP base material, and heat-molding the LFRTP base material. (Japanese Patent Laid-Open No. 9-109)
No. 310). In this method, the preformed L
If a FRTP substrate sheet is prepared, it is a simple method of setting the sheet in a molding die after heating and melting the sheet, and molding the resulting molded article. Although it is possible to obtain a high-strength molded product, the melt-softening of the thermoplastic resin must be performed three times, including the steps of preparing the LFRTP base material, forming the sheet, and pressing the LFRTP substrate. However, there is a problem in terms of energy efficiency and thermal degradation of the resin. Further, in order to improve fluidity during molding, LF
If the inside of the RTP base material sheet is sufficiently heated and melted, the above-mentioned sheet is soft and the handleability is poor, and there is a problem that the work becomes complicated when ordinary flow molding in which a plurality of the sheets are laminated in a mold. Was. Accordingly, an object of the present invention is to solve the above conventional problems and improve the mechanical strength of the obtained LFRTP molded article.

【0005】[0005]

【課題を解決するための手段】上記目的は、以下の本発
明によって達成される。即ち、本発明は、LFRTP基
材を単独または該基材を非強化樹脂で希釈して溶融して
溶融物を作成し、該溶融物を成形型に供給してプレス成
形するLFRTP成形体の製造方法において、上記LF
RTP基材が、連続繊維ストランド一本または複数本に
熱可塑性樹脂を含浸させてノズルから引き抜き、平均長
10〜50mmに切断した平均径または平均厚0.05
〜2.5mm、かつ繊維含有率15〜80容量%のLF
RTP基材であり、該基材を加熱搬送機で溶融物中の繊
維の平均長が元のLFRTP基材長の40%以上の長さ
を保持した溶融物を作製し成形することを特徴とするL
FRTP成形体の製造方法を提供する。
The above object is achieved by the present invention described below. That is, the present invention relates to the production of an LFRTP molded article in which an LFRTP substrate is used alone or the substrate is diluted with a non-reinforced resin and melted to produce a melt, and the melt is supplied to a mold and press-molded. In the method, the LF
RTP base material, one or more continuous fiber strands are impregnated with a thermoplastic resin, pulled out from the nozzle, and cut to an average length of 10 to 50 mm and an average diameter or an average thickness of 0.05.
LF with a fiber content of 15 to 80% by volume
An RTP base material, wherein the base material is manufactured and molded by using a heating and conveying machine to produce a melt in which the average length of the fibers in the melt is at least 40% of the original LFRTP base length. L
Provided is a method for producing an FRTP molded article.

【0006】本発明においては、LFRTP基材を加熱
搬送する際に、溶融物中の繊維の平均長が元のLFRT
P基材長の40%以上の長さを保持した溶融物を作製す
ることで、成形体中の繊維の平均長を長く維持させて成
形体の機械的強度を向上させることができる。
In the present invention, when the LFRTP base material is heated and transported, the average length of the fibers in the melt is changed to the original LFRT.
By preparing a melt holding a length of 40% or more of the P base length, the average length of the fibers in the molded body can be maintained long, and the mechanical strength of the molded body can be improved.

【0007】また、本発明では加熱工程を伴うシート化
を経ることなく成形するため、樹脂の熱劣化を抑えると
共に、柔らかくなった溶融シートを複数枚成形型に移動
させるという従来技術の煩雑な作業を不要にするもので
ある。
Further, in the present invention, since molding is performed without forming a sheet accompanied by a heating step, thermal deterioration of the resin is suppressed, and complicated work of the prior art of moving a plurality of softened molten sheets to a molding die. Is unnecessary.

【0008】[0008]

【発明の実施の形態】次に好ましい実施の形態を挙げて
本発明をさらに詳細に説明する。本発明で使用する熱可
塑性樹脂としては、特に限定はなく一般に市販されてい
る種々のものが使用可能である。例えば、ポリオレフィ
ン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポ
リカーボネート樹脂、ポリフェニレンサルファイド樹
脂、ポリスチレンなどが挙げられる。なかでも、含浸
性、コスト、物性の点から、ポリオレフィン系樹脂、ポ
リアミド系樹脂、ポリエステル系樹脂が本発明において
好適である。ポリオレフィン系樹脂としては、例えば、
ポリプロピレン、ポリエチレンなど;ポリアミド系樹脂
としては、例えば、ナイロン6,6、ナイロン6、ナイ
ロン12、MXDナイロンなど;ポリエステル系樹脂と
しては、例えば、ポリエチレンテレフタレート、ポリブ
チレンテレフタレートなどが挙げられ、これらの樹脂を
用いることが、本発明においては特に好ましい。これら
の樹脂には着色剤、変性剤、酸化防止剤および耐紫外線
剤などの添加剤や、炭酸カルシウム、タルク、マイカな
どのフィラーを混合して用いても差し支えない。
Next, the present invention will be described in more detail with reference to preferred embodiments. The thermoplastic resin used in the present invention is not particularly limited, and various commercially available resins can be used. For example, polyolefin-based resins, polyamide-based resins, polyester-based resins, polycarbonate resins, polyphenylene sulfide resins, polystyrene and the like can be mentioned. Among them, polyolefin-based resins, polyamide-based resins, and polyester-based resins are preferred in the present invention from the viewpoints of impregnation, cost, and physical properties. As the polyolefin resin, for example,
Polypropylene, polyethylene and the like; polyamide resins such as nylon 6,6, nylon 6, nylon 12, and MXD nylon; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Is particularly preferred in the present invention. These resins may be mixed with additives such as a coloring agent, a denaturant, an antioxidant and an ultraviolet ray-resistant agent, and fillers such as calcium carbonate, talc and mica.

【0009】また、本発明においてLFRTP基材に用
いる繊維としては、例えば、ガラス繊維、炭素繊維、ア
ラミド繊維、セラミック繊維などが挙げられ、これらを
単独あるいは混合して使用することができる。中でもガ
ラス繊維を用いることが、コストパフォーマンスに優れ
るので好ましい。
The fibers used for the LFRTP substrate in the present invention include, for example, glass fibers, carbon fibers, aramid fibers, ceramic fibers and the like, and these can be used alone or in combination. Among them, the use of glass fiber is preferable because of its excellent cost performance.

【0010】上記繊維は、そのモノフィラメントの平均
径が通常は6〜23μmであり、さらに10〜17μm
であることが好ましい。モノフィラメントの平均径が6
μm未満の場合は成形体がコスト高になるとともに、L
FRTP基材において繊維の含有率が同じ場合には、繊
維の表面積が大きくなり、成形時の流動性が劣るので好
ましくない。一方、モノフィラメントの平均径が23μ
mを超える場合は、最終的に得られるLFRTP成形体
の機械的物性が劣るために好ましくない。
The above fibers usually have an average monofilament diameter of 6 to 23 μm, and more preferably 10 to 17 μm.
It is preferred that Average monofilament diameter is 6
If it is less than μm, the cost of the molded body increases, and L
When the content of the fibers in the FRTP base material is the same, the surface area of the fibers becomes large, and the fluidity during molding is inferior. On the other hand, the average diameter of the monofilament is 23μ.
If it exceeds m, the mechanical properties of the finally obtained LFRTP molded product are inferior, which is not preferable.

【0011】また、切断前の連続繊維は、フィラメント
数が100〜12000本が好ましい。フィラメント数
が100本未満であると、後工程において多数本のLF
RTP基材が必要となり、作業が煩雑となる。一方、フ
ィラメント数が12000本を超えると、モノフィラメ
ント間にまで熱可塑性樹脂を均一に含浸させることが困
難になるとともに、得られるLFRTP基材が太くな
り、後述するLFRTP基材径が得られにくくなる。さ
らに、LFRTP成形体にした場合、繊維の分散性に劣
り、最終的に得られるLFRTP成形体において期待す
る強度を発現することができない。また、後述するLF
RTP基材の平均径または平均厚さが0.05〜1.5
mmのように細い場合には、繊維の含有量を考慮してフ
ィラメント数が100〜6000本であることが好まし
い。
[0011] The continuous fibers before cutting preferably have 100 to 12,000 filaments. If the number of filaments is less than 100, a large number of LF
An RTP substrate is required, and the operation becomes complicated. On the other hand, when the number of filaments exceeds 12,000, it becomes difficult to uniformly impregnate the thermoplastic resin even between the monofilaments, and the obtained LFRTP base material becomes thick, and it becomes difficult to obtain the LFRTP base material diameter described later. . Furthermore, when the LFRTP molded article is used, the dispersibility of the fiber is inferior, and the expected strength of the finally obtained LFRTP molded article cannot be exhibited. In addition, LF described later
The average diameter or average thickness of the RTP substrate is 0.05 to 1.5
When the diameter is as thin as mm, the number of filaments is preferably 100 to 6000 in consideration of the fiber content.

【0012】また、本発明に用いるLFRTP基材は、
その平均径または平均厚さが0.05〜2.5mmであ
ることを必須とする。LFRTP基材の平均径または平
均厚さが0.05mm未満であると、LFRTP基材を
作製する際に、フィラメント切れや羽毛立ちが生じ、生
産性が劣る。また、2.5mmを超えると、加熱搬送時
の加熱効率が劣り、さらに、得られるLFRTP基材が
太く、または厚くなって繊維の分散性が劣るために、最
終的に得られるLFRTP成形体において期待する機械
的強度を発現することができず好ましくない。さらに
0.05〜1.5mmであることが好ましい。前記範囲
において径または厚みの小さいLFRTP基材を用いる
と、成形の際に繊維の分散が良好となり、均一で高い強
度の成形体を得ることが可能となる。さらに、LFRT
P基材の径または厚みを前記範囲において小さくするこ
とで加熱効率を高くし、LFRTP基材を容易に溶融す
ることが可能となり、搬送する際に繊維の破損が低減さ
れる。
Further, the LFRTP substrate used in the present invention comprises:
It is essential that the average diameter or the average thickness is 0.05 to 2.5 mm. If the average diameter or the average thickness of the LFRTP base material is less than 0.05 mm, filament production or feathering may occur when producing the LFRTP base material, resulting in poor productivity. On the other hand, if it exceeds 2.5 mm, the heating efficiency at the time of heating and transporting is inferior, and the obtained LFRTP base material is thicker or thicker, and the dispersibility of the fiber is inferior. The desired mechanical strength cannot be exhibited, which is not preferable. Further, the thickness is preferably 0.05 to 1.5 mm. When the LFRTP base material having a small diameter or thickness in the above range is used, the dispersion of the fibers becomes good during the molding, and a uniform and high-strength molded article can be obtained. In addition, LFRT
By reducing the diameter or thickness of the P base material in the above range, the heating efficiency can be increased, the LFRTP base material can be easily melted, and breakage of the fiber during transportation is reduced.

【0013】また、本発明に用いるLFRTP基材は、
繊維の含有率が通常は15〜80容量%であり、さらに
20〜70容量%であることが好ましい。繊維の含有率
が15容量%未満の場合は、繊維による成形体の補強効
果が低く、一方、繊維の含有率が80容量%を超える場
合は、繊維を包むマトリックス(熱可塑性樹脂)の相対
量が少なすぎ、後述する樹脂の含浸率を95%以上に確
保することが困難となる。なお、ここでいう平均径と
は、基材の断面の長径と短径の平均径を断面径とし、任
意のLFRTP基材5個を選び、それぞれの断面径の平
均を表わす。
[0013] The LFRTP substrate used in the present invention comprises:
The fiber content is usually 15 to 80% by volume, and preferably 20 to 70% by volume. When the fiber content is less than 15% by volume, the reinforcing effect of the fiber on the molded article is low. On the other hand, when the fiber content exceeds 80% by volume, the relative amount of the matrix (thermoplastic resin) wrapping the fibers Is too small, it is difficult to secure the impregnation rate of the resin described later at 95% or more. Here, the average diameter is an average of the cross-sectional diameters of five arbitrary LFRTP base materials, with the average diameter of the major and minor diameters of the cross-section of the base material as the cross-sectional diameter.

【0014】本発明に用いるLFRTP基材は、前記熱
可塑性樹脂の含浸率が95%以上であることが好まし
い。得られるLFRTP成形体において前記熱可塑性樹
脂の含浸率が95%未満であると、LFRTP基材の作
成の際に毛羽の発生や可塑化時のフィラメントの破断が
促進されたり、得られた成形体の表面に繊維が浮き出し
たりするため、あまり好ましくない。ここで樹脂の含浸
率とは、LFRTP基材の断面を200倍の電子顕微鏡
で観察し、20μmのメッシュをおいて、メッシュのセ
ル中に少しでもボイド(空気の泡)が認められれば、こ
のメッシュのセルをボイド面積として加え、観察した全
断面積とボイド面積とから以下の数式によって求めたも
のである。 {(全断面積−ボイド面積)/全断面積}×100
(%)
The LFRTP substrate used in the present invention preferably has an impregnation ratio of 95% or more of the thermoplastic resin. When the impregnation rate of the thermoplastic resin in the obtained LFRTP molded article is less than 95%, generation of fluff or breakage of filaments during plasticization is promoted during production of the LFRTP base material, or the obtained molded article is formed. This is not preferable because the fibers may emerge on the surface of the glass. Here, the impregnation ratio of the resin is defined as follows: When a cross section of the LFRTP base material is observed with an electron microscope of 200 times, a 20 μm mesh is placed, and if any voids (air bubbles) are observed in the cells of the mesh, The cell of the mesh is added as a void area, and it is obtained by the following formula from the observed total cross-sectional area and the void area. {(Total cross-section-void area) / total cross-section} × 100
(%)

【0015】本発明に用いるLFRTP基材の長さは、
10〜50mmであることを必須とし、15〜40mm
であることが好ましい。本発明のLFRTP基材は連続
繊維に熱可塑性樹脂を含浸させて切断したものであるた
め、LFRTP基材の長さは該基材中の繊維の長さとほ
ぼ等しいものである。従って、切断長が10mm未満の
場合には、加熱溶融して得られた溶融物中の繊維の平均
長を加熱溶融前のLFRTP基材長の40%以上保持さ
せたとしても、最終的に得られるLFRTP成形体の機
械的物性が劣るために好ましくない。一方、切断長が5
0mmを超える場合は、加熱搬送機に導入する際の取扱
い性が劣り、また、LFRTP基材のプレス成形時の流
動性が劣るために好ましくない。
The length of the LFRTP substrate used in the present invention is as follows:
Required to be 10 to 50 mm, 15 to 40 mm
It is preferred that Since the LFRTP substrate of the present invention is obtained by cutting a continuous fiber by impregnating a thermoplastic resin, the length of the LFRTP substrate is substantially equal to the length of the fiber in the substrate. Therefore, when the cut length is less than 10 mm, even if the average length of the fibers in the melt obtained by heating and melting is maintained at 40% or more of the LFRTP base material length before heating and melting, the final length is not obtained. This is not preferred because the mechanical properties of the resulting LFRTP molded article are inferior. On the other hand, when the cutting length is 5
If it exceeds 0 mm, it is not preferable because the handleability at the time of introduction into the heating transfer machine is poor, and the flowability of the LFRTP base material during press molding is poor.

【0016】LFRTP基材を作製する方法は、繊維ス
トランドを樹脂含浸槽に送り込み、溶融含浸法により樹
脂を繊維ストランド中に含浸させた後、1本または複数
本の繊維ストランドを1個のノズルにより引き抜いてL
FRTP基材を得る方法が好ましい。さらに、スプリッ
トを施すことなく集束した1本の繊維ストランドを1個
のノズルから引き抜く方法を採用すると、ノズルからの
引き抜きが容易となり、繊維の含有率を高めることがで
き、かつ、毛羽の発生を少なくすることができるために
好ましい。
The method for producing the LFRTP base material is as follows. A fiber strand is fed into a resin impregnation tank, a resin is impregnated into the fiber strand by a melt impregnation method, and then one or a plurality of fiber strands are injected with one nozzle. Pull out L
A method for obtaining an FRTP substrate is preferred. Furthermore, if a method of pulling out one bundled fiber strand from one nozzle without applying splitting is adopted, pulling out from the nozzle becomes easy, the fiber content can be increased, and the generation of fluff can be reduced. This is preferable because it can be reduced.

【0017】この方法では、より径の小さいLFRTP
基材が得られ易い。この得られたLFRTP基材は熱容
量が小さく、容易に軟化または固化させることができ
て、加熱する時間を短縮させることが可能となるため、
加熱時の樹脂の熱劣化を最小限に留めることが可能であ
り、溶融物の残存繊維長を長くすることが可能となる。
In this method, the smaller diameter LFRTP
A base material is easily obtained. Since the obtained LFRTP base material has a small heat capacity and can be easily softened or solidified, and the heating time can be reduced,
It is possible to minimize the thermal degradation of the resin during heating, and it is possible to lengthen the remaining fiber length of the melt.

【0018】本発明のLFRTP成形体の製造方法は、
前述したLFRTP基材または該基材と非強化樹脂との
混合物(以下該混合物も単に「LFRTP基材」とい
う)を用いるか、または該LFRTP基材を集合させた
塊状物を、加熱搬送した溶融物中の繊維の平均長を元の
LFRTP基材長の40%以上、好ましくは60%以
上、さらに好ましくは80%以上に保持するように、加
熱溶融しながら搬送して溶融物を作製し、該溶融物を成
形型に供給してプレス成形する方法である。上記混合物
に用いる非強化樹脂とは、前述した繊維を実質的に含ま
ない熱可塑性樹脂であり、使用する場合の非強化樹脂
は、LFRTP基材を構成している熱可塑性樹脂と同種
の樹脂を用いることが好ましい。また、その使用量は、
混合物中の繊維の量が混合物中で15容量%以上を保持
できる量であることが好ましい。
The method for producing an LFRTP molded article of the present invention comprises:
The above-mentioned LFRTP base material or a mixture of the base material and a non-reinforced resin (hereinafter, the mixture is also simply referred to as “LFRTP base material”) is used, or a lump obtained by assembling the LFRTP base material is heated and conveyed. The melt is produced by transporting while heating and melting so that the average length of the fibers in the product is maintained at 40% or more, preferably 60% or more, more preferably 80% or more of the original LFRTP base material length, In this method, the melt is supplied to a mold and press-molded. The non-reinforced resin used in the above-mentioned mixture is a thermoplastic resin substantially free of the aforementioned fibers, and the non-reinforced resin used when the same resin as the thermoplastic resin constituting the LFRTP base material is used. Preferably, it is used. In addition, the amount used
It is preferred that the amount of fibers in the mixture be an amount that can maintain 15% by volume or more in the mixture.

【0019】本発明で、LFRTP基材を成形型に供給
するためには、加熱搬送する工程が必要となる。加熱工
程では、用いる熱可塑性樹脂の軟化点温度以上で加熱す
ることで、LFRTP基材に柔軟性を与え、搬送の際に
繊維の破損を防止すると共にLFRTP基材同士を容易
に融着させることができる。また、搬送工程ではLFR
TP基材にできるだけ剪断を加えずに成形型に供給する
ことで、繊維の破損を防止する。
In the present invention, in order to supply the LFRTP base material to the molding die, a heating and conveying step is required. In the heating step, by heating the thermoplastic resin to be used at a temperature equal to or higher than the softening point of the thermoplastic resin, the LFRTP base material is provided with flexibility to prevent breakage of the fiber during transportation and to easily fuse the LFRTP base materials together. Can be. In the transport process, LFR
By supplying the TP substrate to the mold without applying as much shearing as possible, breakage of the fiber is prevented.

【0020】なお、前述のLFRTP基材の長さは、任
意のLFRTP基材を10本選んでそれらの平均長で表
したものである。また、前述の溶融物中の繊維の平均長
は前記溶融物を600℃で焼失させた後、繊維100本
を任意に選んで万能投影機で繊維長を測定し、それらの
平均を表したものである。
The above-mentioned length of the LFRTP base material is the average length of ten selected LFRTP base materials. The average length of the fibers in the above-mentioned melt is obtained by burning the melt at 600 ° C., arbitrarily selecting 100 fibers, measuring the fiber length with a universal projector, and expressing the average thereof. It is.

【0021】前記溶融物中の繊維の平均長が、元のLF
RTP基材長の40%以上を保持しながら、LFRTP
基材を加熱搬送する方法は、スクリュー押出機、プラン
ジャー押出機、ベルトコンベヤーによる搬送方法などが
挙げられるが、特に下記の方法が好ましく採用される。 (a)LFRTP基材の長さ以上の径のシリンダーを有
し、先端の押出口の絞り率が1.0〜100で、好まし
くは1.0〜20であり、かつ押出口の径がLFRTP
基材の長さ以上の径を有し押出口にシャッター機能を備
えたプランジャー押出機を有する加熱搬送機を用いる方
法であり、押出口の絞り率が100を超える場合は、繊
維の破断を増大させる。
The average length of the fibers in the melt is equal to the original LF
While maintaining 40% or more of the RTP substrate length, LFRTP
Examples of the method of transporting the substrate by heating include a screw extruder, a plunger extruder, and a transport method using a belt conveyor. The following method is particularly preferably used. (A) a cylinder having a diameter equal to or longer than the length of the LFRTP base material, the drawing rate of the extruding port at the tip is 1.0 to 100, preferably 1.0 to 20, and the diameter of the extruding port is LFRTP
This method uses a heating and conveying machine having a plunger extruder having a diameter greater than or equal to the length of the base material and having a shutter function at the extrusion port.If the drawing rate of the extrusion port exceeds 100, breakage of the fiber may occur. Increase.

【0022】(b)加熱搬送機がLFRTP基材の長さ
以上のシリンダー径を有し、押出口にシャッター機能を
備えたインラインスクリュー式射出機能を備えたもので
あり、可塑化部のスクリューの圧縮比が1.1〜1.8
であり、先端の押出口の絞り率が1.0〜100で、好
ましくは1.0〜20であり、かつ押出口の径がLFR
TP基材の長さ以上の径を有し、逆流防止リングを備え
ていないものを用いる方法であり、この場合、圧縮比が
1.1未満であると搬送能力が劣り、1.8を超える場
合は剪断力が大きくなり、繊維の破断を増大させる。押
出口の絞り率が100を超える場合は、繊維の破断を増
大させる。
(B) The heating and conveying machine has a cylinder diameter equal to or greater than the length of the LFRTP base material, and has an in-line screw type injection function having a shutter function at the extrusion port. Compression ratio of 1.1 to 1.8
And the drawing ratio of the extrusion port at the tip is 1.0 to 100, preferably 1.0 to 20, and the diameter of the extrusion port is LFR.
This is a method using a TP base material having a diameter equal to or greater than the length thereof and not having a backflow prevention ring. In this case, if the compression ratio is less than 1.1, the carrying capacity is inferior and exceeds 1.8. In such a case, the shearing force increases, and the fiber breakage increases. When the drawing ratio of the extrusion port exceeds 100, the fiber breakage is increased.

【0023】(c)加熱搬送機がLFRTP基材の長さ
以上のシリンダー径を有し、押出口にシャッター機能を
備えたスクリュープリプラ式射出機能を備えたものであ
り、可塑化部のスクリューの圧縮比が1.1〜1.8で
あり、先端の押出口の絞り率が1.0〜100で、好ま
しくは1.0〜20であり、かつ押出口の径がLFRT
P基材の長さ以上の径を有するものを用いる方法であ
り、この場合、圧縮比が1.1未満であると搬送能力が
劣り、1.8を超える場合は剪断力が大きくなり、繊維
の破断を増大させる。押出口の絞り率が100を超える
場合は、繊維の破断を増大させる。なお、ここでいう押
出口の絞り率とは、押出口を備えたシリンダー断面積/
押出口断面積で表され、シリンダー断面積は前記(c)
の搬送機の場合、プランジャー部(計量部)のシリンダ
ー断面積を指す。
(C) The heating / transporting machine has a cylinder diameter equal to or greater than the length of the LFRTP base material, and has a screw pre-plastic injection function having a shutter function at the extrusion port. The compression ratio is 1.1 to 1.8, the squeezing rate at the tip of the extrusion port is 1.0 to 100, preferably 1.0 to 20, and the diameter of the extrusion port is LFRT.
This is a method using a material having a diameter equal to or greater than the length of the P base material. In this case, if the compression ratio is less than 1.1, the carrying capacity is poor, and if the compression ratio exceeds 1.8, the shearing force becomes large, Increase the breaking of When the drawing ratio of the extrusion port exceeds 100, the fiber breakage is increased. In addition, the squeezing rate of the extrusion port here means the cross-sectional area of the cylinder provided with the extrusion port /
It is expressed by the cross-sectional area of the extrusion port.
In the case of the transfer device, the cylinder cross-sectional area of the plunger section (measuring section) is indicated.

【0024】LFRTP基材の搬送にプランジャー押出
機を用いる方法(a)の場合には、定量的にLFRTP
基材をシリンダーに投入し、加熱しながらLFRTP基
材を切断しないようにゆっくり押圧する。また、可塑化
するにあたってはシリンダー内に熱風を吹き込むことに
より効率的に可塑化することが可能となる。さらに溶融
した塊状物を定量的に押出機から押出すことが可能であ
る。
In the case of the method (a) using a plunger extruder for transporting the LFRTP substrate, the LFRTP is quantitatively
The substrate is put into a cylinder and slowly pressed while heating so as not to cut the LFRTP substrate. Further, in plasticizing, it is possible to efficiently plasticize by blowing hot air into the cylinder. Further, it is possible to quantitatively extrude the molten mass from the extruder.

【0025】LFRTP基材の加熱搬送に際し、(b)
および(c)用いる場合のスクリューは、一軸または二
軸であることが好ましい。スクリューの形態としては特
に限定はないが、スクリューのピッチおよび/またはス
クリューの溝深さがLFRTP基材の長さ以上であるこ
とが好ましい。ここでいう圧縮比とは、スクリューの溝
の深さをhfで表し、スクリューの先端の溝の深さをh
mで表したときのhf/hmの値である。
When heating and transporting the LFRTP substrate, (b)
And (c) when used, the screw is preferably uniaxial or biaxial. The form of the screw is not particularly limited, but the pitch of the screw and / or the groove depth of the screw is preferably equal to or longer than the length of the LFRTP base material. The compression ratio here indicates the depth of the groove of the screw by hf, and the depth of the groove at the tip of the screw by hf
It is the value of hf / hm when represented by m.

【0026】また、本発明では、前記スクリューによる
可塑化と、プランジャーによる計量押出とを併用するス
クリュープリプラ射出機能を備えた方法(c)の場合、
LFRTP基材を加熱しながらスクリューで搬送するこ
とで、LFRTP基材の樹脂を十分に溶融させてLFR
TP基材同士を融着させ、プランジャーにより纏まった
溶融塊を計量して成形型へ供給することが可能となる。
In the present invention, in the case of the method (c) having a screw pre-plastic injection function in which the plasticizing by the screw and the metering extrusion by the plunger are used in combination,
The LFRTP substrate is conveyed by a screw while being heated, so that the resin of the LFRTP substrate is sufficiently melted and the LFRTP substrate is melted.
It becomes possible to fuse the TP base materials together, measure the molten mass collected by the plunger, and supply it to the mold.

【0027】また、本発明では、必要によりLFRTP
基材の搬送にベルトコンベヤーを用いることが可能であ
る。この場合、周りに加熱器や熱風発生機を備えたベル
トコンベヤーを用いることが好ましく、さらに、不活性
ガス雰囲気下であることがより好ましい。ベルトの素材
は四フッ化エチレン樹脂などのフッ素系樹脂やSUSメ
ッシュなどを用いることが好ましい。また、ベルトコン
ベアーとプランジャー押出を併用することも可能であ
る。
In the present invention, if necessary, LFRTP
It is possible to use a belt conveyor to transport the substrate. In this case, it is preferable to use a belt conveyor provided with a heater and a hot air generator around it, and it is more preferable to use an inert gas atmosphere. As the material of the belt, it is preferable to use a fluorinated resin such as an ethylene tetrafluoride resin or a SUS mesh. It is also possible to use a belt conveyor and plunger extrusion together.

【0028】上記のように加熱搬送されたLFRTP基
材の溶融物は、加熱搬送機で計量するか、または加熱搬
送機を経た後に計量し、計量後に直接成形型に供給する
か、計量後に溶融物を、例えば、ロボット、人手などで
移動させて成形型に供給する。これらの供給方法は、用
いる熱可塑性樹脂の流動性、表面外観性、固化時間を考
慮して適宜選択することができるが、成形流動性を向上
させるために加熱搬送機で溶融物を計量し、溶融物を直
接成形型に供給する方法が好ましい。
The melt of the LFRTP base material heated and conveyed as described above is measured by a heat conveyer, or weighed after passing through the heat conveyer, and then directly supplied to a molding die after weighing, or melted after weighing. The object is moved to a molding die by a robot or a human hand, for example. These supply methods can be appropriately selected in consideration of the fluidity of the thermoplastic resin used, the surface appearance, and the solidification time.However, in order to improve the molding fluidity, the melt is weighed with a heat transfer machine, A method in which the melt is directly supplied to a mold is preferred.

【0029】そして成形型に供給された溶融物をプレス
成形することにより型内で流動し、成形型に接触され固
化され成形体となる。成形型の温度は、熱可塑性樹脂の
融点温度以下とし、さらに用いる熱可塑性樹脂の流動
性、表面外観性、固化時間を考慮して適宜選択する。本
発明により得られた成形体は表面が平滑で、樹脂の熱劣
化を多く受けていないため、表面外観や機械的強度が極
めて良好となる。
The melt supplied to the mold is press-molded to flow in the mold, contacted with the mold, and solidified to form a molded body. The temperature of the mold is not more than the melting point of the thermoplastic resin, and is appropriately selected in consideration of the fluidity, surface appearance, and solidification time of the thermoplastic resin used. Since the surface of the molded article obtained by the present invention is smooth and not subjected to much thermal deterioration of the resin, the surface appearance and mechanical strength are extremely good.

【0030】[0030]

【実施例】次に実施例および比較例を挙げて本発明をさ
らに具体的に説明する。 実施例1 平均径13μmのモノフィラメントを用いて、フィラメ
ント数(集束本数)600本のガラス繊維ストランド1
本を、MI=40の酸変性した溶融ポリプロピレン(2
60℃)中に導入し、溶融含浸を行った後、内径0.5
3mmのダイのノズルから50m/minの速度で引き
抜き、さらにペレタイザーで長さが20mmとなるよう
に切断してLFRTP基材を得た。得られたLFRTP
基材の平均径は0.53mm、ガラス含有率は45.5
容量%、樹脂の含浸率はn=5の平均値で100%であ
った。なお、上記においてnは測定数を表わす。
Next, the present invention will be described more specifically with reference to examples and comparative examples. Example 1 Using a monofilament having an average diameter of 13 μm, a glass fiber strand 1 having 600 filaments (number of bundles) was used.
The book was treated with an acid-modified molten polypropylene having MI = 40 (2
60 ° C.), melt impregnated,
It was pulled out from a 3 mm die nozzle at a speed of 50 m / min, and was further cut to a length of 20 mm with a pelletizer to obtain an LFRTP base material. LFRTP obtained
The average diameter of the substrate is 0.53 mm, and the glass content is 45.5.
The volume% and the resin impregnation rate were 100% as an average value of n = 5. In the above, n represents the number of measurements.

【0031】また、LFRTP基材長は、任意に選んだ
10本の平均をとり20mmの測定値を得た。ガラス含
有率の測定は、まず、得られたLFRTP基材を600
℃の電気炉中で加熱して樹脂を焼失させた後、残ったガ
ラスの重量を測定して、ガラス含有率70重量%の測定
値を得た。この値から樹脂の比重を0.91、ガラス繊
維の比重を2.54として容量%に換算した。
The length of the LFRTP base material was averaged for 10 arbitrarily selected samples to obtain a measured value of 20 mm. First, the glass content was measured by using the obtained LFRTP substrate
After heating in an electric furnace at ℃ to burn off the resin, the weight of the remaining glass was measured to obtain a measured value of a glass content of 70% by weight. From these values, the specific gravity of the resin was 0.91, and the specific gravity of the glass fiber was 2.54, and the values were converted to% by volume.

【0032】ついで得られたLFRTP基材を、内径9
0mm、押出口内径90mm、押出口絞り率1.0で押
出口先端にシャッター機構を備え、230℃に加熱され
ているシリンダー内に投入し可塑化溶融を行った。溶融
物をプランジャーで押すことにより溶融塊を作製し、シ
ャッターを開放させ、さらにプランジャーを押すことに
より溶融塊を取り出した。なお、溶融物中の繊維の平均
長の測定は、溶融物を600℃で焼失させた後、残った
ガラス繊維のモノフィラメントを任意に100本選び、
その平均値を測定して、19mmの測定値を得た。繊維
の平均長は元のLFRTP基材長の95%であった。
Next, the obtained LFRTP base material was coated with an inner diameter of 9
The extruder was equipped with a shutter mechanism at the tip of the extruder at 0 mm, the inner diameter of the extruder was 90 mm, and the squeezing ratio of the extruder was 1.0. A molten mass was prepared by pressing the melt with a plunger, the shutter was opened, and the molten mass was taken out by further pressing the plunger. In addition, the measurement of the average length of the fiber in the melt, after burning the melt at 600 ° C., arbitrarily select 100 remaining glass fiber monofilaments,
The average value was measured to obtain a measured value of 19 mm. The average fiber length was 95% of the original LFRTP substrate length.

【0033】つぎに溶融物を、図1に図解的に示すよう
に、上型と下型との間に縦200mm、横200mm、
高さ50mmおよび厚さ3mmの箱型のキャビティを成
形し得るプレス成形型に移行させた。油圧プレスを用い
て150kg/cmの圧力で1分間プレスした。この
成形体において溶融物を成形型に移した際、最初に接地
した部分(チャージ部)からASTM D256および
D790に準拠した形で試験片を切り出し、各n=3
で、曲げ強度、曲げ弾性率およびシャルピー(フラット
ワイズ)衝撃強度の測定を行った。その平均値を表1に
示す。
Next, as shown schematically in FIG. 1, the melt is placed between the upper die and the lower die in a length of 200 mm, a width of 200 mm,
The mold was transferred to a press mold capable of molding a box-shaped cavity having a height of 50 mm and a thickness of 3 mm. Pressing was performed for 1 minute at a pressure of 150 kg / cm 2 using a hydraulic press. When the molten material was transferred to a molding die in this molded body, test pieces were cut out from a grounded portion (charged portion) in accordance with ASTM D256 and D790, and each n = 3
Then, the bending strength, the bending elastic modulus and the Charpy (flat wise) impact strength were measured. Table 1 shows the average value.

【0034】実施例2 ダイのノズル径を1.0mmに変えた以外は実施例1と
同様にしてLFRTP基材を得た。得られたLFRTP
基材の平均径は1.0mm、ガラス含有率は19.3容
量%、樹脂の含浸率はn=5の平均値で98%であっ
た。得られたLFRTP基材を、実施例1と同様に溶融
塊を作製した。なお、溶融物中の繊維の平均長の測定
は、溶融物を600℃で焼失させた後、残ったガラス繊
維のモノフィラメントを任意に100本選び、その平均
値を測定して、19mmの測定値を得た。繊維の平均長
は元のLFRTP基材長の95%であった。以下実施例
1と同様に成形体を得、ASTM D256およびD7
90に準拠した形で試験片を切り出し、各n=3で、曲
げ強度、曲げ弾性率およびシャルピー(フラットワイ
ズ)衝撃強度の測定を行った。その平均値を表1に示
す。
Example 2 An LFRTP substrate was obtained in the same manner as in Example 1 except that the diameter of the nozzle of the die was changed to 1.0 mm. LFRTP obtained
The average diameter of the substrate was 1.0 mm, the glass content was 19.3% by volume, and the resin impregnation rate was 98% as an average value of n = 5. From the obtained LFRTP base material, a molten mass was produced in the same manner as in Example 1. The average length of the fibers in the melt was measured by burning out the melt at 600 ° C, arbitrarily selecting 100 remaining glass fiber monofilaments, measuring the average value, and measuring the average value of 19 mm. I got The average fiber length was 95% of the original LFRTP substrate length. Thereafter, a molded body was obtained in the same manner as in Example 1, and ASTM D256 and D7
A test piece was cut out in a form conforming to No. 90, and the bending strength, flexural modulus and Charpy (flat wise) impact strength were measured at each n = 3. Table 1 shows the average value.

【0035】実施例3 実施例1で得られたLFRTP基材と非強化のポリプロ
ピレン樹脂(MI=40)をドライブレンドし、全体と
してのガラス含有率が19.3容量%となるように混合
した。この混合物を、押出口先端にシャッター機構を備
えたスクリュープリプラ式(可塑化部シリンダー径:9
0mm、圧縮比1.4、プランジャー部(計量部)シリ
ンダー径150mm、押出口径100mm)の射出機能
を備えた加熱搬送機で可塑化を行い、溶融塊を作製し
た。
Example 3 The LFRTP base material obtained in Example 1 and a non-reinforced polypropylene resin (MI = 40) were dry-blended and mixed so that the overall glass content was 19.3% by volume. . This mixture was supplied to a screw pre-plasticizer equipped with a shutter mechanism at the tip of the extrusion port (plasticizer cylinder diameter: 9).
Plasticization was performed with a heating and transporting machine having an injection function of 0 mm, a compression ratio of 1.4, a plunger (measuring unit) cylinder diameter of 150 mm, and an extrusion port diameter of 100 mm) to produce a molten mass.

【0036】なお、溶融物中の繊維の平均長の測定は、
溶融物を600℃で焼失させた後、残ったガラス繊維の
モノフィラメントを任意に100本選び、その平均値を
測定して、9mmの測定値を得た。繊維の平均長は元の
LFRTP基材長の45%であった。以下実施例1と同
様に成形体を得、ASTM D256およびD790に
準拠した形で試験片を切り出し、各n=3で、曲げ強
度、曲げ弾性率およびシャルピー(フラットワイズ)衝
撃強度の測定を行った。その平均値を表1に示す。
The average length of the fibers in the melt is measured as follows:
After the melt was burned off at 600 ° C., 100 remaining monofilaments of glass fiber were arbitrarily selected, and the average value was measured to obtain a measured value of 9 mm. The average fiber length was 45% of the original LFRTP substrate length. Thereafter, a molded body was obtained in the same manner as in Example 1, and a test piece was cut out in accordance with ASTM D256 and D790, and the bending strength, the bending elastic modulus, and the Charpy (flat wise) impact strength were measured at each n = 3. Was. Table 1 shows the average value.

【0037】実施例4 平均径13μmのモノフィラメントを用いて、フィラメ
ント数(集束本数)を600本のガラス繊維ストランド
を16本束ねて、MI=40の酸変性した溶融ポリプロ
ピレン(260℃)中に導入し、溶融含浸を行った後、
内径2.2mmのダイのノズルから30m/minの速
度で引き抜き、さらにペレタイザーで長さが20mmと
なるように切断してLFRTP基材を得た。得られたL
FRTP基材の平均径は2.2mm、ガラス含有率は4
5.5容量%、樹脂の含浸率はn=5の平均値で98%
であった。なお、上記においてnは測定数を表わす。得
られたLFRTP基材と非強化のポリプロピレン樹脂
(MI=40)をドライブレンドし、ガラス含有率が1
9.3容量%となるように混合した。
Example 4 Using monofilaments having an average diameter of 13 μm, 16 glass fiber strands having 600 filaments (number of bundles) were bundled and introduced into an acid-modified molten polypropylene (260 ° C.) having MI = 40. After performing the melt impregnation,
The LFRTP base material was obtained by pulling out from a die nozzle having an inner diameter of 2.2 mm at a speed of 30 m / min and further cutting with a pelletizer so that the length became 20 mm. L obtained
The average diameter of the FRTP substrate is 2.2 mm and the glass content is 4
5.5% by volume, resin impregnation rate is 98% as an average of n = 5
Met. In the above, n represents the number of measurements. The obtained LFRTP base material and a non-reinforced polypropylene resin (MI = 40) are dry-blended, and the glass content is 1
It mixed so that it might be set to 9.3 volume%.

【0038】この混合物を、先端にシャッター機構を備
え逆流防止リングのないインラインスクリュー式(シリ
ンダー径90mm、圧縮比1.4、押出口径90mm)
の射出機能を備えた加熱搬送機で可塑化を行い、溶融塊
を作製した。なお、溶融物中の繊維の平均長の測定は、
溶融物を600℃で焼失させた後、残ったガラス繊維の
モノフィラメントを任意に100本選び、その平均値を
測定して、8.2mmの測定値を得た。繊維の平均長は
元のLFRTP基材長の41%であった。以下実施例1
と同様に成形体を得、ASTM D256およびD79
0に準拠した形で試験片を切り出し、各n=3で、曲げ
強度、曲げ弾性率およびシャルピー(フラットワイズ)
衝撃強度の測定を行った。その平均値を表1に示す。
The mixture was inline screw type (cylinder diameter 90 mm, compression ratio 1.4, extrusion port diameter 90 mm) equipped with a shutter mechanism at the tip and without a backflow prevention ring.
Was plasticized by a heating and conveying machine having an injection function to produce a molten mass. In addition, the measurement of the average length of the fiber in the melt,
After the melt was burned off at 600 ° C., 100 remaining glass fiber monofilaments were arbitrarily selected, and the average value was measured to obtain a measured value of 8.2 mm. The average fiber length was 41% of the original LFRTP substrate length. Example 1 below
A molded product was obtained in the same manner as described above, and ASTM D256 and D79
A test piece was cut out in a form conforming to 0, and each of n = 3, bending strength, bending elastic modulus and Charpy (flat wise)
The impact strength was measured. Table 1 shows the average value.

【0039】比較例1 平均径13μmのモノフィラメントを用いて、フィラメ
ント数(集束本数)を600本のガラス繊維ストランド
を30本束ねて、MI=40の酸変性した溶融ポリプロ
ピレン(260℃)中に導入し、溶融含浸を行った後、
内径3.0mmのダイのノズルから15m/minの速
度で引き抜き、さらにペレタイザーで長さが20mmと
なるように切断してLFRTP基材を得た。得られたL
FRTP基材の平均径は3.0mm、ガラス含有率は4
5.5容量%、樹脂の含浸率はn=5の平均値で94%
であった。なお、上記においてnは測定数を表わす。
Comparative Example 1 Using monofilaments having an average diameter of 13 μm, 30 glass fiber strands having a number of filaments (bundling) of 600 were bundled and introduced into an acid-modified molten polypropylene (260 ° C.) having MI = 40. After performing the melt impregnation,
The LFRTP base material was obtained by pulling out from a die nozzle having an inner diameter of 3.0 mm at a speed of 15 m / min and further cutting it with a pelletizer so that the length became 20 mm. L obtained
The average diameter of the FRTP substrate is 3.0 mm and the glass content is 4
5.5% by volume, resin impregnation rate is 94% as an average of n = 5
Met. In the above, n represents the number of measurements.

【0040】ついで得られたLFRTP基材を、押出口
先端にシャッター機構を備え230℃に加熱されている
内径90mmのシリンダー内に投入し可塑化を行った。
溶融物をプランジャーで押すことにより溶融塊を作製
し、シャッターを開放させ、さらにプランジャーを押す
ことにより溶融塊を取り出した。
Next, the obtained LFRTP base material was put into a cylinder having an inner diameter of 90 mm and equipped with a shutter mechanism at the tip of the extrusion port and heated to 230 ° C. to perform plasticization.
A molten mass was prepared by pressing the melt with a plunger, the shutter was opened, and the molten mass was taken out by further pressing the plunger.

【0041】なお、溶融物中の繊維の平均長の測定は、
溶融物を600℃で焼失させた後、残ったガラス繊維の
モノフィラメントを任意に100本選び、その平均値を
測定して、19mmの測定値を得た。繊維の平均長は元
のLFRTP基材長の95%であった。以下実施例1と
同様に成形体を得、ASTM D256およびD790
に準拠した形で試験片を切り出し、各n=3で、曲げ強
度、曲げ弾性率およびシャルピー(フラットワイズ)衝
撃強度の測定を行った。その平均値を表1に示す。
Incidentally, the measurement of the average length of the fiber in the melt is as follows.
After the melt was burned off at 600 ° C., 100 remaining monofilaments of glass fiber were arbitrarily selected, and the average value was measured to obtain a measured value of 19 mm. The average fiber length was 95% of the original LFRTP substrate length. Thereafter, a molded product was obtained in the same manner as in Example 1, and ASTM D256 and D790 were obtained.
A test piece was cut out in a form conforming to the above, and the bending strength, the bending elastic modulus, and the Charpy (flat wise) impact strength were measured at each n = 3. Table 1 shows the average value.

【0042】比較例2 比較例1で得られたLFRTP基材と非強化のポリプロ
ピレン樹脂(MI=40)をドライブレンドし、ガラス
含有率が19.3容量%となるように混合した。
Comparative Example 2 The LFRTP base material obtained in Comparative Example 1 and a non-reinforced polypropylene resin (MI = 40) were dry-blended and mixed so that the glass content was 19.3% by volume.

【0043】この混合物を、実施例4と同様なインライ
ンスクリュー式の射出機能を備えた加熱搬送機で可塑化
を行い、溶融塊を作製した。なお、溶融物中の繊維の平
均長の測定は、溶融物を600℃で焼失させた後、残っ
たガラス繊維のモノフィラメントを任意に100本選
び、その平均値を測定して、7.0mmの測定値を得
た。繊維の平均長は元のLFRTP基材長の35%であ
った。以下実施例1と同様に成形体を得、ASTM D
256およびD790に準拠した形で試験片を切り出
し、各n=3で、曲げ強度、曲げ弾性率およびシャルピ
ー(フラットワイズ)衝撃強度の測定を行った。その平
均値を表1に示す。
This mixture was plasticized by a heating and conveying machine having an in-line screw type injection function similar to that of Example 4 to produce a molten mass. The average length of the fibers in the melt was measured by burning out the melt at 600 ° C., arbitrarily selecting 100 remaining monofilaments of glass fibers, measuring the average value, and measuring the average length of 7.0 mm. Measurements were obtained. The average fiber length was 35% of the original LFRTP substrate length. Thereafter, a molded product was obtained in the same manner as in Example 1, and ASTM D
Test pieces were cut out in accordance with 256 and D790, and the bending strength, flexural modulus and Charpy (flat wise) impact strength were measured at each n = 3. Table 1 shows the average value.

【0044】比較例3 比較例1で得られたLFRTP基材と非強化のポリプロ
ピレン樹脂(MI=40)をドライブレンドし、ガラス
含有率が19.3容量%となるように混合した。この混
合物を、実施例3と同様なスクリュープリプラ式の射出
機能を備えた加熱搬送機で可塑化を行い、溶融塊を作製
した。なお、溶融物中の繊維の平均長の測定は、溶融物
を600℃で焼失させた後、残ったガラス繊維のモノフ
ィラメントを任意に100本選び、その平均値を測定し
て、6.8mmの測定値を得た。繊維の平均長は元のL
FRTP基材長の34%であった。以下実施例1と同様
に成形体を得、ASTM D256およびD790に準
拠した形で試験片を切り出し、各n=3で、曲げ強度、
曲げ弾性率およびシャルピー(フラットワイズ)衝撃強
度の測定を行った。その平均値を表1に示す。
Comparative Example 3 The LFRTP base material obtained in Comparative Example 1 and a non-reinforced polypropylene resin (MI = 40) were dry-blended and mixed so that the glass content was 19.3% by volume. This mixture was plasticized by a heating and transporting machine having the same screw prepura injection function as in Example 3 to produce a molten mass. The average length of the fibers in the melt was measured by burning out the melt at 600 ° C., arbitrarily selecting 100 remaining glass fiber monofilaments, measuring the average value, and measuring the average value of 6.8 mm. Measurements were obtained. The average length of the fiber is the original L
It was 34% of the FRTP substrate length. Hereinafter, a molded article was obtained in the same manner as in Example 1, and a test piece was cut out in a form in accordance with ASTM D256 and D790.
Flexural modulus and Charpy (flat wise) impact strength were measured. Table 1 shows the average value.

【0045】比較例4 比較例1で得られたLFRTP基材と非強化のポリプロ
ピレン樹脂(MI=40)をドライブレンドし、ガラス
含有率が19.3容量%となるように混合した。この混
合物を、逆流防止リングを備えたインライン式(シリン
ダー径90mm、圧縮比2.4、押出口径5.0mm)
の射出機能を備えた加熱搬送機を用いて可塑化を行い、
溶融塊を作成した。なお、溶融物中の繊維の平均長の測
定は、溶融物を600℃で焼失させた後、残ったガラス
繊維のモノフィラメントを任意に100本選び、その平
均値を測定して2.8mmの測定値を得た。繊維の平均
長は元のLFRTP基材長の14%であった。以下実施
例1と同様に成形体を得、ASTM D256およびD
790に準拠した形で試験片を切り出し、各n=3で、
曲げ強度、曲げ弾性率およびシャルピー(フラットワイ
ズ)衝撃強度の測定を行った。その平均値を表1に示
す。
Comparative Example 4 The LFRTP base material obtained in Comparative Example 1 and a non-reinforced polypropylene resin (MI = 40) were dry-blended and mixed so that the glass content was 19.3% by volume. This mixture was in-line type equipped with a backflow prevention ring (cylinder diameter 90 mm, compression ratio 2.4, extrusion port diameter 5.0 mm).
Plasticization using a heated transfer machine with an injection function of
A molten mass was made. The average length of the fibers in the melt was measured at 2.8 mm by burning the melt at 600 ° C., arbitrarily selecting 100 remaining glass fiber monofilaments, and measuring the average value. Value. The average fiber length was 14% of the original LFRTP substrate length. Thereafter, a molded product was obtained in the same manner as in Example 1, and ASTM D256 and D
Specimens were cut out in a form conforming to 790 and each n = 3.
Flexural strength, flexural modulus and Charpy (flat wise) impact strength were measured. Table 1 shows the average value.

【0046】比較例5 実施例1と同様のLFRTP基材を均一分散して、一
旦、平板プレスで5kg/cm2の圧力で押圧すること
により、3.8mm厚のシートを作成した後、縦176
mm、横176mmに切り出したシート状の予備成形体
を作成し、このシートを十分加熱し、実施例で用いたと
同じプレス成形型に2枚重ねて移送し、150kg/c
2の圧力で1分間プレスしてLFRTP成形体を得
た。ASTMD256およびD790に準拠した形で試
験片を切り出し、各n=3で、曲げ強度、曲げ弾性率お
よびシャルピー(フラットワイズ)衝撃強度の測定を行
った。その平均値を表1に示す。この方法では上記のよ
うにシート化工程を経るために生産効率が劣るものであ
った。
Comparative Example 5 The same LFRTP base material as in Example 1 was uniformly dispersed and pressed once with a flat plate press at a pressure of 5 kg / cm 2 to form a 3.8 mm thick sheet. 176
mm, a preform in the form of a sheet cut out to a width of 176 mm was prepared, the sheet was heated sufficiently, and two sheets were transferred to the same press molding die used in the examples, and transferred at 150 kg / c.
It was pressed at a pressure of m 2 for 1 minute to obtain an LFRTP molded body. A test piece was cut out in accordance with ASTM D256 and D790, and the bending strength, the flexural modulus and the Charpy (flat wise) impact strength were measured for each n = 3. Table 1 shows the average value. In this method, the production efficiency is inferior due to the sheeting step as described above.

【0047】 [0047]

【0048】 [0048]

【0049】[0049]

【発明の効果】本発明によれば、あまり剪断を加えずに
LFRTP基材を加熱搬送することにより、成形体中の
繊維を長く保持することが可能となり、成形体の機械的
強度、特に衝撃強度を向上させると共に、繊維のモノフ
ィラメント化を低減させて成形時の溶融物の流動性を良
好にすることができる。さらに、本発明では加熱工程を
伴うシート化を経ることなく成形するため、樹脂の熱劣
化を抑えると共に、柔らかくなった溶融シートを複数枚
成形型に移動させるという従来技術の煩雑な作業を不要
にするものである。
According to the present invention, by heating and transporting the LFRTP base material without applying much shearing, it is possible to hold the fibers in the molded body for a long time, and the mechanical strength of the molded body, especially the impact It is possible to improve the strength and to reduce the monofilament of the fiber to improve the fluidity of the melt during molding. Furthermore, in the present invention, since molding is performed without forming a sheet accompanied by a heating step, thermal degradation of the resin is suppressed, and the complicated work of the prior art of moving the softened molten sheet to a plurality of molds is unnecessary. Is what you do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の方法を図解的に説明する図。FIG. 1 is a diagram schematically illustrating a method of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】長繊維強化熱可塑性樹脂(LFRTP)基
材を単独または該基材を非強化樹脂で希釈して溶融して
溶融物を作成し、該溶融物を成形型に供給してプレス成
形するLFRTP成形体の製造方法において、上記LF
RTP基材が、連続強化繊維ストランド一本または複数
本に熱可塑性樹脂を含浸させてノズルから引き抜き、平
均長10〜50mmに切断した平均径または平均厚0.
05〜2.5mm、かつ強化繊維含有率15〜80容量
%のLFRTP基材であり、該基材を加熱搬送機で溶融
物中の強化繊維の平均長が元のLFRTP基材長の40
%以上の長さを保持した溶融物を作製し成形することを
特徴とするLFRTP成形体の製造方法。
1. A melt is prepared by melting a long fiber reinforced thermoplastic resin (LFRTP) base material alone or by diluting the base material with a non-reinforced resin to form a melt. The melt is supplied to a molding die and pressed. In the method for producing an LFRTP molded article to be molded, the LF
One or more continuous reinforcing fiber strands are impregnated with a thermoplastic resin and pulled out from a nozzle, and the RTP substrate is cut into an average length or thickness of 10 to 50 mm.
An LFRTP base material having a reinforcing fiber content of 15 to 80% by volume and having a reinforcing fiber content of 15 to 80% by volume.
%. A method for producing an LFRTP molded article, comprising producing and molding a molten material having a length of at least 1%.
【請求項2】LFRTP基材の熱可塑性樹脂含浸率が、
95%以上である請求項1に記載のLFRTP成形体の
製造方法。
2. The thermoplastic resin impregnation rate of the LFRTP base material is as follows:
The method for producing an LFRTP molded article according to claim 1, which is 95% or more.
【請求項3】LFRTP基材の平均径または平均厚が
0.05〜1.5mmである請求項1または請求項2に
記載のLFRTP成形体の製造方法。
3. The method according to claim 1, wherein the LFRTP substrate has an average diameter or an average thickness of 0.05 to 1.5 mm.
【請求項4】加熱搬送機が、LFRTP基材の長さ以上
の径のシリンダーを有し、先端の押出口の絞り率が1.
0〜100であり、かつ押出口の径がLFRTP基材の
長さ以上を有し、押出口先端にシャッター機構を備えた
プランジャー押出機である請求項1〜3にいずれか1つ
に記載のLFRTP成形体の製造方法。
4. A heating and conveying machine has a cylinder having a diameter equal to or greater than the length of an LFRTP base material, and a drawing rate of an extruding port at a tip is 1.
The plunger extruder which is 0 to 100, has a diameter of the extrusion port equal to or longer than the length of the LFRTP base material, and is provided with a shutter mechanism at the tip of the extrusion port. The method for producing an LFRTP molded article of the above.
【請求項5】加熱搬送機が、LFRTP基材の長さ以上
のシリンダー径を有し、押出口先端にシャッター機構を
備えたインラインスクリュー式射出機能を備えたもので
あり、可塑化部のスクリューの圧縮比が1.1〜1.8
であり、先端の押出口の絞り率が1.0〜100であ
り、かつ押出口の径がLFRTP基材の長さ以上の径を
有し、逆流防止リングを備えていないものである請求項
1〜3にいずれか1つに記載のLFRTP成形体の製造
方法。
5. A heating and conveying machine having a cylinder diameter equal to or greater than the length of an LFRTP base material and having an inline screw type injection function having a shutter mechanism at the end of an extrusion port, wherein a screw of a plasticizing section is provided. Compression ratio of 1.1 to 1.8
Wherein the squeezing rate of the extruding port at the tip is 1.0 to 100, and the diameter of the extruding port is equal to or larger than the length of the LFRTP base material, and is not provided with a backflow prevention ring. The method for producing an LFRTP molded article according to any one of 1 to 3 above.
【請求項6】加熱搬送機が、LFRTP基材の長さ以上
のシリンダー径を有し、押出口先端にシャッター機構を
備えたスクリュープリプラ式射出機能を備えたものであ
り、可塑化部のスクリューの圧縮比が1.1〜1.8で
あり、先端の押出口の絞り率が1.0〜100であり、
かつ押出口の径がLFRTP基材の長さ以上の径を有す
るものである請求項1〜3にいずれか1つに記載のLF
RTP成形体の製造方法。
6. A heating and conveying machine having a cylinder diameter equal to or greater than the length of the LFRTP base material and having a screw pre-plastic injection function provided with a shutter mechanism at the end of an extrusion port, wherein a screw of a plasticizing section is provided. Compression ratio of 1.1 to 1.8, the drawing rate of the extrusion port at the tip is 1.0 to 100,
The LF according to any one of claims 1 to 3, wherein the diameter of the extrusion port is equal to or greater than the length of the LFRTP base material.
A method for producing an RTP molded body.
JP35498899A 1998-12-15 1999-12-14 Method for producing a long fiber reinforced thermoplastic resin molding Expired - Fee Related JP4976610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35498899A JP4976610B2 (en) 1998-12-15 1999-12-14 Method for producing a long fiber reinforced thermoplastic resin molding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP35678398 1998-12-15
JP10-356783 1998-12-15
JP1998356783 1998-12-15
JP35498899A JP4976610B2 (en) 1998-12-15 1999-12-14 Method for producing a long fiber reinforced thermoplastic resin molding

Publications (2)

Publication Number Publication Date
JP2000233421A true JP2000233421A (en) 2000-08-29
JP4976610B2 JP4976610B2 (en) 2012-07-18

Family

ID=26580190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35498899A Expired - Fee Related JP4976610B2 (en) 1998-12-15 1999-12-14 Method for producing a long fiber reinforced thermoplastic resin molding

Country Status (1)

Country Link
JP (1) JP4976610B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190340A1 (en) * 2014-06-09 2015-12-17 東洋機械金属株式会社 Composite material press molding system and kneader/extruder using same
JP2016016582A (en) * 2014-07-08 2016-02-01 東洋機械金属株式会社 Press molding system for composite material, and metered amount extruder for compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190340A1 (en) * 2014-06-09 2015-12-17 東洋機械金属株式会社 Composite material press molding system and kneader/extruder using same
JP2015231683A (en) * 2014-06-09 2015-12-24 東洋機械金属株式会社 Press molding system for composite material, and kneading extruder used therefor
JP2016016582A (en) * 2014-07-08 2016-02-01 東洋機械金属株式会社 Press molding system for composite material, and metered amount extruder for compound

Also Published As

Publication number Publication date
JP4976610B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
US6090319A (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
CN101935420B (en) Automobile bottom deflector made of LFT-D (Fiber Reinforce Thermoplastic-Direct) material and manufacture method thereof
KR930000742B1 (en) Pultrusion process
JP7156766B2 (en) Fiber-reinforced molding compound and method of forming and using same
JPH06134837A (en) Production of composite product
WO2016167349A1 (en) Fiber-reinforced composite material molded article and method for manufacturing same
JP3410462B2 (en) Method for producing long fiber reinforced thermoplastic resin molded article and product produced thereby
EP1105277B1 (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
JP2012056173A (en) Method for manufacturing fiber-reinforced resin material
KR100844624B1 (en) Toe cap made of long fiber-reinforced thermoplastic resin for safety shoe and method for the production thereof
TW201406842A (en) Carbon fiber composite material and molded article formed by the same, and manufacturing method of these
HU216514B (en) Method for producing of reinforced thermoplastic products
KR102323052B1 (en) Fiber-reinforced thermoplastic resin kneading method, plasticizer and extruder
JP2008284729A (en) Fiber-containing resin pellet and its manufacturing method
JPS63132036A (en) Manufacture of fiber reinforced composite material
JP4976610B2 (en) Method for producing a long fiber reinforced thermoplastic resin molding
JP2000141502A (en) Manufacture of long fiber reinforced thermoplastic resin sheet and long fiber reinforced thermoplastic resin sheet
JP2524941B2 (en) Continuous glass fiber reinforced thermoplastic resin pellets and method for producing the same
JPH0365311A (en) Carbon fiber chop
KR102286093B1 (en) A molding method and molding apparatus for a molded article made of a fiber-reinforced thermoplastic resin
CN112831109B (en) Moldable high performance thermoplastic composite material with single fiber length distribution
JPH0762246A (en) Production of filament-reinforced thermoplastic resin composition and its apparatus
JPH1119961A (en) Manufacture of fiber-reinforced, thermoplastic resin light-weight molding
JPH10329190A (en) Manufacture of fiber reinforced thermoplastic resin molded body
KR101462881B1 (en) Apparatus For Manufacturing Long Fiber Reinforced Thermoplastic Preform

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091001

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4976610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees