JPH03113247A - Multi-refrigeration cycle - Google Patents

Multi-refrigeration cycle

Info

Publication number
JPH03113247A
JPH03113247A JP1249141A JP24914189A JPH03113247A JP H03113247 A JPH03113247 A JP H03113247A JP 1249141 A JP1249141 A JP 1249141A JP 24914189 A JP24914189 A JP 24914189A JP H03113247 A JPH03113247 A JP H03113247A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
indoor heat
refrigerant
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1249141A
Other languages
Japanese (ja)
Other versions
JP2703070B2 (en
Inventor
Setsuo Asai
浅井 節郎
Hirokiyo Terada
寺田 浩清
Takao Chiaki
千秋 隆雄
Kensaku Kokuni
研作 小国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1249141A priority Critical patent/JP2703070B2/en
Publication of JPH03113247A publication Critical patent/JPH03113247A/en
Application granted granted Critical
Publication of JP2703070B2 publication Critical patent/JP2703070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To automatically control temperatures in rooms separately to desired values by independently controlling the opening of room heat exchange expansion valves based upon deviations between room temperatures and desired values of the formers, and further controlling the openings of outdoor heat exchange expansion valves based upon deviations between the degree of excess heating of gas refrigerations on the discharge side of a compressor and an expectation value of the former. CONSTITUTION:In cooling operation, refrigerant gas from a compressor 1 passes through a four-way valve 2 as indicated by a dotted line, and is condensed and liquefied in an outdoor heat exchanger 3, and further are slightly reduced in pressure by an expansion valve 4. Then, it passes through capillary tubes 5a-5c where it is further reduced in its pressure to form intermediate pressure. Refrigerant side pressure of a room heat exchanger 6a is controlled by an expansion valve 7a, i.e., the opening of the same is adjusted to provide set room temperature. Also for other room heat exchangers 6b, 6c opening of expansion valves 7b, 7c are performed. The refrigerant flows together after vaporization to some degree, and passes through the four-way valve 2 and enters an accumulator 8 and is sucked into the compressor 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1台の圧縮機に複数台の室内熱交換器を並列
に設け、マルチエアコンの各室すべての快適性の向上、
裾付工事上の制約を大巾に緩和した個別に室温を自動制
御するマルチ冷凍サイクルに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a single compressor with a plurality of indoor heat exchangers in parallel to improve the comfort of all rooms in a multi-air conditioner.
This article relates to a multi-refrigeration cycle that automatically controls individual room temperatures, greatly easing restrictions on hemming construction.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭58−156164号公報に記載
のように、各室内熱交換器毎に、そこへ流す冷媒流量を
増減してその部屋への冷暖房能力を所望室温になるよう
に調節する。各室の実室温とその希望値の偏差により、
各室内熱交m器に直列に設置t場れ良電子式膨張弁の一
度を制御するようになっていた。
As described in Japanese Unexamined Patent Publication No. 58-156164, the conventional device increases or decreases the flow rate of refrigerant flowing into each indoor heat exchanger to adjust the heating and cooling capacity for that room to the desired room temperature. do. Depending on the deviation between the actual room temperature of each room and its desired value,
An electronic expansion valve was installed in series with each indoor heat exchanger and controlled once.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

マルチ式空調機は従来、各部屋毎に所望の室温Kgl1
節する機能はついておらず、運転する室内機の台数が少
ないと、冷え過び、着り過ぎのクレームが出る事がしば
しばたった。また、各室内機への冷媒流れを均一にする
為、工事上の制約も多い結局、これらの問題は、空調機
自身に、時々刻々の6宣の温度を検知して、それに応じ
た能力を個別に自動制御する機能を与えなけ7Lばなら
ない〔課題を解決するための手段〕 個別憲温自mIl制御の手段として、室内熱交換器の冷
媒側圧力を制御し、その時の冷媒の飽和温度の変化によ
り、空気との熱交換量を制御する。その為に、冷房時に
は、低圧部の制御は大きく分けて、2つに分かれ、室内
熱交換器の中の低圧(中間圧と呼ぶことにする)と、圧
縮機の吸入圧である。暖房時には、同様に、高圧部の制
御は2つに分かれ、圧縮機の吐出圧と、室内熱交換器(
凝縮器)の内圧(中間圧)である。
Conventionally, multi-type air conditioners have a desired room temperature of Kgl1 for each room.
It does not have a function to adjust the temperature, and if there are few indoor units in operation, there are often complaints about it getting too cold or overcooked. In addition, in order to make the flow of refrigerant to each indoor unit uniform, there are many construction restrictions.In the end, these problems are caused by the air conditioner itself being able to detect the temperature of 6 degrees from moment to moment and increase its capacity accordingly. [Means to solve the problem] As a means of individual automatic temperature control, the pressure on the refrigerant side of the indoor heat exchanger is controlled, and the saturation temperature of the refrigerant at that time is controlled. This change controls the amount of heat exchanged with the air. Therefore, during cooling, the control of the low pressure section is roughly divided into two parts: the low pressure in the indoor heat exchanger (referred to as intermediate pressure) and the suction pressure of the compressor. During heating, control of the high pressure section is similarly divided into two parts: compressor discharge pressure and indoor heat exchanger (
This is the internal pressure (intermediate pressure) of the condenser).

この中間圧を電子式膨張弁で調節して、各室毎に室温を
設定室温に合わせる。
This intermediate pressure is adjusted using an electronic expansion valve to adjust the room temperature in each chamber to the set room temperature.

〔作用〕[Effect]

各室内熱交換器は両端に夫々キャビラリテ、−プと電子
式膨張弁を直列に接続され、冷暖とも、この電子式膨張
弁の開度な、対応する部屋の室温と設定室温との偏差に
応じて増減する。
Each indoor heat exchanger is connected in series with a cavity and an electronic expansion valve at both ends, and both cooling and heating depend on the opening degree of the electronic expansion valve and the deviation between the room temperature of the corresponding room and the set room temperature. increase or decrease.

これによって、当該熱交換器の冷媒温度(その圧力に対
応し7F、、Ba′40温度)は、寸度、所望室温にな
るに必要な冷暖房能力(熱交換器)となるように自動的
に調節さMLる。
As a result, the refrigerant temperature of the heat exchanger (corresponding to its pressure, 7F, Ba'40 temperature) is automatically adjusted to the cooling and heating capacity (heat exchanger) necessary to reach the desired room temperature. Adjusted ML.

第1図の膨張弁V□、V、、V、は次式により、マイコ
ンで制御される。即ち、V、17)開度修正量Δvi(
1周期当たり)は、 ・・・・・・・・・・・・(1) 但し Δ#i ! #i −”i〕slE’rΔVix
k、j Δ#i−y Δ#i+に、’ Δ#4 、I−
P−、(2)但し また、その時、第1図の膨張弁v4の開度は、所定のス
ーパヒー) (8H)SI?’になるように制御され1
周期当り修正量Δv4を次式による。即ちΔV、−に□
Δ8Hd+に1 di(Δ8Hd)但し [Δ8Hd−ち−−− 〔SH〕!!IT 前と同様に、 その符号は 次に、 この時の最適な圧m機回転数は、 次式に より決定される。
The expansion valves V□, V, ,V in FIG. 1 are controlled by a microcomputer according to the following equation. That is, V, 17) opening correction amount Δvi(
(per period) is ・・・・・・・・・・・・(1) However, Δ#i! #i −”i]slE'rΔVix
k, j Δ#i-y Δ#i+,'Δ#4, I-
P-, (2) However, at that time, the opening degree of the expansion valve v4 in FIG. ' is controlled to be 1
The correction amount Δv4 per period is determined by the following equation. That is, ΔV, -□
1 di for Δ8Hd+ (Δ8Hd) However, [Δ8Hd−chi--- [SH]! ! As before, its sign is then, and the optimal compressor rotation speed at this time is determined by the following formula.

即ち、 回転数の修正量ΔHzは 但し ΔH工は前と同様に、 以上、(1)乃至(5)式を用りて、マイコンにより、
演算処理され、各要素がフィードバック制御される。
In other words, the correction amount ΔHz of the rotational speed is, however, the ΔH work is as before, and using formulas (1) to (5), the microcomputer calculates the following:
Arithmetic processing is performed, and each element is feedback-controlled.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

先ず、冷房運転は次のように動作する。圧縮機lを出た
冷媒ガスは四方弁2を点線表示のように経て、室外熱交
8で凝縮液化し、膨張弁4(v4)により、若干の減圧
が行われる。ついでキャビンリチューブ58〜5Cを通
ってさらに減圧され中間圧を形成する。この中間圧に対
する飽和温度で冷媒は蒸発するつ例えば9気温度0□の
室内熱交換器6aでは、この空気側と冷媒側の温度差に
見合った冷房能力を生ずる事になる。この室内熱交換器
6aの冷媒側圧力は膨張弁7aによって制御され、設定
室温になるように開度(その結果として熱交換量)が調
節される。他の室内熱交換器6bS6Cも同様に室温θ
2.#3が所定値になるよう(偏差によって)、膨張弁
7b、7cの開度制御が行われる。冷媒は成る程度の気
化後1合流して、四方弁2を経て、アキュムレータ8に
入り、圧縮機lに吸入される。この吸入冷媒は吐出側の
スーパヒート、即ち、温度センサ12で検知された温度
Tdと、圧力センサ11の圧力からの冷媒飽和温度換算
jiTc(つまり凝縮温度)とから、8Hd−Td−T
cがマイコン内部で計算され、この値が所定の値になる
ように、先の膨張弁4(v4)が制御される。
First, the cooling operation operates as follows. The refrigerant gas leaving the compressor 1 passes through the four-way valve 2 as shown by the dotted line, is condensed and liquefied in the outdoor heat exchanger 8, and is slightly reduced in pressure by the expansion valve 4 (v4). Then, the pressure is further reduced through the cabin retubes 58 to 5C to form an intermediate pressure. The refrigerant evaporates at the saturation temperature with respect to this intermediate pressure.For example, in the indoor heat exchanger 6a with a temperature of 9 0□, a cooling capacity commensurate with this temperature difference between the air side and the refrigerant side is generated. The pressure on the refrigerant side of the indoor heat exchanger 6a is controlled by the expansion valve 7a, and the degree of opening (as a result, the amount of heat exchanged) is adjusted so that the set room temperature is achieved. Similarly, the room temperature θ of other indoor heat exchangers 6bS6C
2. The opening degree of the expansion valves 7b and 7c is controlled so that #3 becomes a predetermined value (depending on the deviation). After the refrigerant is vaporized to a certain extent, it joins together, passes through the four-way valve 2, enters the accumulator 8, and is sucked into the compressor 1. This suction refrigerant is superheated on the discharge side, that is, from the temperature Td detected by the temperature sensor 12 and the refrigerant saturation temperature conversion jiTc (that is, condensation temperature) from the pressure of the pressure sensor 11, 8Hd-Td-T
c is calculated inside the microcomputer, and the expansion valve 4 (v4) is controlled so that this value becomes a predetermined value.

次に、暖房サイクルは、圧縮機lから吐出筋れた冷媒ガ
スは、四方弁2を実線表示のように通りて、分岐点へ行
き、分岐後、f#張弁7a*7be7Cで減圧されて(
中間圧を形成して)室内熱交換器6a t 6b I 
6Cへ入る。ここで中間圧に対応した、冷S飽和温度で
部屋の空気との熱交換が行われる。例えば、室温θ、が
設定値より高くなると、それに6じて、g5!に弁7a
は閉じる方向に制御され、熱交換器6a内圧力(中間圧
)は下る方向に動き、冷媒温度が下って、空気への放熱
量(りまり暖房能力)も減って、室温をそれ以上、上げ
ないように作用する。かくして、膨張弁7as?bs?
’によるq!r室内ユニットの能力制御により、各室は
別々の所望の温度に保たれる。凝縮した液冷媒は、キャ
ビラリチ、−プ5a @ 5b 15Cで、−旦やや減
圧後、合流する。
Next, in the heating cycle, the refrigerant gas discharged from the compressor 1 passes through the four-way valve 2 as shown by the solid line, goes to the branch point, and after branching, is depressurized by the f# tension valve 7a * 7be 7C. (
(forming intermediate pressure) indoor heat exchanger 6a t 6b I
Enter 6C. Here, heat exchange with the room air takes place at a cold S saturation temperature corresponding to the intermediate pressure. For example, when the room temperature θ becomes higher than the set value, g5! ni valve 7a
is controlled in the closing direction, the internal pressure (intermediate pressure) of the heat exchanger 6a moves in the downward direction, the refrigerant temperature decreases, and the amount of heat released to the air (remari heating capacity) decreases, making it impossible to raise the room temperature any further. It acts like there is no such thing. Thus, the expansion valve 7as? bs?
'by q! r Each room is maintained at a separate desired temperature by controlling the capacity of the indoor unit. The condensed liquid refrigerant joins together in the cavity 5a @ 5b 15C after being slightly depressurized.

合流した冷媒は膨張弁4(V4)で減圧され(後述する
ように、吐出側スーパヒートを所定値になるように)、
室外熱交換器8で、蒸発する。そ7)dks四方弁2、
ア中エムレタ8を通って圧縮機lに吸入される。冷房の
場合と同様、tftta機の吐出ガスのスーパヒート(
温度検知器12の温度Tdと圧力センサ11の圧力の飽
和源KiA算1直Tcを用い、Td  Ip C)が所
定の値になるように、膨張弁4(V4)は制御される。
The combined refrigerant is depressurized by the expansion valve 4 (V4) (as described later, the discharge side super heat is set to a predetermined value),
It is evaporated in the outdoor heat exchanger 8. Part 7) dks four-way valve 2,
It passes through the emleter 8 and is sucked into the compressor 1. As in the case of air conditioning, the discharge gas of the tftta machine is superheated (
The expansion valve 4 (V4) is controlled using the temperature Td of the temperature sensor 12 and the saturated source KiA calculation Tc of the pressure of the pressure sensor 11 so that Td Ip C) becomes a predetermined value.

例えば、膨張弁7a、7b一定のまま、7cのみ、少し
閉じた場合(つまり、暖房能力を減らす方向に動いた時
)、吐出側スー・・くヒートを保持しようとして、膨張
弁4は若干、開くことになる。
For example, if expansion valves 7a and 7b remain constant, but only 7c closes a little (that is, when the heating capacity is reduced), the expansion valve 4 will close slightly in an attempt to maintain the discharge side heat. It will open.

また、高圧の過渡的な異常上昇や、低圧の異常低下に対
処する装置として、電磁弁9、キャピラリlOのライン
が設けられている。この電磁弁9を開ける事により、上
記のような異常圧力を防ぐ事ができる。
Furthermore, a solenoid valve 9 and a capillary lO line are provided as devices for dealing with a transient abnormal rise in high pressure or an abnormal drop in low pressure. By opening this solenoid valve 9, abnormal pressure as described above can be prevented.

次に、不発明の劃−装置の概念を、第2図で説明する。Next, the concept of the inventive punching device will be explained with reference to FIG.

即ち、温度検知器により、各室の温度#、、 #2.0
3がマイコンに取り込まれる。また、圧縮機の吐出温度
Tdも、その圧力(第1図の圧力センサ11の出力)も
マイコンに取り込まれ、前述の「作用」の項で述べたよ
5な計算処理が行われて、%膨張弁ごとに、最適開度に
制御堰れる。圧縮機も各室の温度#、 、 a、 、 
#、とその設定値(0□)!JET、〔θ2)iff 
I (θ3〕1との偏差の一次結合によりマイコン処理
され、インバータ→圧縮機と経由して、過不足のない、
最適回転数に制御される。
That is, the temperature of each room is determined by the temperature sensor as #2.0.
3 is imported into the microcomputer. In addition, the discharge temperature Td of the compressor and its pressure (output of the pressure sensor 11 in Fig. 1) are taken into the microcomputer, and the five calculation processes described in the "effects" section above are performed, resulting in % expansion. Each valve is controlled to its optimum opening degree. The temperature of each chamber of the compressor is #, , a, ,
#, and its setting value (0□)! JET, [θ2)if
I (θ3) is processed by a microcomputer by a linear combination of the deviation with 1, and is passed through the inverter → compressor to ensure that there is no excess or deficiency.
Controlled to the optimum rotation speed.

第81Ad冷7M時、膨張弁Vl 、l 、V8 (4
1図 17 a〜7c)が、(a)図に示すように、少
し開または、Φ)図に示すように閉じた時、冷凍サイク
ルがどのよりに、反応するかを図式で示したものである
81st Ad cold 7M, expansion valve Vl, l, V8 (4
1 This is a diagram showing how the refrigeration cycle reacts when 17a to 7c) are slightly opened as shown in figure (a) or closed as shown in figure Φ). be.

即ち、(a)図に示すように、弁がわずかに開くとくこ
れは、Δθ増、つまり室温の上昇を意味する)、圧縮機
の回転数アップ(これは、圧縮機吸入圧Ps低下方向に
働く)、当該室内機への冷媒分配量の増加、熱交換器内
冷媒温度低下による、熱交換能力増大、弁が開いた事に
よる圧縮機吸入圧の押し上げ作用等が、好都合にバラン
スする方向へ働く事を示している。
That is, as shown in figure (a), when the valve opens slightly, this means an increase in Δθ, which means a rise in room temperature), and an increase in the rotation speed of the compressor (this means that the compressor suction pressure Ps decreases). ), an increase in the amount of refrigerant distributed to the indoor unit, an increase in heat exchange capacity due to a decrease in the refrigerant temperature in the heat exchanger, an effect of pushing up the compressor suction pressure due to the opening of the valve, etc., work toward a favorable balance. It shows things.

第4図は同様に、膨張弁Vl、V2.V8  の動きに
対するサイクルの応答を暖房の場合について示したもの
である。即ち、(a)図に示すように、弁が少し開いた
時(つまり、Δ0が減り、室温が下った事を意味する。
Similarly, FIG. 4 shows expansion valves Vl, V2. The cycle response to V8 movement is shown for heating. That is, as shown in Figure (a), when the valve opens a little (that is, Δ0 decreases and the room temperature drops).

)、圧縮機回転数アップ(これは、圧縮機吸入圧を下げ
るように働<)、当該ユニットへの冷媒流量の増加(弁
開で)、弁開による圧縮機吸入圧の上昇傾向(これを先
の圧縮機回転数アップによる圧力降下作用が打ち消すよ
うに作用)、凝縮温度Tcの高温化による熱交換能力増
加が、互に、好都合に作用し合一、釣合う事がわかる。
), compressor rotation speed increases (this acts to lower the compressor suction pressure), the refrigerant flow rate to the unit increases (by opening the valve), the compressor suction pressure tends to increase due to the valve opening (this It can be seen that the increase in heat exchange capacity due to the increase in the condensing temperature Tc (acting so as to cancel out the pressure drop effect due to the increase in the compressor rotation speed) and the increase in heat exchange capacity due to the increase in the condensing temperature Tc work together favorably and balance each other out.

弁が少し閉じた時は、逆に作用し、第4因の(b)図で
示すように応答する。
When the valve closes slightly, it acts in the opposite direction and responds as shown in Figure 4 (b) of the fourth factor.

次に、冷凍サイクルの動作を冷媒のP−i線図で説明す
る。第5図にそれを示す。(a)図は冷房時、(b)図
は暖房時を示“r6まず冷房は圧縮機の吸入冷媒の状態
がCであり、(第1図の8の点)、圧縮されて吐出され
た冷媒ガスはdの状態となる。
Next, the operation of the refrigeration cycle will be explained using a P-i diagram of the refrigerant. This is shown in Figure 5. (a) Figure shows cooling, (b) Figure shows heating. First, in cooling, the state of the refrigerant sucked into the compressor is C (point 8 in Figure 1), and the refrigerant is compressed and discharged. The refrigerant gas is in the state d.

室外熱交換器で(41図の8)冷却液化した冷媒は膨張
弁V4(第1図7)4)に入る。この時の状態はeとな
る。ついで、分岐して、中ヤビラリで減圧された後の状
態は、夫々1asza+3aであり(第1図の室温θ□
の熱交換器入口冷媒の状態、室温0□の熱交換器入口の
冷媒の状態、室温03の熱交換器入口の状態を夫々、表
わす)、各室内熱交換器で蒸発した後の状態が、lb、
2b、8bとなる。これらの冷媒は、夫々、膨張弁でさ
らに減圧され、合流した点がfである。(第1図ではV
l−V8左の合流点)。これは途中、熱洩れで温められ
て%C点に戻る。
The refrigerant cooled and liquefied in the outdoor heat exchanger (8 in Figure 41) enters the expansion valve V4 (7 in Figure 1) 4). The state at this time is e. Then, the state after branching and being depressurized at the middle Yabirari is 1asza+3a (room temperature θ□ in Fig. 1).
The state of the refrigerant at the heat exchanger inlet at the room temperature of 0□, the state of the refrigerant at the heat exchanger inlet at the room temperature of 03), and the state after evaporation in each indoor heat exchanger are as follows: lb,
2b and 8b. The pressure of these refrigerants is further reduced by expansion valves, and the point at which they meet is f. (In Figure 1, V
l-V8 left confluence). On the way, it is warmed by heat leakage and returns to the %C point.

さて、暖房サイクルを同じく、Φ)図のP−i線図によ
って説明すると次の様になる。即ち、圧縮機の吸入冷媒
の状態Cより、圧縮された冷媒は吐出され、この時の状
態はDである。これは、途中のfAロスでF点に行き(
第1図では、膨張弁7a+7b+7cの入口の状態)、
分岐後、各#追伸で若干の減圧が行われた点が、lA、
2人、8Aである(第1図では、室温θ□の熱交31&
器への入口冷媒の状態、室11Aθ□′/′)熱交換器
への入口冷媒の状態、室温0.の熱交換4へD人口冷媒
り状態、を夫々、表わす)、各室内熱交換器で冷却液化
した冷媒の状態は、  lB、2B、811である。こ
れらは若干の中ヤビラリによる減圧後に合流し、E点の
状態となるCg1図では、膨張弁4と合流点の間の状態
)。これは、史に膨張弁により減圧嘔れ、室外熱交で蒸
発して0点に至る($1図の8)、そして、再び圧縮機
に吸入される。上記説明で分るように、P−i線図上で
は、各熱交換器テノ1 a−el b 、 2 a→”
l b 、 3 a−e3 bの上下方向のレベルが制
御される。暖房では、同様にIA→IB t 2A−2
B 、aA−eaBの上下方向レベルが制御される。
Now, the heating cycle will be explained using the P-i diagram of the Φ) diagram as follows. That is, the compressed refrigerant is discharged from the state C of the refrigerant sucked into the compressor, and the state at this time is D. This goes to point F with fA loss on the way (
In FIG. 1, the state of the inlet of the expansion valves 7a+7b+7c),
After branching, the point where a slight decompression was performed in each # P.S.
2 people, 8A (in Figure 1, heat exchanger 31&
The state of the refrigerant at the entrance to the heat exchanger, the state of the refrigerant at the entrance to the heat exchanger, the room temperature 0. The states of the refrigerant cooled and liquefied in each indoor heat exchanger are 1B, 2B, and 811. These merge after the pressure is reduced due to a slight drop in the middle, resulting in the state at point E (in the diagram Cg1, the state is between the expansion valve 4 and the merging point). This is decompressed by the expansion valve, evaporated by the outdoor heat exchanger, reaches the zero point (8 in the $1 diagram), and is sucked into the compressor again. As can be seen from the above explanation, on the P-i diagram, each heat exchanger 1a-elb, 2a→"
The vertical levels of l b , 3 a - e3 b are controlled. Similarly, in heating, IA → IB t 2A-2
The vertical levels of B, aA-eaB are controlled.

本発明は、室内熱交換器が一定絞り装置(ここではキャ
ピラリ)と電子式膨張弁にはさまれ、膨張弁が冷房時に
下流側、暖房時に上流側となるよう配置される事が特徴
である。この構成は、冷暖同時可能なマルチ冷凍ティク
ルにも適用可能である。その一実施例をs6図に示す。
The present invention is characterized in that the indoor heat exchanger is sandwiched between a constant throttle device (here, a capillary) and an electronic expansion valve, and the expansion valve is arranged on the downstream side during cooling and on the upstream side during heating. . This configuration is also applicable to a multi-refrigeration tickle that can be cooled and heated simultaneously. An example of this is shown in figure s6.

第6因の実施例は2室で冷房、1室暖房の場合である。An example of the sixth factor is a case where two rooms are cooled and one room is heated.

圧縮機lから吐出されたガス冷媒は四方弁2を通り、膨
張弁6で適度に減圧されて、室内熱交換65で凝縮する
。この時の飽和圧力は、寸度、室温0.が設定値になる
より、その偏差に応じて、先の膨張弁6が調節され、最
適に制御される。ここで液冷媒となった後、キャピラリ
4で減圧され、室外熱交換器8で蒸発する。ガス冷媒は
四方弁2を経て、アキエムレータ17に行く。
The gas refrigerant discharged from the compressor 1 passes through the four-way valve 2, is appropriately reduced in pressure by the expansion valve 6, and is condensed in the indoor heat exchanger 65. The saturation pressure at this time is the same as the room temperature of 0. Before reaching the set value, the expansion valve 6 is adjusted in accordance with the deviation and is optimally controlled. After becoming a liquid refrigerant, the pressure is reduced in the capillary 4 and evaporated in the outdoor heat exchanger 8. The gas refrigerant passes through the four-way valve 2 and goes to the Akie emulator 17.

以上のようにして暖房が行われる。Heating is performed as described above.

他方、吐出ガスは四方弁7を経由して、室外熱交換器8
でa縮するものもある。その液冷媒はキャピラリ9を通
って減圧され室内熱交換器10で蒸発し、電子膨張弁1
1で更に減圧される。この時の、室内熱交換器内圧は、
その飽和温度に応じた、室内空気との熱交換量が設定室
温になる様に決められる。蒸発したガス冷媒は四方弁7
を経て、ア:?ユムレータ17へ行く。
On the other hand, the discharged gas passes through the four-way valve 7 to the outdoor heat exchanger 8.
There are also some that are reduced in size. The liquid refrigerant passes through the capillary 9, is depressurized, is evaporated in the indoor heat exchanger 10, and is evaporated in the electronic expansion valve 1.
1, the pressure is further reduced. At this time, the indoor heat exchanger internal pressure is
The amount of heat exchanged with the indoor air is determined according to the saturation temperature so that the set room temperature is achieved. The evaporated gas refrigerant is removed from the four-way valve 7.
After that, A:? Go to Yumureta 17.

もう−台の室外熱交換618→室内熱交換615のライ
ンでも同様にして冷房作用が行われる。
The cooling action is performed in the same way in the line from the outdoor heat exchanger 618 to the indoor heat exchanger 615.

本実施例はマルチ形冷凍機にも適用でき、冷凍サイクル
は第1因の実施例を用いる。本サイクルによる大きな特
徴は各室が冷凍庫としても、冷蔵庫としても使え、その
庫内温度が自由に設定可能な点である。
This embodiment can also be applied to a multi-type refrigerator, and the first factor embodiment is used for the refrigeration cycle. A major feature of this cycle is that each compartment can be used as either a freezer or a refrigerator, and the internal temperature can be set freely.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各部屋の温度が任意に且つ、個別に所
望値に自動側dll−6れる上、圧縮機の回転数も、ト
ータル負荷に見合った値に制御される。
According to the present invention, the temperature of each room is arbitrarily and individually adjusted to a desired value automatically, and the rotational speed of the compressor is also controlled to a value commensurate with the total load.

また、圧縮機吸入側又は吐出側スーパヒートをも所定の
値に合せることが出来る。かくして、単に快適性が向上
するのみならず、工事上の制約も不要であり、設備費の
安い信頼性、高快適度のマルチ空調システムを提供する
ことができる。
Further, the super heat on the suction side or the discharge side of the compressor can also be adjusted to a predetermined value. In this way, not only is comfort improved, but there is no need for construction restrictions, and a multi-air conditioning system with low equipment costs, reliability, and high comfort can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の冷凍サイクル図、第2図は
IX1図のサイクルを制御する制御装置概念図。 第3図は冷房時に膨張弁(第1図のVl、VB、v8)
が少し開閉した時のサイクルの動きを示す図で、(2)
図は膨張弁開の場合、Φ)図は膨張弁閉の場合を示す。 第4図は暖房時に膨張弁(第1図のVl、VB、’l)
が少し開閉した時のサイクルの動きを示す図で、(a)
図は膨張弁開の場合、Φ)図は#追伸閉の場合を示す。 第5図は冷凍サイクルのP−i線図で、(a)図は冷房
時、(b)図は暖房時を示す。第6図は他の実施例を示
し、冷暖同時可能なマルチ冷凍サイクル図である。 0□・・・室内機lの室温 θ、・・・室内機2の室温 0、・・・室内機8つ室温 π・・・圧amの吐出ガス温度 Tc・・・圧縮機の吐出圧に対する冷媒の飽和温度7a
 〜’7c #+fhRF、廿(Vt、Vz、Vi)富
2目 第4凹
FIG. 1 is a refrigeration cycle diagram according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram of a control device that controls the cycle shown in FIG. Figure 3 shows the expansion valve during cooling (Vl, VB, v8 in Figure 1)
(2)
The figure shows the case when the expansion valve is open, and the Φ) figure shows the case when the expansion valve is closed. Figure 4 shows the expansion valve during heating (Vl, VB, 'l in Figure 1)
(a) is a diagram showing the movement of the cycle when the
The figure shows the case when the expansion valve is open, and the figure Φ) shows the case when #PS is closed. FIG. 5 is a P-i diagram of the refrigeration cycle, where (a) shows the cooling cycle and (b) shows the heating cycle. FIG. 6 shows another embodiment, and is a diagram of a multi-refrigeration cycle capable of simultaneous cooling and heating. 0□... Room temperature θ of indoor unit 1,... Room temperature 0 of indoor unit 2,... Room temperature π of 8 indoor units... Discharge gas temperature Tc of pressure am... Relative to the discharge pressure of the compressor Refrigerant saturation temperature 7a
~'7c #+fhRF, 廿(Vt, Vz, Vi) wealth 2nd 4th concave

Claims (1)

【特許請求の範囲】 回転数制御形圧縮機1台に対し、室内熱交換器を複数台
、並列に設置してなるマルチ式のエアコンにおいて、 室外熱交換器の液ライン側配管に電子式膨張弁を設置す
る。上記、電子式膨張弁と複数の室内熱交換器間にキャ
ビラリチューブを、各室内熱交換器毎に直列に設置する
。上記、キャビラリチューブと、上記、電子式膨張弁の
間で、冷媒配管は分岐し、各室内熱交換器毎のラインは
並列に形成する。各室内熱交換器のガスライン側配管に
は、夫々電子式膨張弁を直列に設置する。上記、室内熱
交用電子式膨張弁と四方弁の間で、各室内熱交換器ライ
ンは合岐する。上記、室内熱交用膨張弁は、室温とその
希望値の偏差によって、夫々、独立に、開度がフィード
バック制御される。前記室外熱交用膨張弁は、圧縮機の
吐出側又は吸入側のガス冷媒の過熱度と、その期待値の
偏差により、開度が制御される。圧縮機の回転数は、各
室毎の、室温とその希望室温の偏差の一次結合値を用い
て制御される。 ことを特徴とするマルチ冷凍サイクル。
[Claims] In a multi-type air conditioner in which a plurality of indoor heat exchangers are installed in parallel to one rotational speed controlled compressor, electronic expansion is provided in the liquid line side piping of the outdoor heat exchanger. Install the valve. A capillary tube is installed in series between the electronic expansion valve and the plurality of indoor heat exchangers for each indoor heat exchanger. The refrigerant piping branches between the above-mentioned cabillary tube and the above-mentioned electronic expansion valve, and lines for each indoor heat exchanger are formed in parallel. Electronic expansion valves are installed in series on the gas line side piping of each indoor heat exchanger. Each indoor heat exchanger line branches between the indoor heat exchange electronic expansion valve and the four-way valve. The opening degrees of the indoor heat exchange expansion valves are independently feedback-controlled depending on the deviation between the room temperature and its desired value. The degree of opening of the outdoor heat exchange expansion valve is controlled based on the degree of superheating of the gas refrigerant on the discharge side or suction side of the compressor and the deviation between its expected value. The rotation speed of the compressor is controlled using a linear combination value of the deviation between the room temperature and the desired room temperature for each room. A multi-refrigeration cycle characterized by:
JP1249141A 1989-09-27 1989-09-27 Multi refrigeration cycle Expired - Fee Related JP2703070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1249141A JP2703070B2 (en) 1989-09-27 1989-09-27 Multi refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249141A JP2703070B2 (en) 1989-09-27 1989-09-27 Multi refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH03113247A true JPH03113247A (en) 1991-05-14
JP2703070B2 JP2703070B2 (en) 1998-01-26

Family

ID=17188535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249141A Expired - Fee Related JP2703070B2 (en) 1989-09-27 1989-09-27 Multi refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2703070B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093991A1 (en) * 2011-12-19 2013-06-27 トヨタ自動車株式会社 Cooling device
CN108870689A (en) * 2018-07-17 2018-11-23 珠海格力电器股份有限公司 Compress control method, system, computer equipment and the storage medium of air-conditioner set

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013093991A1 (en) * 2011-12-19 2013-06-27 トヨタ自動車株式会社 Cooling device
CN103998874A (en) * 2011-12-19 2014-08-20 丰田自动车株式会社 Cooling device
JPWO2013093991A1 (en) * 2011-12-19 2015-04-27 トヨタ自動車株式会社 Cooling system
CN103998874B (en) * 2011-12-19 2016-07-06 丰田自动车株式会社 Chiller
CN108870689A (en) * 2018-07-17 2018-11-23 珠海格力电器股份有限公司 Compress control method, system, computer equipment and the storage medium of air-conditioner set
CN108870689B (en) * 2018-07-17 2020-01-07 珠海格力电器股份有限公司 Pressure control method and system of air conditioning unit

Also Published As

Publication number Publication date
JP2703070B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
AU634111B2 (en) Air-conditioning system
US10401067B2 (en) Air conditioner
WO2013145006A1 (en) Air conditioning device
CN106482375B (en) Air conditioner
WO2006013938A1 (en) Freezing apparatus
EP3483523A1 (en) Refrigeration cycle apparatus and air-conditioning apparatus provided with same
EP2930450A1 (en) Air conditioning device
CN110337570A (en) Air-conditioning device
JP2001280669A (en) Refrigerating cycle device
CN102538298A (en) Heat pump and method of controlling the same
JPH03113247A (en) Multi-refrigeration cycle
JPH11270918A (en) Refrigerating device
JP3434993B2 (en) Air conditioner
JP2944507B2 (en) Air conditioner
WO2019065856A1 (en) Refrigeration device
JPH0379946A (en) Multi-room air conditioner
JP3626517B2 (en) Air conditioner
JPH031055A (en) Cooling and heating apparatus
JP3056554B2 (en) Air conditioner
JPH0480569A (en) Air-conditioning machine
JPH046355A (en) Multiple-room type air-conditioner
JPH02223774A (en) Air-conditioning machine
JPH0670515B2 (en) Multi-room air conditioner
JPH01312358A (en) Air conditioner
JPS62288441A (en) Multichamber air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees