JPH0480569A - Air-conditioning machine - Google Patents

Air-conditioning machine

Info

Publication number
JPH0480569A
JPH0480569A JP2195918A JP19591890A JPH0480569A JP H0480569 A JPH0480569 A JP H0480569A JP 2195918 A JP2195918 A JP 2195918A JP 19591890 A JP19591890 A JP 19591890A JP H0480569 A JPH0480569 A JP H0480569A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor unit
unit
indoor
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2195918A
Other languages
Japanese (ja)
Other versions
JP2974381B2 (en
Inventor
Yoshihiro Chuma
善裕 中馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2195918A priority Critical patent/JP2974381B2/en
Publication of JPH0480569A publication Critical patent/JPH0480569A/en
Application granted granted Critical
Publication of JP2974381B2 publication Critical patent/JP2974381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PURPOSE:To permit the securing of the necessary and sufficient capacity of a room cooling side indoor unit and a room heating side indoor unit even when an outdoor unit is positioned at a higher position than the indoor unit by a method wherein the amount of refrigerant, which flows through a liquid pipe, is controlled so that the detecting result of the superheating degree of refrigerant of the room cooling side indoor unit is within a given range. CONSTITUTION:When a given time (t1) has elapsed after starting operation, a difference between the detecting values of a temperature sensor 101 and a temperature sensor 105 is detected as the superheating degree SH of refrigerant in an indoor unit C1 while a difference between the detecting values of a temperature sensor 102 and a temperature sensor 106 is detected as the superheating degree SH of another indoor unit C2. Then, the opening degree of the PMV 16 of an outdoor unit A is increased by a predetermined value (a value corresponding to several pulses) until the superheating degree SH of the refrigerant becomes a value within a given range. According to this method, the pressure of the refrigerant in a liquid pipe W is controlled so as to be substantially equal to the pressure of the refrigerant in a high-pressure side gas tube G even when the outdoor unit A is positioned at a position higher than the indoor units C1-C4 whereby the refrigerant can be distributed with a good balance to supply it to the room cooling side indoor units C1, C2 and the room heating side indoor unit C3. Accordingly, the necessary and sufficient capacities of respective units C1, C2, C3 can be ensured respectively.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、複数の部屋の空調が可能なマルチシステム
型の空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a multi-system air conditioner capable of air conditioning multiple rooms.

(従来の技術) 一般に、マルチシステム型の空気調和機は、1台の室外
ユニット、および複数台の室内ユニットを備え、これら
室内ユニットと室外ユニットとを分岐ユニットを介して
配管接続している。
(Prior Art) Generally, a multi-system air conditioner includes one outdoor unit and a plurality of indoor units, and the indoor unit and the outdoor unit are connected by piping via a branch unit.

上記分岐ユニットは、室外ユニットに液管、高圧側ガス
管、低圧側ガス管を介して連通し、各室内ユニットへの
冷媒の流れ方向を切換えるものである。
The branch unit communicates with the outdoor unit via a liquid pipe, a high-pressure side gas pipe, and a low-pressure side gas pipe, and switches the flow direction of refrigerant to each indoor unit.

すなわち、分岐ユニットで各室内ユニットへの冷媒の流
れ方向を選択することにより、各室内ユニットで冷房お
よび暖房の同時運転を実行することができる。
That is, by selecting the flow direction of the refrigerant to each indoor unit using the branch unit, it is possible to perform simultaneous cooling and heating operations in each indoor unit.

この空気調和機の一例を第4図に示す。An example of this air conditioner is shown in FIG.

図中、Aは室外ユニットで、この室外ユニットAに液管
W、高圧側ガス管G、低圧側ガス管Sを介して分岐ユニ
ットBが連通され、その分岐ユニットBに複数の室内ユ
ニットC1,C2,C3゜C4が連通されている。
In the figure, A is an outdoor unit, and a branch unit B is communicated with this outdoor unit A via a liquid pipe W, a high pressure side gas pipe G, and a low pressure side gas pipe S, and the branch unit B is connected to a plurality of indoor units C1, C2, C3°C4 are connected.

室外ユニットAは2台の能力可変圧縮機1.2を備えて
いる。
The outdoor unit A is equipped with two variable capacity compressors 1.2.

この圧縮機1.2の吐出口に、逆止弁3,3を介して共
通の吐出管4が接続されている。圧縮機1.2の吸入口
に共通の吸入管5が接続され、その吸入管5にリキッド
タンク6が設けられている。
A common discharge pipe 4 is connected to the discharge port of this compressor 1.2 via check valves 3,3. A common suction pipe 5 is connected to the suction port of the compressor 1.2, and a liquid tank 6 is provided in the suction pipe 5.

上記吐出管4は、二つの吐出管4a、4bに分岐されて
いる。
The discharge pipe 4 is branched into two discharge pipes 4a and 4b.

吸入管5は、リキッドタンク6の上流側で二つの吸入管
5a、5bに分岐されている。
The suction pipe 5 is branched into two suction pipes 5a and 5b on the upstream side of the liquid tank 6.

圧縮機1の吐出口にオイルセパレータ7が設けられ、そ
のオイルセパレータ7から圧縮機1の吸入口にかけてオ
イルバイパス8が設けられている。
An oil separator 7 is provided at the discharge port of the compressor 1, and an oil bypass 8 is provided from the oil separator 7 to the suction port of the compressor 1.

同じく、圧縮機2の吐出口にオイルセパレータ7が設ケ
られ、そのオイルセパレータ7から圧縮機2の吸入口に
かけてオイルバイパス8が設けられている。
Similarly, an oil separator 7 is provided at the discharge port of the compressor 2, and an oil bypass 8 is provided from the oil separator 7 to the suction port of the compressor 2.

上記吐出管4aに、二方弁9を介して室外熱交換器10
が接続されている。この室外熱交換器10に暖房用膨張
弁11と逆止弁12の並列回路を介してリキッドタンク
13が接続され、そのリキッドタンク13に液管Wが接
続されている。
An outdoor heat exchanger 10 is connected to the discharge pipe 4a via a two-way valve 9.
is connected. A liquid tank 13 is connected to the outdoor heat exchanger 10 via a parallel circuit of a heating expansion valve 11 and a check valve 12, and a liquid pipe W is connected to the liquid tank 13.

上記二方弁9と室外熱交換器10との間の管に、二方弁
14および逆止弁15を介して上記吸入管5bが接続さ
れている。
The suction pipe 5b is connected to the pipe between the two-way valve 9 and the outdoor heat exchanger 10 via a two-way valve 14 and a check valve 15.

上記液管Wには、分岐ユニッ)Bの電子流量調整弁(パ
ルスモータバルブ;以下PMVと略称する)21,31
,41.−51を介して冷房用膨張弁22,32,42
.52が接続されている。この膨張弁22,32.42
.52には、逆止弁23.33,43.53が並列に接
続されている。
The liquid pipe W includes electronic flow control valves (pulse motor valves; hereinafter abbreviated as PMV) 21, 31 of the branch unit) B.
,41. - 51 for cooling expansion valves 22, 32, 42
.. 52 are connected. This expansion valve 22, 32.42
.. Check valves 23.33 and 43.53 are connected in parallel to 52.

膨張弁22,32,42.52には、室内ユニットC1
+  C2+  C3+  C4の室内熱交換器24゜
34.44.54が接続されている。
The expansion valves 22, 32, 42.52 are connected to the indoor unit C1.
+C2+C3+C4 indoor heat exchanger 24°34.44.54 is connected.

室内熱交換器24,34,44.54には、分岐ユニッ
トBの二方弁25,35,45.45を介して低圧側ガ
ス管Sが接続されるとともに、同じく分岐ユニットBの
二方弁26.36,46゜56を介して高圧側ガス管G
が接続されている。
A low pressure side gas pipe S is connected to the indoor heat exchangers 24, 34, 44.54 via two-way valves 25, 35, 45.45 of branch unit B, and also a two-way valve of branch unit B. 26. High pressure side gas pipe G via 36, 46°56
is connected.

低圧側ガス管Sは、上記吸入管5aの延長である。The low pressure gas pipe S is an extension of the suction pipe 5a.

高圧側ガス管Gは、上記吐出管4bの延長である。The high-pressure gas pipe G is an extension of the discharge pipe 4b.

作用を説明する。Explain the action.

室内ユニットC,が冷房運転モード、室内ユニットC2
が冷房運転モード、室内ユニットC3が暖房運転モード
、室内ユニットC4が運転停止であるとする。そして、
冷房要求能力の合計が暖房要求能力の合計より大きいと
する。
Indoor unit C, is in cooling operation mode, indoor unit C2
It is assumed that the indoor unit C3 is in the cooling operation mode, the indoor unit C3 is in the heating operation mode, and the indoor unit C4 is stopped. and,
Assume that the total required cooling capacity is greater than the total required heating capacity.

この場合、冷房主運転モードが決定され、室外ユニット
Aの二方弁9が開き(白色表示)、かつ二方弁14が閉
じ(黒色表示)、室外熱交換器10が吐出管4aに接続
される。
In this case, the cooling main operation mode is determined, the two-way valve 9 of the outdoor unit A is opened (displayed in white), the two-way valve 14 is closed (displayed in black), and the outdoor heat exchanger 10 is connected to the discharge pipe 4a. Ru.

分岐ユニットBでは、PMV21,31.41が開いて
PMV51が閉じるとともに(白色表示)、二方弁25
.35.46が開き(白色表示)、かつ二方弁45,5
5,26,36.56が閉じ(黒色表示)、冷房運転モ
ードの室内ユニットCII C2にそれぞれ連通のガス
管が低圧側ガス管S(吸入管5a)に接続され、暖房運
転モードの室内ユニットC3に連通のガス管が高圧側ガ
ス管G(吐出管4b)に接続される。
In branch unit B, PMV21, 31.41 opens, PMV51 closes (white display), and two-way valve 25
.. 35.46 is open (white display), and two-way valve 45,5
5, 26, 36, and 56 are closed (displayed in black), the gas pipes communicating with the indoor unit CII C2 in the cooling operation mode are connected to the low pressure side gas pipe S (intake pipe 5a), and the indoor unit C3 in the heating operation mode is connected to the low pressure side gas pipe S (suction pipe 5a). A gas pipe communicating with is connected to the high pressure side gas pipe G (discharge pipe 4b).

したがって、圧縮機1,2から吐出される冷媒は、二方
弁9を通って室外熱交換器10に入る。
Therefore, the refrigerant discharged from the compressors 1 and 2 passes through the two-way valve 9 and enters the outdoor heat exchanger 10.

この室外熱交換器10では、冷媒が凝縮する。室外熱交
換器10を経た冷媒は、逆止弁12およびリキッドタン
ク13を通り、次にPMV21゜31および膨張弁22
.32を通り、室内ユニットC□、C2に入る。この室
内ユニットClC2では、冷媒が気化する。室内ユニッ
)C,。
In this outdoor heat exchanger 10, the refrigerant condenses. The refrigerant that has passed through the outdoor heat exchanger 10 passes through the check valve 12 and liquid tank 13, and then passes through the PMV 21° 31 and the expansion valve 22.
.. 32 and enters the indoor unit C□, C2. In this indoor unit ClC2, the refrigerant is vaporized. Indoor unit) C.

C2を経た冷媒は、二方弁25.35および低圧側ガス
管Sを通り、圧縮機1,2に吸い込まれる。
The refrigerant that has passed through C2 passes through the two-way valve 25, 35 and the low-pressure side gas pipe S, and is sucked into the compressors 1 and 2.

同時に、圧縮機1.2から吐出される冷媒の一部が、高
圧側ガス管Gおよび二方弁46を通って室内ユニットC
3に入る。この室内ユニットC3では、冷媒が凝縮する
。室内ユニットC3を経た冷媒は、逆止弁43およびP
MV41を通り、室内ユニットC1,C2(PMv21
,31)への冷媒の流れに合流する。
At the same time, a part of the refrigerant discharged from the compressor 1.2 passes through the high pressure side gas pipe G and the two-way valve 46 to the indoor unit C.
Enter 3. In this indoor unit C3, the refrigerant condenses. The refrigerant that has passed through the indoor unit C3 passes through the check valve 43 and P
Passing through MV41, indoor units C1 and C2 (PMv21
, 31).

すなわち、室外熱交換器10が凝縮器、室内熱交換器2
4.34が蒸発器、室内熱交換器44が凝縮器として働
く。
That is, the outdoor heat exchanger 10 is a condenser, and the indoor heat exchanger 2 is a condenser.
4.34 works as an evaporator, and indoor heat exchanger 44 works as a condenser.

この場合、冷房側室内ユニットc1.c2の吸熱の一部
が暖房側室内ユニットC3の放熱として利用されること
になる。
In this case, the cooling side indoor unit c1. A part of the heat absorbed by c2 is used as heat radiation from the heating indoor unit C3.

次に、室内ユニットC1の要求が暖房運転モード、室内
ユニットC2の要求が暖房運転モード、室内ユニットC
3の要求が冷房運転モード、室内ユニットC4が運転停
止であるとする。そして、暖房要求能力の合計が冷房要
求能力の合計より大きいとする。
Next, the indoor unit C1 requests the heating operation mode, the indoor unit C2 requests the heating operation mode, and the indoor unit C
Assume that the request No. 3 is for the cooling operation mode and the indoor unit C4 is to stop operating. It is also assumed that the total required heating capacity is greater than the total required cooling capacity.

この場合、暖房主運転モードが決定され、第5図に示す
ように、室外ユニットAのPMV9が閉じ(黒色表示)
、二方弁14が開き(白色表示)、室外熱交換器10が
吸入管5bに接続される。
In this case, the heating main operation mode is determined, and as shown in Fig. 5, PMV9 of outdoor unit A is closed (displayed in black).
, the two-way valve 14 opens (displayed in white), and the outdoor heat exchanger 10 is connected to the suction pipe 5b.

分岐ユニットBでは、PMV21,31.41が開いて
PMV51が閉じるとともに(白色表示) 三方弁45
,26.36が開き(白色表示)、かつ二方弁25,3
5,55,46.56が閉じ(黒色表示)、暖房運転モ
ードの室内ユニットC1+  02にそれぞれ連通のガ
ス管が高圧側ガス管G(吐出管4b)に接続され、冷房
運転モードの室内ユニットC3に連通のガス管が低圧側
ガス管S(吸入管5a)に接続される。
In branch unit B, PMV21, 31.41 opens and PMV51 closes (displayed in white). Three-way valve 45
, 26.36 are open (displayed in white), and the two-way valves 25, 3
5, 55, 46, and 56 are closed (displayed in black), the gas pipes communicating with the indoor unit C1+ 02 in the heating operation mode are connected to the high pressure side gas pipe G (discharge pipe 4b), and the indoor unit C3 in the cooling operation mode is connected. A gas pipe communicating with is connected to the low pressure side gas pipe S (suction pipe 5a).

したがって、圧縮機1.2から吐出される冷媒は、高圧
側ガス管Gおよび二方弁26.36を通って室内ユニッ
トC1,C2に入る。この室内ユニットC1,C2では
、冷媒が凝縮する。室内ユニットC1+  C2を経た
冷媒は、逆止弁2333およびPMV21,31を通り
、次にリキッドタンク13および膨張弁11を通り、室
外熱交換器10に入る。この室外熱交換器10では、冷
媒が気化する。室外熱交換器10を経た冷媒は、二方弁
14.逆止弁15.および吸入管5bを通り、圧縮機1
.2に吸い込まれる。
Therefore, the refrigerant discharged from the compressor 1.2 enters the indoor units C1, C2 through the high-pressure side gas pipe G and the two-way valve 26.36. In the indoor units C1 and C2, the refrigerant condenses. The refrigerant that has passed through the indoor units C1+C2 passes through the check valve 2333 and the PMVs 21 and 31, then the liquid tank 13 and the expansion valve 11, and enters the outdoor heat exchanger 10. In this outdoor heat exchanger 10, the refrigerant is vaporized. The refrigerant that has passed through the outdoor heat exchanger 10 is passed through the two-way valve 14. Check valve 15. and through the suction pipe 5b, the compressor 1
.. Sucked into 2.

同時に、室内ユニットC1,C2、逆止弁2333、お
よびPMV21,31を経た冷媒の一部が、PMV41
および膨張弁42を通って室内ユニットC3に入る。こ
の室内ユニットC3では、冷媒が気化する。室内ユニッ
トC3を経た冷媒は、二方弁45および低圧側ガス管S
を通って圧縮機1.2に吸い込まれる。
At the same time, a portion of the refrigerant that has passed through the indoor units C1 and C2, the check valve 2333, and the PMVs 21 and 31 is transferred to the PMV 41.
and enters the indoor unit C3 through the expansion valve 42. In this indoor unit C3, the refrigerant is vaporized. The refrigerant that has passed through the indoor unit C3 is passed through the two-way valve 45 and the low pressure side gas pipe S.
through which it is sucked into compressor 1.2.

すなわち、暖房側室内熱交換器24.34が凝縮器、冷
房側室内ユニット44および室外熱交換器10が蒸発器
として働く。
That is, the heating-side indoor heat exchangers 24 and 34 function as condensers, and the cooling-side indoor unit 44 and outdoor heat exchanger 10 function as evaporators.

この場合、冷房側室内ユニット44および室外熱交換器
10の吸熱が暖房側室内ユニツ)’C+ 。
In this case, the heat absorbed by the cooling-side indoor unit 44 and the outdoor heat exchanger 10 is the heating-side indoor unit)'C+.

C2の放熱と、して利用されることになる。It will be used as heat radiation for C2.

(発明が解決しようとする課題) ところで、このようなマルチシステム型の空気調和機は
、たとえば第6図に示すように、ビルディング等の屋上
に室外ユニットAが設置され、分岐ユニットBおよび室
内ユニットC1,C2゜C3+  C4が下方のフロア
ないし部屋に設置されることがある。
(Problems to be Solved by the Invention) In such a multi-system air conditioner, for example, as shown in FIG. 6, an outdoor unit A is installed on the roof of a building, etc., and a branch unit B and an indoor unit C1, C2°C3+ C4 may be installed on the floor or room below.

こうして、室外ユニットAが室内ユニッ)C1゜C2,
C3,C4よりも高い位置にある場合、冷房主運転モー
ドの冷暖同時運転に際し、液管Wの冷媒圧力と高圧側ガ
ス管Gの冷媒圧力とを比較すると、室外ユニットAを出
た位置では同じ圧力である。ただし、室内ユニットC1
、C2、C31C4の位置で見ると、液管Wの冷媒圧力
の方が高圧側ガス管Gを通る冷媒の圧力よりもヘッド差
分だけ高くなる。
In this way, outdoor unit A becomes indoor unit)C1°C2,
When the position is higher than C3 and C4, when the refrigerant pressure in the liquid pipe W and the refrigerant pressure in the high pressure side gas pipe G are compared during simultaneous cooling and heating operation in the cooling main operation mode, it is found that they are the same at the position exiting the outdoor unit A. It's pressure. However, indoor unit C1
, C2, C31 and C4, the refrigerant pressure in the liquid pipe W is higher than the pressure of the refrigerant passing through the high-pressure side gas pipe G by the head difference.

こうなると、冷房側室内ユニットには必要量の冷媒が流
れるが、暖房側室内ユニットには冷媒が流れ難くなる。
In this case, the required amount of refrigerant flows into the cooling indoor unit, but it becomes difficult for the refrigerant to flow into the heating indoor unit.

このため、冷房能力は十分に確保できるものの、暖房能
力については冷房能力の115程度しか得られなくなる
Therefore, although sufficient cooling capacity can be ensured, the heating capacity is only about 115 times the cooling capacity.

この発明は上記の事情を考慮したもので、その目的とす
るところは、室外ユニットが室内ユニットより高い位置
にあっても、冷房側室内ユニットおよび暖房側室内ユニ
ットのそれぞれにおいて必要十分な能力を確保すること
ができる空気調和機を提供することにある。
This invention was developed in consideration of the above circumstances, and its purpose is to ensure necessary and sufficient capacity in each of the cooling-side indoor unit and the heating-side indoor unit, even if the outdoor unit is located higher than the indoor unit. Our goal is to provide air conditioners that can

[発明の構成] (課題を解決するための手段) この発明の空気調和機は、圧縮機および室外熱交換器を
有する1台の室外ユニットと、それぞれが室内熱交換器
を有する複数台の室内ユニットと、前記室外ユニットに
液管、高圧側ガス管、低圧側ガス管を介して連通し前記
各室内ユニットへの冷媒の流れ方向を切換える分岐ユニ
ットとからなり、各室内ユニットへの冷媒の流れ方向を
選択することにより各室内ユニットで冷房および暖房の
同時運転を可能とするマルチシステム型の空気調和機に
おいて、冷房側の室内ユニットでの冷媒過熱度を検出す
る手段と、この検出結果が一定範囲内に収まるよう前記
液管に流れる冷媒の量を制御する手段とを備える。
[Structure of the Invention] (Means for Solving the Problems) The air conditioner of the present invention includes one outdoor unit having a compressor and an outdoor heat exchanger, and a plurality of indoor units each having an indoor heat exchanger. unit, and a branching unit that communicates with the outdoor unit via a liquid pipe, a high-pressure side gas pipe, and a low-pressure side gas pipe, and switches the flow direction of refrigerant to each of the indoor units, and controls the flow of refrigerant to each indoor unit. In a multi-system air conditioner that enables simultaneous operation of cooling and heating in each indoor unit by selecting the direction, there is a method for detecting the degree of refrigerant superheating in the indoor unit on the cooling side, and a method that keeps this detection result constant. and means for controlling the amount of refrigerant flowing into the liquid pipe so that the amount of refrigerant flows within the range.

(作 用) 冷房側の室内ユニットでの冷媒過熱度を検出し、この検
出結果が一定範囲内に収まるよう液管に流れる冷媒の量
を制御する。
(Function) The degree of superheating of the refrigerant in the indoor unit on the cooling side is detected, and the amount of refrigerant flowing into the liquid pipes is controlled so that the detection result is within a certain range.

(実施例) 以下、この発明の一実施例について図面を参照して説明
する。なお、図面において第4図ないし第6図と同一部
分には同一符号を付し、その詳細な説明は省略する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. In the drawings, the same parts as in FIGS. 4 to 6 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第1図に示すように、室外ユニットAにおいて、室外熱
交換器10から逆止弁12につながる管にPMVl 6
を設ける。
As shown in FIG. 1, in the outdoor unit A, PMVl 6 is connected to the pipe leading from the outdoor heat exchanger 10 to the check valve 12.
will be established.

さらに、分岐ユニットBにおいて、次の構成を施す。Furthermore, in branch unit B, the following configuration is applied.

膨張弁22から室内ユニットC1に通じる液管に温度セ
ンサ101を取り付ける。
A temperature sensor 101 is attached to a liquid pipe leading from the expansion valve 22 to the indoor unit C1.

膨張弁32から室内ユニットC2に通じる液管に温度セ
ンサ102を取り付ける。
A temperature sensor 102 is attached to a liquid pipe leading from the expansion valve 32 to the indoor unit C2.

膨張弁42から室内ユニットC3に通じる液管に温度セ
ンサ103を取り付ける。
A temperature sensor 103 is attached to a liquid pipe leading from the expansion valve 42 to the indoor unit C3.

膨張弁52から室内ユニットC4に通じる液管に温度セ
ンサ104を取り付ける。
A temperature sensor 104 is attached to a liquid pipe leading from the expansion valve 52 to the indoor unit C4.

二方弁25.26の接続部から室内ユニットC】に通じ
るガス管に温度センサ105を取り付ける。
A temperature sensor 105 is attached to the gas pipe leading from the connection of the two-way valves 25 and 26 to the indoor unit C.

二方弁35.36の接続部から室内ユニットC2に通じ
るガス管に温度センサ106を取り付ける。
A temperature sensor 106 is attached to the gas pipe leading from the connection of the two-way valve 35, 36 to the indoor unit C2.

三方弁45.46の接続部から室内ユニットC3に通じ
るガス管に温度センサ107を取り付ける。
A temperature sensor 107 is attached to the gas pipe leading from the connection part of the three-way valve 45, 46 to the indoor unit C3.

二方弁55.56の接続部から室内ユニットC4に通じ
るガス管に温度センサ108を取り付ける。
A temperature sensor 108 is attached to the gas pipe leading from the connection of the two-way valve 55, 56 to the indoor unit C4.

制御回路を第2図に示す。The control circuit is shown in FIG.

室外ユニットAは、マイクロコンピュータおよびその周
辺回路からなる室外制御部70を備える。
The outdoor unit A includes an outdoor control section 70 consisting of a microcomputer and its peripheral circuits.

この室外制御部70に、インバータ回路71゜72、P
MVl6、および二方弁9,14を接続する。
This outdoor control unit 70 includes inverter circuits 71, 72, P
MVl6 and two-way valves 9 and 14 are connected.

インバータ回路71.72は、交流電源73の電圧を整
流し、それを室外制御部70の指令に応じた所定周波数
(およびレベル)の交流電圧に変換し、圧縮機モータI
M、2Mにそれぞれ駆動電力として供給するものである
The inverter circuits 71 and 72 rectify the voltage of the AC power supply 73, convert it into an AC voltage of a predetermined frequency (and level) according to a command from the outdoor control unit 70, and
This is to supply driving power to M and 2M, respectively.

分岐ユニットBは、マイクロコンピュータおよびその周
辺回路からなるマルチ制御部80を備える +のマルチ
制御部80に、PMV21.31゜41.51、二方弁
25.35,45,55゜26.36,46,56、お
よび温度センサ101.102,103,104,10
5゜106.107.108を接続する。
The branch unit B includes a multi-control unit 80 consisting of a microcomputer and its peripheral circuits. 46, 56, and temperature sensors 101, 102, 103, 104, 10
5゜Connect 106.107.108.

室内ユニットC,,C2+  c3.c4は、それぞれ
マイクロコンピュータおよびその周辺回路からなる室内
制御部90を備える。これら室内制御部90に、リモー
トコントロール式の運転操作部(以下、リモコンと略称
する)91および室内温度センサ92を接続する。
Indoor unit C,,C2+ c3. c4 each includes an indoor control section 90 consisting of a microcomputer and its peripheral circuits. A remote control operation unit (hereinafter referred to as a remote control) 91 and an indoor temperature sensor 92 are connected to the indoor control unit 90 .

そして、室内制御部90は、次の機能手段を備えている
The indoor control unit 90 includes the following functional means.

■リモコン91の操作に基づく冷房運転モードの要求ま
たは暖房運転モードの要求をマルチ制御部80に送る手
段。
(2) Means for sending a request for a cooling operation mode or a request for a heating operation mode to the multi-control unit 80 based on the operation of the remote control 91.

■リモコン91で設定される室内温度と室内温度センサ
92の検知温度との差を要求冷房能力(冷房運転モード
時)または要求暖房能力(暖房運転モード時)としてマ
ルチ制御部80に送る手段。
(2) Means for sending the difference between the indoor temperature set by the remote controller 91 and the temperature detected by the indoor temperature sensor 92 to the multi-control unit 80 as the required cooling capacity (in the cooling operation mode) or the required heating capacity (in the heating operation mode).

また、マルチ制御部80、室外制御部70、各PMV、
および各二方弁により、次の機能手段を構成している。
In addition, the multi-control unit 80, the outdoor control unit 70, each PMV,
The two-way valves constitute the following functional means:

■室内ユニットCI、C2,C3,C4のいずれかから
要求される冷房能力の総和が同じく要求される暖房能力
の総和より大きいとき、冷房主運転モードを決定する手
段。
(2) Means for determining the cooling main operation mode when the sum of the cooling capacities requested from any of the indoor units CI, C2, C3, and C4 is greater than the sum of the heating capacities also requested.

■冷房主運転モードを決定したとき、圧縮機1゜2の吐
出冷媒を室外熱交換器10に通し、次に冷房運転モード
の要求を出している室内ユニットに通して圧縮機1,2
に戻す手段。
■When the cooling main operation mode is determined, the refrigerant discharged from the compressors 1 and 2 is passed through the outdoor heat exchanger 10, and then passed through the indoor unit that is requesting the cooling operation mode.
means to return to.

■冷房主運転モードを決定したとき、圧縮機1゜2の吐
出冷媒の一部を暖房運転モードの要求を出している室内
ユニットに通し、次に冷房運転モードの要求を出してい
る室内ユニットへの冷媒ノ流れに合流させる手段。
■When the cooling main operation mode is determined, a part of the refrigerant discharged from the compressor 1゜2 is passed through the indoor unit that is requesting the heating operation mode, and then to the indoor unit that is requesting the cooling operation mode. means to join the refrigerant flow.

■冷房主運転モードを決定したとき、要求冷房能力の総
和に応じて圧縮機1.2の運転台数および運転周波数(
インバータ回路71.72の出力周波数)を制御する手
段。
■When the cooling main operation mode is determined, the number of operating compressors 1 and 2 and the operating frequency (
means for controlling the output frequency of the inverter circuits 71 and 72;

■冷房主運転モードを決定したとき、冷房側室内ユニッ
トでの冷媒過熱度を検出する手段。
■Means for detecting the degree of refrigerant superheat in the cooling indoor unit when the cooling main operation mode is determined.

■検出した冷媒過熱度が一定範囲内に収まるよう、液管
Wを通る冷媒の量を制御する手段。
(2) Means for controlling the amount of refrigerant passing through the liquid pipe W so that the detected degree of refrigerant superheating falls within a certain range.

■室内ユニットc、、C2,C3,C4のいずれかから
要求される暖房能力の総和が同じく要求される冷房能力
の総和より大きいとき、暖房主運転モードを決定する手
段。
(2) Means for determining the heating main operation mode when the sum of the heating capacities requested from any of the indoor units c, , C2, C3, and C4 is greater than the sum of the cooling capacities also requested.

■暖房主運転モードを決定したとき、圧縮機1゜2の吐
出冷媒を暖房運転モードの要求を出している室内ユニッ
トに通し、次に室外熱交換器10に通して圧縮機1,2
に戻す手段。
■When the heating main operation mode is determined, the refrigerant discharged from the compressors 1 and 2 is passed through the indoor unit that is requesting the heating operation mode, and then passed through the outdoor heat exchanger 10 to the compressors 1 and 2.
means to return to.

■暖房主運転モードを決定したとき、暖房運転モードの
要求を出している室内ユニットを経た冷媒の一部を冷房
運転モードの要求を出している室内ユニットに通し、次
に圧縮機1,2に戻す手段。
■When the heating main operation mode is determined, part of the refrigerant that has passed through the indoor unit that is requesting the heating operation mode is passed through the indoor unit that is requesting the cooling operation mode, and then passed to the compressors 1 and 2. means of returning.

[相]暖房主運転モードを決定したとき、暖房主運転モ
ードを決定したとき、要求暖房能力の総和に応じて圧縮
機1.2の運転台数および運転周波数(インバータ回路
71.72の出力周波数)を制御する手段。
[Phase] When the heating main operation mode is determined, when the heating main operation mode is determined, the number of operating compressors 1.2 and operating frequency (output frequency of the inverter circuits 71 and 72) according to the total required heating capacity. means to control.

つぎに、上記の構成において第3図のフローチャートを
参照しながら作用を説明する。
Next, the operation of the above configuration will be explained with reference to the flowchart of FIG. 3.

室内ユニットC1が冷房運転モード、室内ユニットC2
が冷房運転モード、室内ユニットC3が暖房運転モード
、室内ユニットC4が運転停止であるとする。そして、
冷房要求能力の合計が暖房要求能力の合計より大きいと
する。
Indoor unit C1 is in cooling operation mode, indoor unit C2
It is assumed that the indoor unit C3 is in the cooling operation mode, the indoor unit C3 is in the heating operation mode, and the indoor unit C4 is stopped. and,
Assume that the total required cooling capacity is greater than the total required heating capacity.

この場合、冷房主運転モードを決定し、室外ユニッ)A
の三方弁9を開き(白色表示)、かつ二方弁14を閉じ
(黒色表示)、これにより室外熱交換器10を吐出管4
aに接続する。
In this case, the main cooling operation mode is determined and the outdoor unit
Open the three-way valve 9 (displayed in white) and close the two-way valve 14 (displayed in black), thereby connecting the outdoor heat exchanger 10 to the discharge pipe 4.
Connect to a.

分岐ユニットBでは、PMV21,31.41を開いて
PMV51を閉じるとともに(白色表示)、二方弁25
,35.46を開き(白色表示)、かつ二方弁45,5
5,26,36.56を閉じ(黒色表示)、冷房運転モ
ードの室内ユニットC1,C2のガス管を低圧側ガス管
S(吸入管5a)に接続し、暖房運転モードの室内ユニ
ットC3のガス管を高圧側ガス管G(吐出管4b)に接
続する。
In branch unit B, PMV21, 31.41 is opened and PMV51 is closed (white display), and two-way valve 25 is opened.
, 35, 46 open (white display), and two-way valve 45, 5
5, 26, 36, and 56 (displayed in black), connect the gas pipes of the indoor units C1 and C2 in the cooling operation mode to the low-pressure side gas pipe S (intake pipe 5a), and connect the gas pipes of the indoor unit C3 in the heating operation mode. Connect the pipe to the high pressure side gas pipe G (discharge pipe 4b).

したがって、圧縮機1,2から吐出される冷媒は、二方
弁9を通って室外熱交換器10に入る。
Therefore, the refrigerant discharged from the compressors 1 and 2 passes through the two-way valve 9 and enters the outdoor heat exchanger 10.

この室外熱交換器10では、冷媒が凝縮する。室外熱交
換器10を経た冷媒は、逆止弁12およびリキッドタン
ク13を通り、次にPMV21゜31および膨張弁22
.32を通り、室内ユニットC1,C2に入る。この室
内ユニットC1゜C2では、冷媒が気化する。室内ユニ
ッ)C1゜C2を経た冷媒は、二方弁25.35および
低圧側ガス管Sを通り、圧縮機1,2に吸い込まれる。
In this outdoor heat exchanger 10, the refrigerant condenses. The refrigerant that has passed through the outdoor heat exchanger 10 passes through the check valve 12 and liquid tank 13, and then passes through the PMV 21° 31 and the expansion valve 22.
.. 32 and enters the indoor units C1 and C2. In this indoor unit C1°C2, the refrigerant is vaporized. The refrigerant that has passed through the indoor units) C1 and C2 passes through the two-way valves 25 and 35 and the low-pressure side gas pipe S, and is sucked into the compressors 1 and 2.

同時に、圧縮機1,2から吐出される冷媒の一部が、高
圧側ガス管Gおよび二方弁46を通って室内ユニットC
3に入る。この室内ユニットC3では、冷媒が凝縮する
。室内ユニットC3を経た冷媒は、逆止弁43およびP
MV41を通り、室内ユニットC1,C2(PMv21
,31)への冷媒の流れに合流する。
At the same time, a portion of the refrigerant discharged from the compressors 1 and 2 passes through the high pressure side gas pipe G and the two-way valve 46 to the indoor unit C.
Enter 3. In this indoor unit C3, the refrigerant condenses. The refrigerant that has passed through the indoor unit C3 passes through the check valve 43 and P
Passing through MV41, indoor units C1 and C2 (PMv21
, 31).

すなわち、室外熱交換器10が凝縮器、室内熱交換器2
4.34が蒸発器、室内熱交換器44が凝縮器として働
く。
That is, the outdoor heat exchanger 10 is a condenser, and the indoor heat exchanger 2 is a condenser.
4.34 works as an evaporator, and indoor heat exchanger 44 works as a condenser.

この、場合、冷房側室内ユニットC1,C2の吸熱の一
部が暖房側室内ユニットC3の放熱として利用されるこ
とになる。
In this case, part of the heat absorbed by the cooling-side indoor units C1 and C2 is used as heat radiation from the heating-side indoor unit C3.

圧縮機1.2の運転台数および運転周波数(インバータ
回路71.72の出力周波数)は、要求冷房能力の総和
に応じて決定する。
The number of operating compressors 1.2 and the operating frequency (output frequency of inverter circuits 71, 72) are determined according to the total required cooling capacity.

冷房運転モードの室内ユニットC1の要求冷房能力に応
じてPMV21の開度を制御し、室内熱交換器24に流
れる冷媒の量を調節する。
The opening degree of the PMV 21 is controlled according to the required cooling capacity of the indoor unit C1 in the cooling operation mode, and the amount of refrigerant flowing into the indoor heat exchanger 24 is adjusted.

冷房運転モードの室内ユニットC2の要求冷房能力に応
じてPMV31の開度を制御し、室内熱交換器34に流
れる冷媒の量を調節する。
The opening degree of the PMV 31 is controlled according to the required cooling capacity of the indoor unit C2 in the cooling operation mode, and the amount of refrigerant flowing into the indoor heat exchanger 34 is adjusted.

暖房運転モードの室内ユニットC3については、対応す
るPMV41を全開に設定する。
Regarding the indoor unit C3 in the heating operation mode, the corresponding PMV 41 is set to full open.

ここで、室外ユニットAが室内ユニットC1゜C2,C
3,C4よりも高い位置にあるとすれば、上記の冷房主
運転モードに際し、液管Wの冷媒圧力と高圧側ガス管G
の冷媒圧力とが室外ユニットAを出た位置では同じであ
るものの、室内ユニットCI 、C2+  C3104
の位置で見ると液管Wの冷媒圧力の方が高圧側ガス管G
を通る冷媒の圧力よりもヘッド差分だけ高くなる。
Here, outdoor unit A is indoor unit C1°C2,C
3. If the position is higher than C4, the refrigerant pressure in the liquid pipe W and the high pressure side gas pipe G in the cooling main operation mode described above.
Although the refrigerant pressure is the same at the position where it exits the outdoor unit A, the refrigerant pressure in the indoor units CI, C2+ C3104
Looking at the position, the refrigerant pressure in the liquid pipe W is higher than that in the high pressure side gas pipe G.
The pressure of the refrigerant passing through the head is higher than the pressure of the refrigerant passing through the head.

こうなると、冷房側室内ユニットC1,C2には必要量
の冷媒が流れるが、暖房側室内ユニットC3には冷媒か
流れ難くなる。このため、冷房能力は十分に確保できる
ものの、暖房能力については冷房能力の115程度しか
得られなくなる事態が生じる。
In this case, although the necessary amount of refrigerant flows into the cooling-side indoor units C1 and C2, it becomes difficult for the refrigerant to flow into the heating-side indoor unit C3. Therefore, although sufficient cooling capacity can be ensured, a situation arises in which heating capacity is only about 115 of the cooling capacity.

そこで、第3図に示す制御を実行する。Therefore, the control shown in FIG. 3 is executed.

冷房主運転モードの開始時、室外ユニットAのPMV1
6を予め定めた初期開度に先ず設定する。
At the start of cooling main operation mode, PMV1 of outdoor unit A
6 is first set to a predetermined initial opening degree.

この初期開度は、室外ユニットAと室内ユニットCI 
+  C21C3,C4とのヘッド差に基づいて予め定
めたもので、絞り気味としである。
This initial opening degree is between outdoor unit A and indoor unit CI.
+ C21 This is predetermined based on the head difference between C3 and C4, and is a little narrowed.

PMV16が絞り気味であると、液管Wを流れる冷媒の
量が少なめになり、液管Wの冷媒圧力が先ずは低めに設
定される。
If the PMV 16 is a little throttled, the amount of refrigerant flowing through the liquid pipe W will be small, and the refrigerant pressure in the liquid pipe W will be set to be low first.

運転開始後、冷媒過熱度が安定状態となる一定時間t1
が経過したら、冷房側の室内ユニットC1に入る冷媒の
温度を温度センサ101で検知し、かつ室内ユニットC
1から流れ出る冷媒の温度を温度センサ105で検知し
、両検知温度の差を室内ユニットC1での冷媒過熱度S
Hとして検出する。同時に、冷房側の室内ユニットC2
に入る冷媒の温度を温度センサ102で検知し、かつ室
内ユニットC2から流れ出る冷媒の温度を温度センサ1
06で検知し、両検知温度の差を室内ユニットC2での
冷媒過熱度SHとして検出する。
After the start of operation, a certain period of time t1 during which the degree of superheating of the refrigerant becomes stable
has passed, the temperature of the refrigerant entering the indoor unit C1 on the cooling side is detected by the temperature sensor 101, and the temperature of the refrigerant entering the indoor unit C1 on the cooling side is detected.
The temperature of the refrigerant flowing out from the indoor unit C1 is detected by the temperature sensor 105, and the difference between the two detected temperatures is determined as the refrigerant superheat degree S in the indoor unit C1.
Detected as H. At the same time, the indoor unit C2 on the cooling side
The temperature of the refrigerant entering the indoor unit C2 is detected by the temperature sensor 102, and the temperature of the refrigerant flowing out from the indoor unit C2 is detected by the temperature sensor 1.
06, and the difference between the two detected temperatures is detected as the refrigerant superheat degree SH in the indoor unit C2.

検出した冷媒過熱度SHのうち少なくとも1つが一定値
SHs以内になければ、別の言い方をすれば冷媒過熱度
SHのうち少なくとも1つが一定範囲内になければ、室
外ユニットAのPMV16の開度を所定値(数パルス分
)だけ増やす。
If at least one of the detected refrigerant superheat degrees SH is not within a certain value SHs, in other words, if at least one of the refrigerant superheat degrees SH is not within a certain range, the opening degree of PMV 16 of outdoor unit A is changed. Increase by a predetermined value (several pulses).

PMV16の開度が増えると、液管Wを流れる冷媒の量
が増え、よって室内ユニットC1,C2に流れる冷媒の
量が増え、冷媒過熱度が減少方向に変化する。
When the opening degree of the PMV 16 increases, the amount of refrigerant flowing through the liquid pipe W increases, and therefore the amount of refrigerant flowing into the indoor units C1 and C2 increases, and the degree of refrigerant superheat changes in a decreasing direction.

所定時間t2後、再び冷媒過熱度を検出し、冷媒過熱度
SHが上記一定範囲内に収まるまでPMV16を所定値
ずつ増やしていく。
After a predetermined time t2, the refrigerant superheat degree is detected again, and PMV16 is increased by a predetermined value until the refrigerant superheat degree SH falls within the above-mentioned fixed range.

こうして、第6図のように室外ユニットAが室内ユニッ
トC1+ C2+  C3+  C4より高い位置にあ
っても、液管Wの冷媒圧力が高圧側ガス管Gの冷媒圧力
とほぼ同じ値に調節され、冷房側室内ユニットC,,C
2と暖房側室内ユニットC3とに冷媒をバランスよく分
配供給することができる。
In this way, even if the outdoor unit A is located higher than the indoor unit C1+C2+C3+C4 as shown in FIG. 6, the refrigerant pressure in the liquid pipe W is adjusted to approximately the same value as the refrigerant pressure in the high-pressure side gas pipe G, and the air conditioning is maintained. Side indoor unit C,,C
The refrigerant can be distributed and supplied to the heating-side indoor unit C3 and the heating-side indoor unit C3 in a well-balanced manner.

したがって、冷房側室内ユニットC1+  C2および
暖房側室内ユニットC3のそれぞれにおいて、必要十分
な能力を確保することができる。
Therefore, necessary and sufficient capacity can be ensured in each of the cooling-side indoor units C1+C2 and the heating-side indoor unit C3.

なお、上記実施例では、室内ユニットが4台の場合を例
に説明したが、その台数に限定はない。
In the above embodiment, the case where there are four indoor units has been described as an example, but there is no limitation to the number of indoor units.

また、圧縮機の台数が2台の場合を例に説明したが、そ
の台数についても限定はなく、室内ユニットの台数など
に応じて適宜に設定可能である。
Moreover, although the case where the number of compressors is two is described as an example, the number is not limited and can be set as appropriate depending on the number of indoor units and the like.

[発明の効果] 以上述べたようにこの発明によれば、圧縮機および室外
熱交換器を有する1台の室外ユニットと、それぞれが室
内熱交換器を有する複数台の室内ユニットと、前記室外
ユニットに液管、高圧側ガス管、低圧側ガス管を介して
連通し前記各室内ユニットへの冷媒の流れ方向を切換え
る分岐ユニットとからなり、各室内ユニットへの冷媒の
流れ方向を選択することにより各室内ユニットで冷房お
よび暖房の同時運転を可能とするマルチシステム型の空
気調和機において、冷房側の室内ユニットでの冷媒過熱
度を検出する手段と、この検出結果が一定範囲内に収ま
るよう前記液管に流れる冷媒の量を制御する手段とを備
えたので、室外ユニットが室内ユニットより高い位置に
あっても、冷房側室内ユニットおよび暖房側室内ユニッ
トのそれぞれにおいて必要十分な能力を確保することが
できる空気調和機を提供できる。
[Effects of the Invention] As described above, according to the present invention, one outdoor unit having a compressor and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, and the outdoor unit and a branching unit that communicates with each other via a liquid pipe, a high-pressure side gas pipe, and a low-pressure side gas pipe, and switches the flow direction of the refrigerant to each of the indoor units. In a multi-system air conditioner that enables simultaneous operation of cooling and heating in each indoor unit, there is a means for detecting the degree of refrigerant superheating in the indoor unit on the cooling side, and a means for detecting the degree of superheating of the refrigerant in the indoor unit on the cooling side, and Since the system is equipped with a means for controlling the amount of refrigerant flowing into the liquid pipe, even if the outdoor unit is located higher than the indoor unit, necessary and sufficient capacity can be ensured in each of the cooling-side indoor unit and the heating-side indoor unit. We can provide air conditioners that can

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の冷凍サイクルの構成を示
す図、第2図は同実施例の制御回路の構成を示す図、第
3図は同実施例の作用を説明するためのフローチャート
、第4図および第5図はそれぞれ従来の空気調和機の冷
凍サイクルの構成を示す図、第6図は室外ユニット、分
岐ユニット。 および各室内ユニットの据え付は例を示す図である。 1.2・・・能力可変圧縮機、10・・・室外熱交換器
、16−PMV、24,34.44.54−・・室内熱
交換器、101〜108・・・温度センサ、A・・・室
外ユニット、B・・・分岐ユニット、Cユ、C2,C3
゜C4・・・室内ユニット。
FIG. 1 is a diagram showing the configuration of a refrigeration cycle according to an embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a control circuit according to the embodiment, and FIG. 3 is a flowchart for explaining the operation of the embodiment. , FIG. 4 and FIG. 5 are diagrams showing the configuration of a refrigeration cycle of a conventional air conditioner, respectively, and FIG. 6 is an outdoor unit and a branch unit. and the installation of each indoor unit are diagrams showing examples. 1.2...Variable capacity compressor, 10...Outdoor heat exchanger, 16-PMV, 24,34.44.54-...Indoor heat exchanger, 101-108...Temperature sensor, A. ... Outdoor unit, B... Branch unit, C, C2, C3
゜C4... Indoor unit.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機および室外熱交換器を有する1台の室外ユニット
と、それぞれが室内熱交換器を有する複数台の室内ユニ
ットと、前記室外ユニットに液管、高圧側ガス管、低圧
側ガス管を介して連通し前記各室内ユニットへの冷媒の
流れ方向を切換える分岐ユニットとからなり、各室内ユ
ニットへの冷媒の流れ方向を選択することにより各室内
ユニットで冷房および暖房の同時運転を可能とするマル
チシステム型の空気調和機において、冷房側の室内ユニ
ットでの冷媒過熱度を検出する手段と、この検出結果が
一定範囲内に収まるよう前記液管に流れる冷媒の量を制
御する手段とを具備したことを特徴とする空気調和機。
One outdoor unit having a compressor and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, and a liquid pipe, a high pressure side gas pipe, and a low pressure side gas pipe connected to the outdoor unit This multi-system consists of a branch unit that communicates with the indoor units to switch the flow direction of the refrigerant to each indoor unit, and enables simultaneous cooling and heating operation in each indoor unit by selecting the flow direction of the refrigerant to each indoor unit. type of air conditioner, comprising means for detecting the degree of superheating of refrigerant in an indoor unit on the cooling side, and means for controlling the amount of refrigerant flowing into the liquid pipe so that the detection result falls within a certain range. An air conditioner featuring:
JP2195918A 1990-07-24 1990-07-24 Air conditioner Expired - Fee Related JP2974381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2195918A JP2974381B2 (en) 1990-07-24 1990-07-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2195918A JP2974381B2 (en) 1990-07-24 1990-07-24 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0480569A true JPH0480569A (en) 1992-03-13
JP2974381B2 JP2974381B2 (en) 1999-11-10

Family

ID=16349150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2195918A Expired - Fee Related JP2974381B2 (en) 1990-07-24 1990-07-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP2974381B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU771853B2 (en) * 2000-04-24 2004-04-01 Daikin Industries, Ltd. Branch unit for air conditioner
CN100353128C (en) * 2001-06-26 2007-12-05 大金工业株式会社 Freezing device
CN110410984A (en) * 2019-08-07 2019-11-05 宁波奥克斯电气股份有限公司 The multi-joint interior machine valve self-adaptation control method of one kind and multi-gang air-conditioner
WO2022038708A1 (en) * 2020-08-19 2022-02-24 三菱電機株式会社 Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956784B2 (en) * 2002-07-04 2007-08-08 ダイキン工業株式会社 Refrigeration equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU771853B2 (en) * 2000-04-24 2004-04-01 Daikin Industries, Ltd. Branch unit for air conditioner
CN100353128C (en) * 2001-06-26 2007-12-05 大金工业株式会社 Freezing device
CN110410984A (en) * 2019-08-07 2019-11-05 宁波奥克斯电气股份有限公司 The multi-joint interior machine valve self-adaptation control method of one kind and multi-gang air-conditioner
WO2022038708A1 (en) * 2020-08-19 2022-02-24 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2974381B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
AU656064B2 (en) Air-conditioning system
US7062930B2 (en) System and method for using hot gas re-heat for humidity control
US5046323A (en) Multi-system air conditioner
JPH06103130B2 (en) Air conditioner
US5107684A (en) Air conditioner and operating method thereof
JPS6334459A (en) Air conditioner
JP2823297B2 (en) Air conditioner
JPH04124544A (en) Air conditioner
JPH03236570A (en) Air-conditioner
EP2963353B1 (en) Air conditioning device
JPH0480569A (en) Air-conditioning machine
JP2893844B2 (en) Air conditioner
JP2960208B2 (en) Air conditioner
JP2955401B2 (en) Air conditioner
JP2755040B2 (en) Heat pump system
JPH0484080A (en) Air conditioner
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JPH01127866A (en) Cold and hot simultaneous type multi-chamber air conditioner
JPH035826Y2 (en)
JP2534926B2 (en) Multi-room air conditioner
JP2874975B2 (en) Air conditioner
JPH04347466A (en) Air conditioner
JPH046371A (en) Multi-room type air-conditioning machine
JPH0579894B2 (en)
JPS62288441A (en) Multichamber air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees