JPH03109231A - Production of optical fiber porous preform - Google Patents

Production of optical fiber porous preform

Info

Publication number
JPH03109231A
JPH03109231A JP24722589A JP24722589A JPH03109231A JP H03109231 A JPH03109231 A JP H03109231A JP 24722589 A JP24722589 A JP 24722589A JP 24722589 A JP24722589 A JP 24722589A JP H03109231 A JPH03109231 A JP H03109231A
Authority
JP
Japan
Prior art keywords
burner
burners
optical fiber
diameter
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24722589A
Other languages
Japanese (ja)
Other versions
JP2612941B2 (en
Inventor
Hideo Hirasawa
秀夫 平沢
Hitoshi Iinuma
均 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1247225A priority Critical patent/JP2612941B2/en
Publication of JPH03109231A publication Critical patent/JPH03109231A/en
Application granted granted Critical
Publication of JP2612941B2 publication Critical patent/JP2612941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the optical fiber porous preform with the effective deposition part maximized by using plural burners spaced apart from each other by a specified distance to deposit glass fine particles on a carrier by outside CVD method. CONSTITUTION:A gaseous silicon compd. such as silicon tetrachloride is introduced into an oxyhydrogen flame burners 3-1, 3-2,..., and hydrolyzed, and the obtained glass fine particles 4 are deposited on the heat-resistant carrier 2 of synthetic quartz, silicon carbide, carbon, etc., to form the optical fiber porous preform 1. At least two burners (3-1 and 3-2) are used to form an effective deposition part, and the distance between the burners is controlled to >=4 times the burner diameter. Consequently, the yield of the glass fine particles deposited on the effective deposition part is adjusted to >=85%. When the burner is moved to both ends of the carrier 2, the distance between burners is controlled to <=3 times the burner diameter. The tapered part is minimized in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバ多孔質母材、特にはけい素化合物を
複数の酸水素火炎バーナーで加水分解して得たガラス微
粒子を担体上に堆積させる外付けCVD法により、大型
の光ファイバ多孔質母材を生産性よく製造する方法に関
するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an optical fiber porous base material, in particular, a method of depositing glass particles obtained by hydrolyzing a silicon compound with a plurality of oxyhydrogen flame burners on a carrier. The present invention relates to a method for manufacturing a large-sized optical fiber porous base material with good productivity by an external CVD method.

(従来の技術) 光ファイバ母材は、けい素化合物を酸水素火炎バーナー
で加水分解して得たガラス微粒子を耐熱性の担体上に堆
積するという外付けCVD法によって多孔質母材を作り
、これを焼結し、透明ガラス化することによって作られ
ているが、この多孔質母材の大型化およびその生産性向
上のためにはこのバーナーを複数個使用する方法が汎用
されている。
(Prior art) A porous optical fiber base material is made by an external CVD method in which glass particles obtained by hydrolyzing a silicon compound with an oxyhydrogen flame burner are deposited on a heat-resistant carrier. It is made by sintering this porous base material and turning it into transparent glass, and in order to increase the size of this porous base material and improve its productivity, a method of using a plurality of burners is commonly used.

(発明が解決しようとする課題) しかし、この外付けCVD法による多孔質母材の製造に
おいて複数のバーナーを用いる場合、通常このバーナー
は一定間隔で設置されており、この間隔が小さくて2つ
のバーナーが近づきすぎると火炎同志が干渉し合うため
にガラス微粒子の堆積効率が低下し、またこの間隔が大
ぎくてバーナー間隔が開きすぎるとガラス微粒子堆積部
の両端テーパー部が大きくなって有効部が短かくなり、
歩留りがわるくなるという不利がある。
(Problem to be solved by the invention) However, when a plurality of burners are used in the production of a porous base material by this external CVD method, the burners are usually installed at regular intervals, and if this interval is small, two If the burners are too close together, the flames will interfere with each other, reducing the deposition efficiency of glass particles.If this distance is too large and the burner interval is too wide, the tapered portions at both ends of the glass particle deposition area will become large, reducing the effective area. becomes shorter,
This has the disadvantage of lower yield.

(課題を解決するための手段) 本発明はこのような不利を解決することのできる光ファ
イバ多孔質母材の製造方法に関するものであり、これは
複数のバーナーを用いて外付けCVD法により担体上に
ガラス微粒子を堆積させて光ファイバ多孔質母材を製造
する方法において、該バーナーの間隔をガラス微粒子を
堆積の有効堆積部ではバーナー径の4倍以上とし、テー
パー部においてはバーナー径の3倍以上とすることを特
徴とするものである。
(Means for Solving the Problems) The present invention relates to a method for manufacturing an optical fiber porous preform that can solve these disadvantages. In a method of manufacturing an optical fiber porous preform by depositing glass particles thereon, the interval between the burners is set to 4 times or more the burner diameter in the effective deposition area for depositing the glass particles, and 3 times the burner diameter in the tapered part. It is characterized by being more than twice as large.

すなわち、本発明者らは酸水素火炎バーナーを複数本使
用する外付けCVD法によって光ファイバ多孔質母材を
製造する方法において、これを効率よ〈実施する方法に
ついて種々検討した結果、第2図に示すようにここに使
用する複数個のバーナーの間隔を固定化せずにこれを可
動とし、有効堆積部においてはこのバーナー間隔をバー
ナー径の4倍以上とすると各バーナーの火炎同志が干渉
し合うことがなくなるので、この部分でのガラス微粒子
の堆積効率を85%以上とすることができること、また
第3図に示すようにテーパー部についてはこのバーナー
間隔をバーナー径の3倍以下とするとこのテーパー部を
ほぼ一定で最小値とすることができることを見出し、そ
の結果有効堆積部を最長とすることができるということ
を確認して本発明を完成させた。
That is, the present inventors conducted various studies on efficient methods of manufacturing an optical fiber porous base material by an external CVD method using multiple oxyhydrogen flame burners, and as a result, the results shown in FIG. As shown in the figure, if the interval between the multiple burners used here is not fixed but is movable, and the interval between the burners is set to four times or more the burner diameter in the effective deposition section, the flames of each burner will interfere with each other. Since they will not match, the deposition efficiency of glass particles in this part can be increased to 85% or more, and as shown in Figure 3, in the tapered part, if the burner spacing is set to 3 times the burner diameter or less, this can be achieved. The present invention was completed by discovering that the taper portion can be kept almost constant and at a minimum value, and as a result, by confirming that the effective deposition portion can be made the longest.

以下これをさらに詳述する。This will be explained in more detail below.

(作用) 本発明による光ファイバ多孔質母材の製造は外付けCV
D法で行なわれる。
(Function) The production of the optical fiber porous base material according to the present invention is performed using an external CV
This is done using method D.

これは四塩化けい素(SiCj24)などのけい素化合
物を酸水素火炎バーナーに送り、この酸水素火炎で加水
分解してガラス微粒子を生成させ、これを合成石英、炭
化けい素、炭素などの耐熱性材料からなる担体上に堆積
して多孔質ガラス母材とするのであるが、この担体上へ
のガラス微粒子の堆積を増加させるために本発明の方法
ではこの酸水素火炎バーナーが2個または2個以上の複
数個で行なわれる。
In this process, silicon compounds such as silicon tetrachloride (SiCj24) are sent to an oxyhydrogen flame burner, and the oxyhydrogen flame hydrolyzes them to produce glass particles, which are then processed into heat-resistant materials such as synthetic quartz, silicon carbide, and carbon. In order to increase the deposition of glass fine particles on the carrier, in the method of the present invention, two or two oxyhydrogen flame burners are used. This is done in multiple units.

つぎにこれを添付の図面にともづいて説明する。第1図
は本発明の方法による光ファイバ多孔質母材の製造装置
の縦断面図を示したものであり、光ファイバ多孔質母材
1は合成石英、炭化けい素、炭素などのような耐熱性の
担体2の上に、四塩化けい素などのガス状けい素化合物
を送入している酸水素火炎バーナー3−1.3−2・・
・などでけい素化合物を加水分解して得たガラス微粒子
4を堆積させることによって作られるが、このバーナー
3−1.3−2はバーナー台5にバーナー間隔が調整で
きるように載置されており、このものは多孔質母材の直
径を略々均一にするということから担体2またはこのバ
ーナー台5のいずれかまたは両者が左右に一定の速度で
移動できるようにされている。
Next, this will be explained based on the attached drawings. FIG. 1 shows a longitudinal cross-sectional view of an apparatus for producing an optical fiber porous preform according to the method of the present invention, and the optical fiber porous preform 1 is made of heat-resistant material such as synthetic quartz, silicon carbide, carbon, etc. An oxyhydrogen flame burner 3-1, 3-2, which feeds a gaseous silicon compound such as silicon tetrachloride onto the chemical carrier 2.
It is made by depositing glass fine particles 4 obtained by hydrolyzing a silicon compound, etc., and this burner 3-1.3-2 is placed on a burner stand 5 so that the burner interval can be adjusted. Since the porous base material has a substantially uniform diameter, either or both of the carrier 2 and the burner table 5 can be moved left and right at a constant speed.

このようにして作られた多孔質母材は図に示されている
ように径が略々均一とされている直胴部(以下これを有
効堆積部と略記する)と三角形状の端末部(以下これを
テーパー部と略記する)とによフて構成されているが、
本発明の方法ではこの多孔質母材1を大型のものとする
こと、またこの生産性を向上させるために酸水素火炎バ
ーナー3が複数個使用されている。
As shown in the figure, the porous base material made in this way has a straight body part (hereinafter referred to as the effective deposition part) with a substantially uniform diameter and a triangular end part ( This is hereinafter abbreviated as the taper part).
In the method of the present invention, the porous base material 1 is made large, and a plurality of oxyhydrogen flame burners 3 are used to improve productivity.

しかして、この酸水素火炎バーナーは有効堆積部を形成
させるために少なくとも2本(3−1,3−2)が使用
されるが、この2木の酸水素火炎バーナー3−1.3−
2のバーナー間隔はバーナー径の4倍以上とする必要が
ある。これはバーナー間隔がバーナー径の4倍以下であ
るとバーナー火炎同志が干渉し合ってガラス微粒子4の
担体2への堆積収率が低下してしまうが、これをバーナ
ー径の4倍以上とすればバーナー火炎同志が干渉し合う
ことがなくなるので、ガラス微粒子の有効堆積部への堆
積収率を85%以上とすることができる。
Therefore, at least two of these oxyhydrogen flame burners (3-1, 3-2) are used to form an effective stack, and these two oxyhydrogen flame burners 3-1.3-
The interval between burners in step 2 must be at least four times the burner diameter. This is because if the burner spacing is less than 4 times the burner diameter, the burner flames will interfere with each other and the deposition yield of glass particles 4 on the carrier 2 will decrease, but if the burner spacing is 4 times or more the burner diameter, Since the burner flames do not interfere with each other, the deposition yield of glass fine particles in the effective deposition area can be increased to 85% or more.

また、このテーパー部におけるガラス微粒子の堆積はこ
のテーパー部が最終的には有効堆積部から切り離されて
回収されるもので光ファイバとされるものではなく、シ
たがってできるだけ小さいものとすることがよいので、
酸水素火炎バーナー3−1.3−2が担体2の両末端に
移動してきたときにはこのバーナー間隔をバーナー径の
3倍以下と小さくすることが必要であり、これによれば
この部位ではバーナー火炎同志が干渉し合うのでガラス
微粒子4の担体2への堆積収率がわるくなるが、テーパ
ー部を最小とすることができる。
In addition, the accumulation of glass particles in this tapered part is ultimately separated from the effective deposited part and collected, and is not used as an optical fiber, so it is necessary to make it as small as possible. Because it's good,
When the oxyhydrogen flame burners 3-1 and 3-2 move to both ends of the carrier 2, it is necessary to reduce the interval between the burners to three times the burner diameter or less. Since the particles interfere with each other, the deposition yield of the glass particles 4 on the carrier 2 is reduced, but the tapered portion can be minimized.

すなわち、本発明による光ファイバ多孔質母材の製造は
、前記したように複数のバーナーを用いて外付けCVD
法で光ファイバ多孔質母材の製造する方法において、該
バーナーの間隔を有効堆積部ではバーナー径の4倍以上
とし、テーパー部ではバーナー径の3倍以下とするもの
であるが、これによれば最長の有効堆積部を得ることが
でき、ここでのガラス微粒子の堆積収率を85%以上と
することができるので大口径の光ファイバ多孔質母材を
生産性よく製造することができるし、テーパー部は少さ
くすることができるのでこの面からも生産性を向上させ
ることができるという有利性が与えられる。
That is, the optical fiber porous preform according to the present invention is manufactured by external CVD using a plurality of burners as described above.
In the method for manufacturing an optical fiber porous base material by the method, the interval between the burners is set to be at least 4 times the burner diameter in the effective stacking part and not more than 3 times the burner diameter in the tapered part. In this case, the longest effective deposition section can be obtained, and the deposition yield of glass particles can be increased to 85% or more, so that a large-diameter optical fiber porous base material can be manufactured with high productivity. Since the taper portion can be made smaller, this also provides an advantage in that productivity can be improved.

(実施例) つぎに本発明の実施例をあげる。(Example) Next, examples of the present invention will be given.

実施例 担体軸方向に平行に左右に往復運動できるように口径2
5mmの可動性酸水素バーナ−2個を設置した第1図に
示した外付CVD法装置を使用し、これに担体として直
径40mmφ、長さ800mmのコア用石英ガラスロッ
ドを設置し、40rpmで回転させた。
Example: The diameter of the carrier is 2 so that it can reciprocate from side to side parallel to the axial direction of the carrier.
Using the external CVD method shown in Fig. 1 equipped with two 5 mm movable oxyhydrogen burners, a quartz glass rod for the core with a diameter of 40 mmφ and a length of 800 mm was installed as a carrier. Rotated.

ついで装置中央に2本の酸水素火炎バーナーをバーナー
間隔がバーナー径の5倍である125mmとなすように
設置する(図中の(B))と共に、これらを担体と平行
に左右に100mm/分の速度で往復運動するようにし
、このバーナーに四塩化けい素(SiC14)を300
g/時、酸素ガスを4m3/時、水素ガスを4m37時
で供給して着火し、この火炎中での5iCj24の加水
分解で発生したシリカ微粒子を担体上に堆積させ、この
バーナーが担体の両端に近づいたとき(図中の(A)、
(C))にはこの2木のバーナー間隔をバーナー径の3
倍以下である40mmになるようにし、10時間ガラス
微粒子の担体上への堆積を行なったところ、有効堆積部
92%、テーパー部8%の直径が150mmφである多
孔質ガラス母材が得られ、このものの平均堆積収率は7
5%であった。
Next, install two oxyhydrogen flame burners in the center of the device so that the burner spacing is 125 mm, which is 5 times the burner diameter ((B) in the figure), and rotate them parallel to the carrier at a rate of 100 mm/min from side to side. The burner was made to reciprocate at a speed of
ignited by supplying oxygen gas at 4 m3/h and hydrogen gas at 4 m3/h, and depositing silica fine particles generated by hydrolysis of 5iCj24 in this flame on the carrier. When approaching ((A) in the figure,
In (C)), the burner spacing between these two trees is 3 of the burner diameter.
When the glass particles were deposited on the carrier for 10 hours, a porous glass base material with a diameter of 150 mmφ in 92% of the effective deposited part and 8% of the tapered part was obtained. The average deposition yield of this is 7
It was 5%.

しかし、比較のためにこの2本のバーナー間隔をバーナ
ー径の3倍である75mmに固定したほかは上記と同様
に処理したところ、得られた多孔質ガラス母材の有効堆
積部は84%でテーパー部は16%であり、このときの
シリカ微粒子の平均堆積収率は50%となった。
However, for comparison, when the process was carried out in the same manner as above except that the distance between these two burners was fixed at 75 mm, which is three times the burner diameter, the effective deposited area of the obtained porous glass base material was 84%. The taper portion was 16%, and the average deposition yield of silica fine particles at this time was 50%.

(発明の効果) 本発明は光ファイバ多孔質ガラス母材の製造法に関する
ものであり、これは前記したように複数の酸水素火炎バ
ーナーを用いるCVD法において、この2本のバーナー
間隔を有効堆積部においてはバーナー径の4倍以上とし
、テーパー部ではこれをバーナー径の3倍以下とするも
のであるが、これによればテーパー部を最小とすること
ができるし、有効堆積部ではバーナー火炎同志の干渉が
なくなるのでこの堆積収率を85%以上とすることがで
き、平均堆積収率を上げることができるという工業的な
有利性が与えられる。
(Effects of the Invention) The present invention relates to a method for manufacturing an optical fiber porous glass preform, and as described above, in the CVD method using a plurality of oxyhydrogen flame burners, the gap between the two burners can be effectively deposited. The diameter of the burner should be at least 4 times the burner diameter in the section, and the diameter should be at least 3 times the burner diameter in the tapered section. Since interference between particles is eliminated, the deposition yield can be increased to 85% or more, which provides an industrial advantage in that the average deposition yield can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に使用されるCVD法による多孔
質ガラス母材製造装置の縦断面図を示したものであり、
第2図はバーナー間隙と堆積効率との関係図、第3図は
バーナー間隙とテーパー部の長さとの関係図を示したも
のである。 1・・・光ファイバ多孔質母材 2・・・担体 3−1 3−2・・・酸水素火炎バーナー4・・・ガラ
ス微粒子  5・・・バーナー台l・・・バーナー間隔
  d・・・バーナー径2d シ d d −一一◆パー7−11F4 L 第2図 d d d d −一−中バーナー向隔 し 第 図
FIG. 1 shows a longitudinal cross-sectional view of a porous glass base material manufacturing apparatus by the CVD method used in the method of the present invention.
FIG. 2 is a diagram showing the relationship between the burner gap and deposition efficiency, and FIG. 3 is a diagram showing the relationship between the burner gap and the length of the tapered portion. 1... Optical fiber porous base material 2... Carrier 3-1 3-2... Oxyhydrogen flame burner 4... Glass particles 5... Burner stand l... Burner interval d... Burner diameter 2d Side d -11◆Par 7-11F4 L Fig. 2d d d d -1-Middle burner spacing diagram

Claims (1)

【特許請求の範囲】[Claims] 1、複数のバーナーを用いて外付けCVD法により担体
上にガラス微粒子を堆積させた光ファイバ多孔質母材の
製造方法において、該バーナーの間隔をガラス微粒子堆
積の有効堆積部においてはバーナー径の4倍以上とし、
テーパー部においてはバーナー径の3倍以下とすること
を特徴とする光ファイバ多孔質母材の製造方法。
1. In a method for manufacturing an optical fiber porous base material in which glass fine particles are deposited on a carrier by an external CVD method using a plurality of burners, the interval between the burners is adjusted to the diameter of the burner in the effective deposition area for glass fine particle deposition. 4 times or more,
1. A method for manufacturing an optical fiber porous preform, characterized in that the tapered portion has a diameter not more than three times the burner diameter.
JP1247225A 1989-09-22 1989-09-22 Method for producing porous optical fiber preform Expired - Lifetime JP2612941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247225A JP2612941B2 (en) 1989-09-22 1989-09-22 Method for producing porous optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247225A JP2612941B2 (en) 1989-09-22 1989-09-22 Method for producing porous optical fiber preform

Publications (2)

Publication Number Publication Date
JPH03109231A true JPH03109231A (en) 1991-05-09
JP2612941B2 JP2612941B2 (en) 1997-05-21

Family

ID=17160317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247225A Expired - Lifetime JP2612941B2 (en) 1989-09-22 1989-09-22 Method for producing porous optical fiber preform

Country Status (1)

Country Link
JP (1) JP2612941B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041048A1 (en) * 1999-04-01 2000-10-04 Alcatel Process for the manufacture of a preform for optical fibres, particularly a preform of large diameter
WO2002024591A1 (en) * 2000-09-21 2002-03-28 Heraeus Tenevo Ag Method and device for producing a cylinder from doped quartz glass
WO2002042231A1 (en) * 2000-11-24 2002-05-30 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass particulate sedimented body
US6546759B1 (en) * 1999-07-02 2003-04-15 Shin-Etsu Chemical Co., Ltd. Glass base material manufacturing apparatus with super imposed back-and-forth burner movement
US6837077B2 (en) * 2001-09-20 2005-01-04 Sumitomo Electric Industries, Ltd. Method for producing soot body
KR100802815B1 (en) * 2005-12-19 2008-02-12 엘에스전선 주식회사 Method for fabricating optical fiber preform with low OH concentration using MCVD process
KR101695400B1 (en) * 2015-11-03 2017-01-23 주식회사 아론 Manufacturing device for optical fiber preform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383831A (en) * 1989-08-25 1991-04-09 Fujikura Ltd Preparation of optical fiber base material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383831A (en) * 1989-08-25 1991-04-09 Fujikura Ltd Preparation of optical fiber base material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041048A1 (en) * 1999-04-01 2000-10-04 Alcatel Process for the manufacture of a preform for optical fibres, particularly a preform of large diameter
FR2791663A1 (en) * 1999-04-01 2000-10-06 Cit Alcatel METHOD FOR MANUFACTURING A REFORM FOR OPTICAL FIBER AND MORE PARTICULARLY A PREFORM OF HIGH DIAMETER
US6546759B1 (en) * 1999-07-02 2003-04-15 Shin-Etsu Chemical Co., Ltd. Glass base material manufacturing apparatus with super imposed back-and-forth burner movement
US6672112B2 (en) 1999-07-02 2004-01-06 Shin-Etsu Chemical Co. OVD apparatus including air-regulating structure
US7055345B2 (en) 1999-07-02 2006-06-06 Yuuji Tobisaka Glass base material manufacturing apparatus and glass base material manufacturing method
WO2002024591A1 (en) * 2000-09-21 2002-03-28 Heraeus Tenevo Ag Method and device for producing a cylinder from doped quartz glass
WO2002042231A1 (en) * 2000-11-24 2002-05-30 Sumitomo Electric Industries, Ltd. Method and device for manufacturing glass particulate sedimented body
US6837077B2 (en) * 2001-09-20 2005-01-04 Sumitomo Electric Industries, Ltd. Method for producing soot body
KR100802815B1 (en) * 2005-12-19 2008-02-12 엘에스전선 주식회사 Method for fabricating optical fiber preform with low OH concentration using MCVD process
KR101695400B1 (en) * 2015-11-03 2017-01-23 주식회사 아론 Manufacturing device for optical fiber preform

Also Published As

Publication number Publication date
JP2612941B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US6253580B1 (en) Method of making a tubular member for optical fiber production using plasma outside vapor deposition
EP0154342B1 (en) Method for producing highly pure glass preform for optical fiber
JPH03109231A (en) Production of optical fiber porous preform
JP2003171137A (en) Method for manufacturing optical fiber preform
JPH01138147A (en) Production of single-mode optical fiber preform
JP3290559B2 (en) Method for producing porous glass preform for optical fiber
JPH03112820A (en) Production of porous glass preform
JP3133392B2 (en) Manufacturing method of soot base material for optical fiber
JPH038737A (en) Production of preform for optical fiber
WO2001017918A1 (en) Apparatus for making a glass preform by flame hydrolysis
JPH0777968B2 (en) Optical fiber preform base material manufacturing method
JPH0354124A (en) Production of porous glass preform and system therefor
JP2986453B1 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP3131093B2 (en) Equipment for manufacturing porous glass preform for optical fiber
JP3003173B2 (en) Method for producing glass particle deposit
JPH10330129A (en) Production of porous glass body for optical fiber
JPH0738144U (en) Burner device for synthesizing glass particles
WO2005066085A1 (en) Process for producing porous preform for optical fiber and glass preform
WO2006046340A1 (en) Base material for optical fiber, optical fiber, and method for production thereof
JPH0435429B2 (en)
JPH0712953B2 (en) Method for manufacturing base material for optical fiber
JPS62207734A (en) Method for depositing fine glass particle
JPH01100034A (en) Apparatus for producing optical fiber preform
JPH0583499B2 (en)
KR20020008433A (en) Manufacturing System and Method for Preform Optical Fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 13