JPH03108367A - Integrated circuit - Google Patents

Integrated circuit

Info

Publication number
JPH03108367A
JPH03108367A JP24753989A JP24753989A JPH03108367A JP H03108367 A JPH03108367 A JP H03108367A JP 24753989 A JP24753989 A JP 24753989A JP 24753989 A JP24753989 A JP 24753989A JP H03108367 A JPH03108367 A JP H03108367A
Authority
JP
Japan
Prior art keywords
capacitance
wiring
capacity
intersection
capacitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24753989A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kurose
黒瀬 由貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24753989A priority Critical patent/JPH03108367A/en
Publication of JPH03108367A publication Critical patent/JPH03108367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:In a integrated circuit which has plural capacity elements made into IC, to remove the capacitance ratio error due to parasitic capacity so as to obtain a circuit high in capacitance ratio accuracy by proportioning the parasitic capacity arising at the intersection between the wiring of the upper electrode of the capacity element and the lower electrode to the capacitance of each capacity element. CONSTITUTION:In an integrated circuit which has an operational amplifier AMP, a switch SW, an input terminal IN, an output terminal OUT, and two integrated capacity elements C1 and C2 wherein the ratio accuracy of capacitance is required, the total areas of elements C1 and C2 are prescribed as follows. That is, the areas of the upper electrode 1 and the lower electrode 2 are specified respectively to be proportional to the capacitances C1 and C2, and at this intersection 3 between them, a connecting wiring 5 for drawing out upper electrodes 1, which are in the same shape and form a pair in the opposite direction of 180 deg., is provided. By doing it this way, the capacitance ratio error by parasitic capacity vanishes, and the effect of slippage in alignment of a mask used in making vanishes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は集積回路に利用され、特に、比精度が要求され
る容量素子を含む集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is used in integrated circuits, and particularly relates to integrated circuits including capacitive elements that require relative accuracy.

〔概要〕〔overview〕

本発明は、容量値の比精度が要求される集積化された容
量素子を有する集積回路において、前記容量素子は、合
計された面積が各々の容量値に比例して設けられた上部
電極と下部電極との交差部と、同一形状でかつ180度
反対方向に対で設けられた前記上部電極を外部に引き出
す結線配線とを含むことにより、 交差部および目合わせずれによる寄生容量の影響をなく
し、高精度の比精度を有する容量素子が得られるように
したものである。
The present invention provides an integrated circuit having an integrated capacitive element that requires relative accuracy of capacitance values, wherein the capacitive element has an upper electrode and a lower electrode whose total area is proportional to each capacitance value. By including an intersection with the electrode and a connection wiring that leads the upper electrode to the outside, which are provided in pairs in the same shape and 180 degrees opposite directions, the influence of parasitic capacitance due to the intersection and misalignment is eliminated, A capacitive element having high specific accuracy can be obtained.

〔従来の技術〕[Conventional technology]

容量の比精度が要求される半導体集積回路として、積分
器やスイッチトキャパシタ回路などがある。ここではス
イッチトキャパシタフィルタを例にあげて説明する。
Semiconductor integrated circuits that require capacitance ratio accuracy include integrators and switched capacitor circuits. Here, a switched capacitor filter will be explained as an example.

第4図に1次のスイッチトキャパシタローパスフィルタ
の回路図を示す。第4図において、INは入力端子、O
UTは出力端子、AMPは演算増幅器、C,、C,は容
量素子(容量値もCIおよびC2とする。)、SWはス
イッチである。ここで、C,=0.2 PF、C2=2
PFとする。
FIG. 4 shows a circuit diagram of a first-order switched capacitor low-pass filter. In Figure 4, IN is an input terminal, O
UT is an output terminal, AMP is an operational amplifier, C, , C, are capacitive elements (capacitance values are also assumed to be CI and C2), and SW is a switch. Here, C,=0.2 PF, C2=2
PF.

第5図は第4図に示す回路を集積化した従来の半導体集
積口b;iの一例を示すマスクパターン図である。第5
図において、INは入力端子、OUTは出力端子、AM
Pは演算増幅器、C,、C,は容量素子、SWはMOS
)ランジスタによって構成されるスイッチ、lは配線で
ある。
FIG. 5 is a mask pattern diagram showing an example of a conventional semiconductor integration port b;i in which the circuit shown in FIG. 4 is integrated. Fifth
In the figure, IN is an input terminal, OUT is an output terminal, and AM
P is an operational amplifier, C, , C, is a capacitive element, SW is a MOS
) A switch constituted by a transistor, l is a wiring.

第4図のローパスフィルタの伝達関数は、で与えられ、
容量C,,C,の比Cr / C2で特性が決まる。
The transfer function of the low-pass filter in Figure 4 is given by,
The characteristics are determined by the ratio Cr/C2 of the capacitances C,,C,.

このように、容量値の絶対値ではなく、比精度が問題と
なる半導体装置を集積化する際、第5図に示すように単
位容量の並列接続でマスクパターン設計をする。この方
法によると、平面的加工精度の誤差が容量比誤差となら
ない利点がある。
In this way, when integrating a semiconductor device in which the relative accuracy rather than the absolute value of the capacitance value is a problem, a mask pattern is designed by connecting unit capacitances in parallel as shown in FIG. This method has the advantage that errors in planar processing accuracy do not become capacitance ratio errors.

容量比誤差のもう一つの要因として、容量素子の上部電
極1 (区コの部分)の配線と下部電極2((22i部
分)との交差部3に生じる寄生容量がある。
Another cause of the capacitance ratio error is the parasitic capacitance that occurs at the intersection 3 between the wiring of the upper electrode 1 (section 22i) of the capacitive element and the lower electrode 2 (section 22i).

寄生容量について説明するために、第5図の容量素子C
3の部分を第6図に示す。第6図において、C1は容量
素子、lは上部電極1の配線、4は配線lと容量C1の
上部電極1を接続するコンタクトである。容量素子を集
積化する際、容量素子の上部電極1の配線lと下部電極
2との交差部3(第6図で黒く塗りつぶした部分で、第
5図では代表的な部分にのみ参照数字を付しである)に
寄生容量が生じる。配線lの幅をII、配線lと下部電
極2との交差部3の長さを12とし、かりに単位容量を
0.4 Xl0−’PF/即2とすると、A。
In order to explain parasitic capacitance, the capacitive element C in FIG.
Part 3 is shown in FIG. In FIG. 6, C1 is a capacitive element, l is a wiring of the upper electrode 1, and 4 is a contact connecting the wiring l and the upper electrode 1 of the capacitor C1. When integrating a capacitive element, the intersection 3 between the wiring 1 of the upper electrode 1 and the lower electrode 2 of the capacitive element (the blacked out area in Figure 6, and reference numbers are given only to representative parts in Figure 5). Parasitic capacitance occurs in the Assuming that the width of the wiring 1 is II, the length of the intersection 3 between the wiring 1 and the lower electrode 2 is 12, and the unit capacitance is 0.4 Xl0-'PF/2, then A.

=12=2.5μ田のとき、容量値は、0、4 X 1
0−’ x 2.52=0.00025PFである。
When = 12 = 2.5μ, the capacitance value is 0.4 x 1
0-' x 2.52=0.00025PF.

第4図に示したスイッチトキャパシタローパスフィルタ
を第5図のようにパターン化する容量素子CIに関して
は、交差部3は!!、x12が1箇所あり、容量素子C
2に関してはllXβ2が14箇所ある。従って、容量
素子CIの寄生容量は0.0O025PF 、容量素子
C2の寄生容量は、0.00025 X14=0.00
35PFであり、容量値は C’+ =0.20025pt” C’2 =2.0035 PF となる。
Regarding the capacitive element CI that patterns the switched capacitor low-pass filter shown in FIG. 4 as shown in FIG. 5, the intersection 3 is! ! , x12 is present at one location, and the capacitive element C
Regarding 2, there are 14 locations of llXβ2. Therefore, the parasitic capacitance of capacitive element CI is 0.00025PF, and the parasitic capacitance of capacitive element C2 is 0.00025 X14=0.00
35PF, and the capacitance value is C'+ =0.20025pt''C'2 =2.0035PF.

さらに、上部電極1と下部電極2とのマスクの目合わせ
ずれが生じ、第7図に示すように容量素子C,JよびC
2が形成された場合を考える。第7図は第5図の容量と
配線の部分のみを表している。第7図において、l、l
lS β、2およびC3は上部電極1の配線lと下部電
極2との交差部3のX軸方向の長さを表し、1,1、f
、2およびly3はy軸方向の長さを表している。いま
、かりに、l□=j’y+=1.25M1.1−2=i
y2=2.5μ■、l X3 = l y3=3.75
μmとする。このとき、容量素子CIの寄生容量は0.
000125PF、容量素子C2の寄生容量は、0.0
0025  x13+0.000125=0.0033
75PFであり、容量値はC’r =0.200125
PF。
Furthermore, misalignment of the mask between the upper electrode 1 and the lower electrode 2 occurs, and as shown in FIG.
Consider the case where 2 is formed. FIG. 7 shows only the capacitance and wiring portions of FIG. 5. In Figure 7, l, l
lS β, 2 and C3 represent the length in the X-axis direction of the intersection 3 between the wiring l of the upper electrode 1 and the lower electrode 2, and 1, 1, f
, 2 and ly3 represent the lengths in the y-axis direction. Now, l□=j'y+=1.25M1.1-2=i
y2=2.5μ■, l X3 = l y3=3.75
Let it be μm. At this time, the parasitic capacitance of the capacitive element CI is 0.
000125PF, the parasitic capacitance of capacitive element C2 is 0.0
0025 x13+0.000125=0.0033
75PF, and the capacitance value is C'r = 0.200125
P.F.

C’z =2.003375PF 所望の容量比c、/C2=0.1に対し、c’+ /c
′2=0.09989となり、9.56 X 10−’
dBと非常に大きな利得誤差が生じてしまう。
C'z =2.003375PF For the desired capacitance ratio c, /C2=0.1, c'+ /c
'2=0.09989, 9.56 x 10-'
This results in a very large gain error of dB.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述した従来の集積回路は、高い容量比精度が要求され
るにもかかわらず、容量素子の上部電極の配線と下部電
極との交差部に生じる寄生容量の影響を受け、回路設計
通りの特性が得られない欠点がある。
Although the conventional integrated circuit described above requires high capacitance ratio accuracy, it is affected by parasitic capacitance that occurs at the intersection between the upper electrode wiring and the lower electrode of the capacitive element, making it difficult for the circuit design characteristics to match. There are disadvantages that cannot be obtained.

本発明の目的は、前記の欠点を除去することにより、容
量比精度の高い容量素子を有する集積回路を提供するこ
とにある。
An object of the present invention is to provide an integrated circuit having a capacitive element with high precision in capacitance ratio by eliminating the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、集積化された複数の容量素子を有する集積回
路において、前記容量素子は、合計された面積が各々の
容量値に比例して設けられた上部電極と下部電極との交
差部と、同一形状でかつ180度反対方向に対で設けら
れた前記上部電極を外部に引き出す結線配線とを含むこ
とを特徴とする。
The present invention provides an integrated circuit having a plurality of integrated capacitance elements, wherein the capacitance elements include an intersection between an upper electrode and a lower electrode, the total area of which is proportional to the capacitance value of each; It is characterized in that it includes a connection wiring for leading the upper electrodes, which are arranged in pairs in the same shape and 180 degrees opposite directions, to the outside.

となる。becomes.

〔作用〕[Effect]

上部電極の配線と下部電極との交差部の合計面積は、そ
れぞれその容量値に比例した大きさを有しているので、
容量比CI/C2の値は交差部による寄生容量に関係な
く一定値が保たれる。また、下部電極の外部への引き出
し結線配線は、180度反対方向に対で設けられている
ので、マスクの目合わせずれが発生しても、上下、左右
方向に前記引出し配線結線もずれ、結果として、その面
積は変わらず、容量値も一定で変わらない。
Since the total area of the intersection between the upper electrode wiring and the lower electrode has a size proportional to its capacitance value,
The value of the capacitance ratio CI/C2 is kept constant regardless of the parasitic capacitance caused by the intersection. In addition, since the external wiring of the lower electrode is provided in pairs in 180-degree opposite directions, even if misalignment of the mask occurs, the wiring of the external wiring will also shift in the vertical and horizontal directions, resulting in As such, its area does not change, and its capacitance value remains constant.

従って、交差部および目合わせずれによる寄生容量の影
響をなくし、高い容量比精度を達成することが可能とな
る。
Therefore, it is possible to eliminate the influence of parasitic capacitance due to intersections and misalignment, and achieve high capacitance ratio accuracy.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の第一実施例を示すマスクパターン図で
、第4図の1次のスイッチトキャパシクローバスフィル
タを集積化したものである。
FIG. 1 is a mask pattern diagram showing a first embodiment of the present invention, in which the first-order switched capacitor low-pass filter of FIG. 4 is integrated.

本第−実施例は、演算増幅器AMPと、スイッチSWと
、入力端子INおよび出力端子OUTと、容量値の比精
度が要求される集積化された二つの容量素子C1および
C2(容量値もC3およびC2とする。)を有する半導
体集積回路において、本発明の特徴とするところの、容
量素子C8およびC2は、それぞれ合計された面積が各
々容量値CIおよびC2に比例して設けられた上部電極
1  ([SS部分)と下部電極2 (I221部分)
との交差部3と、同一形状でかつ180度反対方向に対
で設けられた上部電極1を外部に引き出す結線配線5と
を含んでいる。なお、同図において参照数字は代表的な
部分にだけ付しである。
The present embodiment includes an operational amplifier AMP, a switch SW, an input terminal IN, an output terminal OUT, and two integrated capacitor elements C1 and C2 (the capacitance value of which is also C3 and C2), in which the capacitive elements C8 and C2 are provided as upper electrodes whose total area is proportional to the capacitance values CI and C2, respectively. 1 ([SS part) and lower electrode 2 (I221 part)
and a connecting wiring 5 for leading out the upper electrodes 1, which have the same shape and are provided in pairs in 180-degree opposite directions. In the figure, reference numbers are attached only to representative parts.

次に、本第−実施例の容量素子C1およびC2の容量比
C1/C2の計算を行う。
Next, the capacitance ratio C1/C2 of the capacitive elements C1 and C2 of the present embodiment is calculated.

計算の根拠となる各数値は前述の従来例の場合と同様に
、配線lの幅をIIs交差部3の長さを12とし、Rr
 = j! 2 = 2.5μC11であり、単位容量
は0.4 X 10−’PF/ am2 とする。
As in the case of the conventional example described above, the numerical values that serve as the basis for calculation are as follows: Width of wiring l is IIs Length of intersection 3 is 12, Rr
= j! 2 = 2.5μC11, and the unit capacity is 0.4 x 10-'PF/am2.

交差部3は、容量素子CIには2箇所、容量素子C2に
は20箇所あり、その合計面積はその容量値(C,=0
.2PP 、 C2= 2PF) に比例している。
There are two intersections 3 in the capacitive element CI and 20 in the capacitive element C2, and their total area is equal to the capacitance value (C, = 0
.. 2PP, C2=2PF).

すなわち、容量素子C1の寄生容量は、2、5 I2.
5 xO,4Xl0−’ x 2 =0.0005PF
となり、容量素子C2の寄生容量は、 2、5 I2.5 Xo、 4 Xl0−’ X20=
0.005PFとなる。
That is, the parasitic capacitance of the capacitive element C1 is 2,5 I2.
5 xO, 4Xl0-' x 2 = 0.0005PF
Therefore, the parasitic capacitance of capacitive element C2 is 2, 5 I2.5 Xo, 4 Xl0-' X20=
It becomes 0.005PF.

従って、容量値は、 c; =0.2005PFSC; =2.005PFで
あり、容量比c、/C2=1/10が実現される。
Therefore, the capacitance value is c;=0.2005PFSC;=2.005PF, and the capacitance ratio c,/C2=1/10 is realized.

また、マスクの目合わせずれが生じ、第2図(a)およ
び(b)に示すように容量が形成された場合を考える。
Also, consider a case where misalignment of the mask occurs and a capacitance is formed as shown in FIGS. 2(a) and 2(b).

第2図における記号は全て前述の従来例の第7図と同じ
である。すなわち、I X1% Rx2.183ならび
にl Y I % IY 2、ly、を交差部3のX方
向およびX方向の長さとし、 1x+ = 1271 =1.25p。
All the symbols in FIG. 2 are the same as in FIG. 7 of the conventional example described above. That is, I X1% Rx2.183 and l Y I% IY 2,ly are the lengths of the intersection 3 in the X direction and the X direction, and 1x+ = 1271 = 1.25p.

L2=fy2=2.5μm、 i!、=1!、+=3.
75贋とすると、容量素子CIの寄生容量は、1 + 
x(1y++ 1yz) xo、4xlO−’=0.0
005PF容量素子C2の寄生容量は、 H!+x(Jy++Jy3)I4 十j!+X1y2X4+j!、Xβ112 I83 I
0.4 X 10’=0.005PF であり、マスクの目合わせずれのitを受けないことが
わかる。
L2=fy2=2.5μm, i! ,=1! , +=3.
75 is a fake, the parasitic capacitance of the capacitive element CI is 1 +
x(1y++ 1yz) xo, 4xlO-'=0.0
The parasitic capacitance of the 005PF capacitive element C2 is H! +x(Jy++Jy3)I4 10j! +X1y2X4+j! , Xβ112 I83 I
0.4 x 10'=0.005PF, and it can be seen that it is not affected by misalignment of the mask.

第3図は本発明の第二実施例を示すマスクパターン図で
ある。
FIG. 3 is a mask pattern diagram showing a second embodiment of the present invention.

第3図も第4図に示した回路図をパターン化したもので
あるが、本第二実施例の半導体集積回路は、第1図の第
一実施例と異なり、単位容量の並列接続を用いていない
。これは単位容量より小さい容量を実現する場合や、単
位容量では表せない端数を実現するような場合である。
FIG. 3 is also a patterned version of the circuit diagram shown in FIG. 4, but unlike the first embodiment shown in FIG. 1, the semiconductor integrated circuit of the second embodiment uses parallel connection of unit capacitance. Not yet. This is the case when realizing a capacity smaller than the unit capacity, or when realizing a fraction that cannot be represented by the unit capacity.

第3図において、第1図と対応する部分には同一符号を
付しである。また、4はコンタクト、WIは容量素子C
Iの上部電極1の配線幅、W2は容量素子C2の上部電
極1の配線幅である。
In FIG. 3, parts corresponding to those in FIG. 1 are given the same reference numerals. Also, 4 is a contact, WI is a capacitive element C
The wiring width of the upper electrode 1 of I and W2 is the wiring width of the upper electrode 1 of the capacitive element C2.

例えば、C+ =0.IPF SC2=0.5PFのと
き、!!イ=lySW、:W2 =1 : 5とすれば
、寄生容量を含んだ容量比は、C,/C2=115とな
る。さらに第3図に示すように、上部電極1の配線を下
部電極2の外部に引き出す場合は、それと同数で、同じ
幅の配線を180°反対方向に引き出すことにより、上
部電極1の配線と下部電極2との交差部3に生じる寄生
容量が、マスクの目合わせずれによって変化するのを防
ぐことができる。
For example, C+ =0. When IPF SC2=0.5PF,! ! If I=lySW, :W2=1:5, the capacitance ratio including parasitic capacitance is C,/C2=115. Furthermore, as shown in FIG. 3, when the wiring of the upper electrode 1 is drawn out to the outside of the lower electrode 2, the wiring of the upper electrode 1 and the lower It is possible to prevent the parasitic capacitance generated at the intersection 3 with the electrode 2 from changing due to misalignment of the mask.

なお、以上の説明は集積回路として、半導体集積回路を
取り上げたけれども、容量素子を薄膜または厚膜で形成
する混成集積回路の場合も同様である。
Although the above description deals with a semiconductor integrated circuit as an integrated circuit, the same applies to a hybrid integrated circuit in which a capacitive element is formed of a thin film or a thick film.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、集積回路を構成する容
量の上部電極の配線と下部電極との交差部に生じる寄生
容量を各々の容量値に比例させることにより、寄生容量
による容量比誤差をなくし、さらに上部電極の配線を下
部電極の外部に引き出す場合は、それと同数、同形状の
配線を180°反対方向に対で引き出すことにより、マ
スクの目合わせずれによる影響を防ぎ、容量比精度の高
い集積回路が実現できる効果がある。
As explained above, the present invention reduces the capacitance ratio error caused by the parasitic capacitance by making the parasitic capacitance that occurs at the intersection between the wiring of the upper electrode and the lower electrode of the capacitor constituting an integrated circuit proportional to each capacitance value. In addition, when the upper electrode wiring is drawn out to the outside of the lower electrode, the same number of wiring lines and the same shape are drawn out in pairs in 180° opposite directions to prevent the effects of misalignment of the mask and improve the capacitance ratio accuracy. This has the effect of realizing highly integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例の構成を示すマスクパター
ン図。 第2図(a)およびら)は第1図の容量素子部分にマス
クの目合わせずれが生じた場合も示すマスクパターン図
。 第3図は本発明の第二実施例の構成を示すマスクパター
ン図。 第4図は1次ローパスフィルタの回路図。 第5図は従来例の構成を示すマスクパターン図。 第6図は第5図の容量素子01部分の拡大図。 第7図(a)および(社)は第5図の容量素子部分にマ
スクの目合わせずれが生じた場合を示すマスクパターン
図。 l・・・上部電極、2・・・下部電極、3・・・交差部
、4・・・コンタクト、5・・・結線配線、AMP・・
・演算増幅器、C1、C2・・・容量素子、IN・・・
入力端子、OUT・・・出力端子、SW・・・スイッチ
、!・・・上部電極配線、I2.、W、SW2・・・配
線幅、A2、f、、l x8、IK2.183、βY、
Ll、β、2、l、3・・・交差部の長さ。 3
FIG. 1 is a mask pattern diagram showing the configuration of a first embodiment of the present invention. FIGS. 2(a) and 2(a) are mask pattern diagrams also showing a case where misalignment of the mask occurs in the capacitive element portion of FIG. 1. FIG. 3 is a mask pattern diagram showing the configuration of a second embodiment of the present invention. FIG. 4 is a circuit diagram of a first-order low-pass filter. FIG. 5 is a mask pattern diagram showing the configuration of a conventional example. FIG. 6 is an enlarged view of the capacitive element 01 portion in FIG. 5. FIG. 7(a) and FIG. 7(a) are mask pattern diagrams showing a case where misalignment of the mask occurs in the capacitive element portion of FIG. 5. l...upper electrode, 2...lower electrode, 3...intersection, 4...contact, 5...connection wiring, AMP...
・Operation amplifier, C1, C2...capacitive element, IN...
Input terminal, OUT...output terminal, SW...switch,! ... Upper electrode wiring, I2. , W, SW2... Wiring width, A2, f,, l x8, IK2.183, βY,
Ll, β, 2, l, 3... Length of intersection. 3

Claims (1)

【特許請求の範囲】 1、集積化された複数の容量素子を有する集積回路にお
いて、 前記容量素子は、 合計された面積が各々の容量値に比例して設けられた上
部電極と下部電極との交差部と、 同一形状でかつ180度反対方向に対で設けられた前記
上部電極を外部に引き出す結線配線とを含むことを特徴
とする集積回路。
[Claims] 1. In an integrated circuit having a plurality of integrated capacitance elements, the capacitance elements include an upper electrode and a lower electrode whose total area is proportional to each capacitance value. 1. An integrated circuit comprising: an intersection; and connection wiring for leading the upper electrodes to the outside, which are provided in pairs in the same shape and 180 degrees opposite directions.
JP24753989A 1989-09-21 1989-09-21 Integrated circuit Pending JPH03108367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24753989A JPH03108367A (en) 1989-09-21 1989-09-21 Integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24753989A JPH03108367A (en) 1989-09-21 1989-09-21 Integrated circuit

Publications (1)

Publication Number Publication Date
JPH03108367A true JPH03108367A (en) 1991-05-08

Family

ID=17165003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24753989A Pending JPH03108367A (en) 1989-09-21 1989-09-21 Integrated circuit

Country Status (1)

Country Link
JP (1) JPH03108367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608246A (en) * 1994-02-10 1997-03-04 Ramtron International Corporation Integration of high value capacitor with ferroelectric memory

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346359A (en) * 1989-07-14 1991-02-27 Nec Ic Microcomput Syst Ltd Semiconductor capacitance element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346359A (en) * 1989-07-14 1991-02-27 Nec Ic Microcomput Syst Ltd Semiconductor capacitance element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608246A (en) * 1994-02-10 1997-03-04 Ramtron International Corporation Integration of high value capacitor with ferroelectric memory

Similar Documents

Publication Publication Date Title
JPH03171662A (en) Signal line system
US8299577B2 (en) Fringe capacitor using bootstrapped non-metal layer
JP3352405B2 (en) Exposure method, device manufacturing method using the same, and semiconductor device
JPH03108367A (en) Integrated circuit
JP2004012722A (en) Method for manufacturing photomask and pattern, and semiconductor device
JP3116985B2 (en) LSI
JPH03138973A (en) Semiconductor integrated circuit
JP2000243841A (en) Patterned layout of cmos circuit
JP2595624Y2 (en) Semiconductor device
JPH02140968A (en) Semiconductor device
JPH0669418A (en) Semiconductor device
JP2613941B2 (en) Semiconductor capacitance element
US4695922A (en) Constant ratio, size insensitive, capacitor structure
KR0122870Y1 (en) Photomask
JPH03139874A (en) Semiconductor device
US20050164099A1 (en) Method to overcome minimum photomask dimension rules
JP2567121B2 (en) Semiconductor capacitance element
JPH065788A (en) Semiconductor device
JP2005151219A (en) Polyphase filter
JP2732089B2 (en) Method of forming capacitor for integrated circuit
JP3544799B2 (en) Layout design method, exposure mask and semiconductor device
JPS59115610A (en) Semiconductor filter circuit
JP3857793B2 (en) Operational amplifier circuit
JP3301989B2 (en) Active filter circuit
JP2002110916A (en) Semiconductor device