JPH03107439A - Aluminum alloy for warm forming - Google Patents

Aluminum alloy for warm forming

Info

Publication number
JPH03107439A
JPH03107439A JP24742389A JP24742389A JPH03107439A JP H03107439 A JPH03107439 A JP H03107439A JP 24742389 A JP24742389 A JP 24742389A JP 24742389 A JP24742389 A JP 24742389A JP H03107439 A JPH03107439 A JP H03107439A
Authority
JP
Japan
Prior art keywords
less
regulated
warm
alloy
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24742389A
Other languages
Japanese (ja)
Inventor
Masakatsu Yoshida
吉田 正勝
Yuji Abe
佑二 阿部
Tsutomu Tagata
田形 勉
Toshio Komatsubara
俊雄 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP24742389A priority Critical patent/JPH03107439A/en
Publication of JPH03107439A publication Critical patent/JPH03107439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture the Al alloy having good warm formability by preparing an Al alloy contg. a specified amt. of Mg, in which the total content of Fe, Si, Mn, Cr and Zn as impurities and other impurity elements is regulated and having specified grain size of intermetallic compounds. CONSTITUTION:An Al alloy contg., by weight, 2.0 to 6.0% Mg, in which the content of Fe, Si, Mn, Cr and Zr as impurities is respectively regulated so that <=0.2% Fe, <=0.2% Si, <=0.05% Mn, <=0.05% Cr and <=0.05% Zr are satisfied and the total content of other impurity elements is regulated to <=0.1% and having <=10mu grain size in the grains of intermetallic compounds is prepd. In this way, the Al alloy having remarkably high warm formability in the temp. range of 150 to 350 deg.C can be obtd.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は温間成形用アルミニウム合金圧延板、すなわ
ち 150〜350℃の範囲内の温度で成形加工を施し
て使用される用途のアルミニウム合金に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an aluminum alloy rolled plate for warm forming, that is, an aluminum alloy used after being formed at a temperature within the range of 150 to 350°C. be.

従来の技術 近年、400℃以上の高温において適切な歪速度で引張
りを与えた場合に局部的変形(ネック)の発生を招くこ
となく300%程度以上の大きな伸びを示す超塑性材料
が種々開発されるようになっており、アルミニウム合金
についても超塑性材料が開発されるようになった。従来
このようなアルミニウム基超塑性材料としては、AA’
−78%Zn合金、Al−33%Cu合金、AI−6%
Cu−0,4%Zr合金(“5UPR^ピ) 、Al−
Zn−MgCu系合金(A人規格の7475合金、70
75合金等)、A I−2,,5〜6.0%Mg−0.
05〜0.6%Zr合金等が知られている。これらの材
料はいずれも 400℃以上の高温で大きな変形を得る
ことができるため、複雑な形状の成形を容易に行なうこ
とができる利点を有する。
Conventional technology In recent years, various superplastic materials have been developed that exhibit large elongation of approximately 300% or more without causing local deformation (neck) when tension is applied at an appropriate strain rate at high temperatures of 400°C or higher. Superplastic materials have also been developed for aluminum alloys. Conventionally, such aluminum-based superplastic materials include AA'
-78% Zn alloy, Al-33% Cu alloy, AI-6%
Cu-0,4% Zr alloy (“5UPR^pi”), Al-
Zn-MgCu alloy (A standard 7475 alloy, 70
75 alloy, etc.), A I-2,, 5-6.0% Mg-0.
05 to 0.6% Zr alloys are known. All of these materials can undergo large deformations at high temperatures of 400° C. or higher, so they have the advantage of being easily molded into complex shapes.

発明が解決しようとする課題 前述のようなアルミウニム基超塑性材料は、300%以
上もの大きな伸びを生じさせるためには、400℃以上
の高温で適切な歪速度を与える必要があり、一般に最も
大きな伸びを示す歪速度(最適歪速度)は10−3/秒
から10−’/秒のオーダーとされている。しかしなが
らこのような歪速度は、船釣な成形加工の場合と比較し
て格段に遅く、このような歪速度を適用した場合、1成
形工程に数分から数十分を要し、工場規模での量産の場
合生産性を著しく阻害する問題がある。また超塑性によ
る変形では、一般に板厚分布のコントロールが難しいと
されている。そのため前述のようなアルミニラム基超塑
性材料を用いて超塑性加工を行なうことは、量産規模で
の実用化はためられれているのが実情である。
Problems to be Solved by the Invention In order for the above-mentioned aluminum-based superplastic materials to elongate as much as 300% or more, it is necessary to give an appropriate strain rate at a high temperature of 400°C or more, and generally the most The strain rate showing elongation (optimum strain rate) is said to be on the order of 10-3/sec to 10-'/sec. However, such a strain rate is much slower than in the case of molding by boat, and when such a strain rate is applied, one molding process takes several minutes to several tens of minutes, making it difficult to perform on a factory scale. In the case of mass production, there is a problem that significantly impedes productivity. Furthermore, it is generally considered difficult to control the plate thickness distribution when deforming due to superplasticity. Therefore, the reality is that the practical application of superplastic working on a mass production scale using aluminum-based superplastic materials as described above has been discouraged.

ところで、超塑性加工温度域よりは低温ではあるが、 
150〜350℃の温度域でのいわゆる温開成形の場合
、Al−Mg合金は室温での成形と比較して通常の成形
速度で比較的大きな伸びが得られ、またその場合の変形
後の板厚分布も均一であることが知られており、したが
ってAl−Mg合金を用いて温開成形を行なえば、生産
性を阻害することなく量産規模での複雑な形状の成形も
比較的容易となると考えられる。
By the way, although it is lower than the superplastic processing temperature range,
In the case of so-called hot-open forming in the temperature range of 150 to 350°C, Al-Mg alloys can obtain a relatively large elongation at normal forming speeds compared to forming at room temperature, and the plate after deformation in that case It is known that the thickness distribution is uniform, so if hot-open forming is performed using Al-Mg alloy, it will be relatively easy to form complex shapes on a mass production scale without hindering productivity. Conceivable.

しかしながら従来の一般的なAl−Mg合金の温開成形
では、超塑性加工の場合と比較すれば格段に成形性が劣
る。そこで量産規模での実用化に適した温間成形用の材
料として、従来の一般的なAl−Mg合金よりもさらに
温間での成形性が優れた材料の開発が強く望まれていた
However, in conventional hot-open forming of general Al-Mg alloys, the formability is significantly inferior to that in the case of superplastic working. Therefore, there has been a strong desire to develop a material that has even better warm formability than conventional general Al-Mg alloys as a material for warm forming suitable for practical use on a mass production scale.

この発明は以上の事情を背景としてなされたもので、温
間成形性に優れたAI!−Mg合金を提供することを目
的とするものである。
This invention was made against the background of the above circumstances, and AI! -Mg alloy.

課題を解決するための手段 本発明者等は前述の課題を解決するべく鋭意実験・検討
を重ねた結果、Al−Mg合金において不純物として含
有される各種の元素の含有量を特定の微量以下に規制し
て、不純物元素に基づく金属間化合物の径をある大きさ
以下に規制することによって、温間成形性を従来よりも
大幅に向上させ得ることを見出し、この発明をなすに至
った。
Means for Solving the Problems The inventors of the present invention have conducted extensive experiments and studies to solve the above-mentioned problems, and have found that the content of various elements contained as impurities in Al-Mg alloys has been reduced to below specific trace amounts. The inventors have discovered that by regulating the diameter of the intermetallic compound based on impurity elements to a certain size or less, warm formability can be significantly improved compared to the conventional method, and this invention has been completed.

具体的には、請求項1に記載の発明の温間成形用アルミ
ニウム合金は、Mg2.0〜6.0%を含有し、かつ不
純物としてのFe、Si、Mn、Cr。
Specifically, the aluminum alloy for warm forming of the invention according to claim 1 contains 2.0 to 6.0% Mg, and contains Fe, Si, Mn, and Cr as impurities.

ZrがそれぞれFeは0.2%以下、Siは0.2%以
下、Mnは0.05%以下、Crは0.05%以下、Z
rは0.05%以下に規制され、しかもその他の不純物
元素の合計量が01%以下に規制され、残部が実質的に
AA’よりなり、金属間化合物粒子の粒径が10.m以
下であることを特徴とするものである。
Zr is 0.2% or less for Fe, 0.2% or less for Si, 0.05% or less for Mn, 0.05% or less for Cr, and Zr.
r is regulated to 0.05% or less, the total amount of other impurity elements is regulated to 0.01% or less, the remainder is substantially composed of AA', and the particle size of the intermetallic compound particles is 10.0% or less. m or less.

また請求項2に記載の発明の温間成形用アルミニウム合
金は、Mg2.0〜6.0%を含有するとと−もに、C
u 0.05〜2.0%、Zn0.5〜2.5%のうち
の1種または2種を含有し、かつ不純物としてのFe、
Si、Mn、Cr、ZrがそれぞれFeは0.2%以下
、Siは02%以下、Mnは0.059fi以下、Cr
は0.05%以下、Zrは0.05%以下に規制され、
しかもその他の不純物元素の合計量が0.1%以下に規
制され、残部が実質的にAA’よりなり、金属間化合物
粒子の粒径が10伽以下であることを特徴とするもので
ある。
Further, the aluminum alloy for warm forming of the invention according to claim 2 contains 2.0 to 6.0% of Mg, and also contains C.
Contains one or two of u 0.05 to 2.0% and Zn 0.5 to 2.5%, and Fe as an impurity,
Si, Mn, Cr, and Zr each have Fe of 0.2% or less, Si of 0.02% or less, Mn of 0.059fi or less, and Cr
is regulated to 0.05% or less, Zr is regulated to 0.05% or less,
Moreover, the total amount of other impurity elements is regulated to 0.1% or less, the balance is substantially composed of AA', and the particle size of the intermetallic compound particles is 10 degrees or less.

作   用 先ずこの発明の温間成形用アルミニウム合金の成分限定
理由を説明する。
Function First, the reason for limiting the ingredients of the aluminum alloy for warm forming of the present invention will be explained.

Mg: Mgは温間成形加工時に加工軟化もしくは動的再結晶を
促進させることによって温間成形性を向上させる元素で
ある。Mgが2.0%未満では温間成形性が不充分とな
るとともに、各種成形部品としての強度も不足する。一
方Mgが6.0%を越えれば、熱間圧延性、冷間圧延性
が悪くなって圧延板の製造が困難となる。したがってM
gの含有量は2.0〜6.0%の範囲内とする必要があ
る。
Mg: Mg is an element that improves warm formability by promoting process softening or dynamic recrystallization during warm forming. If the Mg content is less than 2.0%, warm formability will be insufficient and the strength of various molded parts will also be insufficient. On the other hand, if Mg exceeds 6.0%, hot rolling properties and cold rolling properties deteriorate, making it difficult to manufacture a rolled plate. Therefore M
The content of g needs to be within the range of 2.0 to 6.0%.

Mn、Cr、Zr、Fe、Siおよびその他の不純物: Mn、Cr、Zr、Fe、Siは、いずれも鋳造時に粗
大な金属間化合物を生成させやすく、旦形成されたこれ
らの金属間化合物は、その後の加工、熱処理で除去する
ことはできない。これらの金属間化合物は、その粒径が
10伽を越えれば温間成形時の破断の起点となって、温
間成形性を著しく劣化させる。粒径がIO珈を越える金
属間化合物を生成させないためには、不純物としてのM
nを0.05%以下、Crを0.05%以下、Zrをo
、o5og5ニ、Feを0.2%以下、Siを02%以
下にそれぞれ規制するとともに、その他の不純物の合計
量を0.1%以下に規制する必要がある。
Mn, Cr, Zr, Fe, Si, and other impurities: Mn, Cr, Zr, Fe, and Si all tend to form coarse intermetallic compounds during casting, and these intermetallic compounds once formed, It cannot be removed by subsequent processing or heat treatment. If the particle size of these intermetallic compounds exceeds 10 degrees, it becomes a starting point for breakage during warm forming and significantly deteriorates warm formability. In order to prevent the formation of intermetallic compounds whose particle size exceeds IO, M as an impurity must be
n 0.05% or less, Cr 0.05% or less, Zr o
, o5og5, Fe and Si must be regulated to 0.2% or less and Si to 0.2% or less, and the total amount of other impurities must be regulated to 0.1% or less.

Cu、Zn これらはいずれも強度を向−1ニさせるとともに、積層
欠陥エネルギを増大させて加工時の転位セル構造を強化
し、成形性を向上させる効果を有し、請求項2の発明の
アルミニウム合金圧延板においていずれか1種または2
種が含有される。Cuが005%未満、Z nが05%
未満では上記の効果が充分に得られず、一方Cuが2.
0%を越えるかまたはZnが2,5%を越えれば耐食性
が低下する。
Both of Cu and Zn have the effect of increasing the strength and increasing the stacking fault energy to strengthen the dislocation cell structure during processing and improve formability. Any one or two of the following for alloy rolled plates
Contains seeds. Cu less than 0.005%, Zn 0.05%
If Cu is less than 2.0%, the above effects cannot be sufficiently obtained; on the other hand, if Cu is less than 2.
If the Zn content exceeds 0% or 2.5%, the corrosion resistance will decrease.

したがってCuは0.05〜2.0%、Znは05〜2
5%の範囲内とした。
Therefore, Cu is 0.05-2.0% and Zn is 0.05-2.0%.
It was set within the range of 5%.

以上の各成分の残部は実質的にAnとすれば良い。但し
、通常のアルミニウム合金においては鋳塊結晶粒微細化
のためにTi1あるいはTiおよびBを微量添加するこ
とがあり、この発明の場合も微量のTi1あるいはTi
およびBを含有していても良い。ここで、Ti含有量が
0.15%を越えれば初晶TiAl3粒子が晶出して成
形性を害し、またB含有量が0.05%を越えればT 
i B 2の粗大粒子が生して成形性を害するから、T
iは0.15%以下、Bは0.05%以下とすることが
好ましい。
The remainder of each of the above components may be substantially An. However, in ordinary aluminum alloys, a small amount of Ti1 or Ti and B is sometimes added to refine the ingot crystal grains, and in the case of this invention, a small amount of Ti1 or Ti is also added.
and B may be contained. Here, if the Ti content exceeds 0.15%, primary TiAl3 particles will crystallize and impair the formability, and if the B content exceeds 0.05%, the T
i B Since coarse particles of 2 are formed and impair moldability, T
It is preferable that i be 0.15% or less and B be 0.05% or less.

なおまた、Mgを多量に含有する場合は溶湯が酸化し易
く、そこで溶湯酸化防止のためにBeの添加を行なうこ
とも一般に行なわれているが、この発明のアルミニウム
合金の場合も、溶湯の酸化防11−のためにBeを添加
しても良い。但しI’3e添加量がIIlpm未満では
その効果が得られず、一方1100ppを越えてもその
効果は飽和するから、Beを添加する場合の添加量は 
1〜1100ppの範囲内とすることが好ましい。
Furthermore, when a large amount of Mg is contained, the molten metal is likely to oxidize, and Be is generally added to prevent oxidation of the molten metal. Be may be added for prevention 11-. However, if the amount of I'3e added is less than IIlpm, the effect cannot be obtained, and on the other hand, if it exceeds 1100 pp, the effect is saturated, so when adding Be, the amount of addition is
It is preferably within the range of 1 to 1100 pp.

以上のような成分組成のこの発明のアルミニウム合金は
、 150〜350°Cの範囲内の温度で温間成形加工
を行なうにあたっての成形性(温間成形性)が従来のA
A−Mg合金よりも格段に良好である。
The aluminum alloy of the present invention having the above-mentioned composition has a formability (warm formability) in warm forming at a temperature within the range of 150 to 350°C that is higher than that of conventional A.
It is much better than A-Mg alloy.

次にこの発明の温間成形用アルミニウム合金の製造方法
について説明する。
Next, a method for manufacturing an aluminum alloy for warm forming according to the present invention will be explained.

先ず前述のような成分組成のアルミニウム合金溶湯を常
法にしたがって溶製し、DC鋳造法(半連続鋳造法)に
よって鋳塊とするか、または薄板連続鋳造法(連続鋳造
圧延法)によって直接薄板とする。
First, a molten aluminum alloy having the above-mentioned composition is melted in accordance with a conventional method, and is made into an ingot by a DC casting method (semi-continuous casting method) or directly into a thin plate by a continuous sheet casting method (continuous casting and rolling method). shall be.

DC鋳造法で鋳塊を作製した場合、その鋳塊に対して熱
間圧延を施す前に鋳塊加熱を行ない、引続いて熱間圧延
を行ない、その後必要に応じて冷間圧延を行なって製品
板厚とする。また熱間圧延と冷間圧延との間、あるいは
冷間圧延の中途において、必要に応じて中間焼鈍を行な
っても良い。
When an ingot is produced by the DC casting method, the ingot is heated before being hot rolled, then hot rolled, and then cold rolled if necessary. Product board thickness. Moreover, intermediate annealing may be performed between hot rolling and cold rolling, or in the middle of cold rolling, if necessary.

これらの各工程は、次のような条件で実施することか望
ましい。
It is desirable that each of these steps be carried out under the following conditions.

すなわち、熱間圧延前の鋳塊加熱は450〜580℃の
範囲内温度で05〜48時間行なうことか望ましい。鋳
塊加熱温度か450℃未満ては熱間圧延性が劣化し、一
方580℃を越えれば金属間化合物が粗大化するおそれ
があるとともに、共晶融解が生じるおそれがある。また
鋳塊加熱時間が05時間未満ては鋳塊の加熱が均一にな
されないおそれかあり、一方48時間を越えれば金属間
化合物の粗大化のおそれがある。熱間圧延は常法に従っ
て行なえば良く、また中間焼鈍も通常の条件で行なえば
良い。冷間圧延の圧下率は、中間焼鈍を行なう場合は中
間焼鈍後の冷間圧延の圧延率にして、1596以」二が
好ましい。冷間圧延率が15%未満では、後の最終焼鈍
により得られる再結晶組織もしくは温開成形のための予
熱時に得られる再結晶組織の再結晶粒が粗大化するおそ
れがある。
That is, it is desirable to heat the ingot before hot rolling at a temperature within the range of 450 to 580°C for 05 to 48 hours. If the ingot heating temperature is less than 450°C, hot rolling properties will deteriorate, while if it exceeds 580°C, there is a risk that intermetallic compounds will become coarse and eutectic melting will occur. Furthermore, if the ingot heating time is less than 0.5 hours, there is a risk that the ingot will not be heated uniformly, while if it exceeds 48 hours, there is a risk that the intermetallic compounds will become coarse. Hot rolling may be carried out according to a conventional method, and intermediate annealing may also be carried out under conventional conditions. When intermediate annealing is performed, the rolling reduction ratio of cold rolling is preferably 1596 or more as the rolling ratio of cold rolling after intermediate annealing. If the cold rolling ratio is less than 15%, there is a risk that the recrystallized grains of the recrystallized structure obtained in the subsequent final annealing or the recrystallized structure obtained during preheating for hot open forming may become coarse.

上述のようにして製品板厚きした後には、一般には最終
焼鈍を施して再結晶組織を生成させる。
After the product board is thickened as described above, it is generally subjected to final annealing to generate a recrystallized structure.

この最終焼鈍は、バッチ焼鈍、連続焼鈍のいずれでも良
く、また最終焼鈍条件は、要は再結晶組織が得られるよ
うな温度、時間であれば良いが、バッチ焼鈍の場合は2
5G〜400℃の範囲内の温度で0.5時間以上の保持
が一般的であり、一方連続焼鈍の場合は350〜550
℃の範囲内の温度で保持なしかまたは180秒以下の保
持が一般的である。なお製品の圧延板に対する温開成形
は150〜350°Cで行なわれるが、その場合圧延板
は加熱された金型内にセットされて材料温度が所定の温
度となるまで保持されてから成形が施されるか、または
別の予熱炉で加熱され、その後金型にセットされて成形
が施される。この場合、保持もしくは予熱の温度、時間
が再結晶が生じるような条件であれば、最終焼鈍により
再結晶組織を得ておく必要はなく、したがってその場合
は最終焼鈍を省くことができる。
This final annealing may be either batch annealing or continuous annealing, and the final annealing conditions may be as long as the temperature and time are such that a recrystallized structure is obtained, but in the case of batch annealing,
It is common to hold the temperature within the range of 5G to 400℃ for 0.5 hours or more, while in the case of continuous annealing, the temperature is 350 to 550℃.
No hold or hold for less than 180 seconds at a temperature in the range of °C is common. Note that hot-open forming of the rolled plate of the product is carried out at 150 to 350°C; in this case, the rolled plate is set in a heated mold and held until the material temperature reaches a predetermined temperature, and then the forming is carried out. It is then heated in a separate preheating furnace and then placed in a mold for shaping. In this case, if the temperature and time of holding or preheating are such that recrystallization occurs, it is not necessary to obtain a recrystallized structure by final annealing, and therefore, in that case, final annealing can be omitted.

またDC鋳造に代えて薄板連続鋳造法を適用する場合は
、前述の各工程のうち、熱間圧延までを省略することが
できる。但し、この場合は圧延性を向上させるため、鋳
造コイルに対して均質化処理を施してから冷間圧延を行
なうことが好ましい。
Moreover, when applying a thin plate continuous casting method instead of DC casting, it is possible to omit the steps up to hot rolling among the above-mentioned steps. However, in this case, in order to improve rolling properties, it is preferable to perform a homogenization treatment on the cast coil before cold rolling.

この場合の均質化処理条件は、前述のDC鋳造を適用し
た場合の熱間圧延前の鋳塊加熱条件と同様であれば良い
The homogenization treatment conditions in this case may be the same as the ingot heating conditions before hot rolling when the above-mentioned DC casting is applied.

実  施  例 第1表の合金番号1〜7に示す成分組成のアルミニウム
合金、すなわち本発明成分範囲内の合金1〜4および本
発明成分範囲を外れた比較例の合金5〜7について、常
法に従ってDC鋳造し、得られた鋳塊に530℃×10
時間の均質化処理を施した後、常法に従って板厚4mm
まで熱間圧延し、さらに冷間圧延を施して板厚1mmと
した。その後320℃× 2時間の最終焼鈍を施した。
Example Aluminum alloys having the compositions shown in alloy numbers 1 to 7 in Table 1, that is, alloys 1 to 4 within the composition range of the present invention and alloys 5 to 7 of comparative examples outside the composition range of the present invention, were subjected to conventional methods. DC casting was performed according to the method, and the obtained ingot was heated at 530°C x 10
After homogenizing for a long time, the plate thickness is 4mm according to the usual method.
The plate was hot-rolled to a thickness of 1 mm, and then cold-rolled to a thickness of 1 mm. Thereafter, final annealing was performed at 320°C for 2 hours.

上述のようにして最終焼鈍を施した後の各圧延板につい
て、圧延面に平行に研磨し、圧延面に平行な面における
金属間化合物粒子の最大径を、画像解析装置を用いて測
定した。その結果を第2表1 に示す。
After final annealing as described above, each rolled plate was polished in parallel to the rolled surface, and the maximum diameter of the intermetallic compound particles in the plane parallel to the rolled surface was measured using an image analysis device. The results are shown in Table 2.1.

第2表から明らかなようにこの発明の成分組成範囲内−
の合金番号1〜4の合金の圧延板は、いずれも金属間化
合物粒子の径が10伽以下となっている。
As is clear from Table 2, within the composition range of this invention -
All of the rolled sheets of alloys with alloy numbers 1 to 4 have intermetallic compound particles having a diameter of 10 degrees or less.

また最終焼鈍後の各圧延板について、300℃において
50%の伸びを与える温間引張り加工を行なった後、J
IS  5号引張り試験片を切出して温間引張り加工後
の常温強度(引張り強さおよび耐力)を調べた結果を第
3表に示す。
In addition, each rolled plate after final annealing was warm tensile processed at 300°C to give 50% elongation, and then J
Table 3 shows the results of cutting IS No. 5 tensile test pieces and examining their room temperature strength (tensile strength and yield strength) after warm tensile processing.

第3表から、この発明の実施例のアルミニウム合金は、
温間成形後も自動車部品や各種筐体等として実用上支障
ない捏度の強度を有していることが判る。
From Table 3, the aluminum alloys of the examples of this invention are:
It can be seen that even after warm forming, the material has a strength sufficient to be used in practical applications such as automobile parts and various casings.

さらに、最終焼鈍後の各圧延板から引張り試験片を切出
し、各試験片について250℃の温間引張り試験を行な
い、伸びを調べた結果を第4表に示す。なおこのときの
温間引張り試験は、250℃の温度に30分保持してか
ら引張りを開始し、また引張り歪速度は2.22X 1
0−2/秒、標点間距離は10 mm2 とした。
Furthermore, tensile test pieces were cut out from each rolled plate after the final annealing, and a warm tensile test was performed on each test piece at 250°C to examine the elongation. Table 4 shows the results. In addition, in the warm tensile test at this time, tension was started after holding the temperature at 250°C for 30 minutes, and the tensile strain rate was 2.22X 1
The speed was set at 0-2/sec, and the gauge distance was 10 mm2.

第4表から、この発明の実施例のアルミニウム合金圧延
板は、温開成形によって160%以上の大きな伸びを示
し、温間成形性が著しく良好であることが判る。
From Table 4, it can be seen that the rolled aluminum alloy sheets of the examples of the present invention exhibited a large elongation of 160% or more by hot-opening forming, and had extremely good warm formability.

さらに、実際の温開成形における変形性を調べるため、
各圧延板について5枚連続してダイス・ポンチにより温
開成形を施し、破断時の平均成形高さを調べた。温開成
形の条件は、成形温度250℃、ブランク径250+a
+a、ポンチ径50mm、ダイス径53M、Lわ抑え圧
1000kgとし、潤滑剤として二硫化モリデブンを用
いた。その結果を第5表に示す。
Furthermore, in order to investigate the deformability during actual hot-opening molding,
Five sheets of each rolled plate were successively subjected to hot-open forming using a die punch, and the average formed height at breakage was examined. The conditions for hot-opening molding are a molding temperature of 250°C and a blank diameter of 250+a.
+a, the punch diameter was 50 mm, the die diameter was 53 M, the L pressure was 1000 kg, and molydeben disulfide was used as the lubricant. The results are shown in Table 5.

第5表から、この発明の実施例のアルミニウム合金は、
実際に温間成形加工時における成形性が極めて優れてい
ることが判る。
From Table 5, the aluminum alloys of the examples of this invention are:
It can be seen that the formability during warm forming is actually extremely excellent.

第1表・供試材の成分組成 (単位 w196) 化合物最大サイズ 5 第3表:温間引張り後の常温強度 第4表: 250℃の温間引張り試験での伸び 1.6 第5表:温開成形による成形高さ 発明の効果 以上の実施例からも明らかなように、この発明のアルミ
ニウム合金は、温間成形性が著しく良好であり、したが
ってこの発明のアルミニウム合金を用いることによって
、150〜350℃の温度域での温開成形を高い生産性
で実用化することができる。したがってこの発明のアル
ミニウム合金は、複雑形状の器物の他、電気制御器筐体
、計測器筐体、VTRその他の弱電機器のシャーシ等、
さらには自動車車体、 ガソリンタンク、 オイルパン等 小部品の用途に好適である。
Table 1 - Component composition of the sample material (unit w196) Maximum compound size 5 Table 3: Room temperature strength after warm tension Table 4: Elongation in warm tension test at 250°C 1.6 Table 5: Effect of the Invention on Forming Height by Warm Opening As is clear from the above examples, the aluminum alloy of the present invention has extremely good warm formability. Hot-open molding in the temperature range of ~350°C can be put to practical use with high productivity. Therefore, the aluminum alloy of the present invention can be used for objects with complex shapes, as well as electrical controller housings, measuring instrument housings, chassis of VTRs and other light electrical equipment, etc.
Furthermore, it is suitable for use in small parts such as automobile bodies, gasoline tanks, and oil pans.

Claims (2)

【特許請求の範囲】[Claims] (1)Mg2.0〜6.0%(重量%、以下同じ)を含
有し、かつ不純物としてのFe、Si、Mn、Cr、Z
rがそれぞれFeは0.2%以下、Siは0.2%以下
、Mnは0.05%以下、Crは0.05%以下、Zr
は0.05%以下に規制され、しかもその他の不純物元
素の合計量が0.1%以下に規制され、残部が実質的に
Alよりなり、金属間化合物粒子の粒径が10μm以下
であることを特徴とする、150〜350℃の範囲内の
温度での成形のための温間成形用アルミニウム合金。
(1) Contains 2.0 to 6.0% Mg (wt%, same hereinafter) and contains Fe, Si, Mn, Cr, and Z as impurities
r is respectively Fe 0.2% or less, Si 0.2% or less, Mn 0.05% or less, Cr 0.05% or less, Zr
is regulated to 0.05% or less, and the total amount of other impurity elements is regulated to 0.1% or less, with the remainder consisting essentially of Al, and the particle size of the intermetallic compound particles is 10 μm or less. A warm-forming aluminum alloy for forming at temperatures in the range of 150 to 350°C, characterized in that:
(2)Mg2.0〜6.0%を含有するとともに、Cu
0.05〜2.0%、Zn0.5〜2.5%のうちの1
種または2種を含有し、かつ不純物としてのFe、Si
、Mn、Cr、ZrがそれぞれFeは0.2%以下、S
iは0.2%以下、Mnは0.05%以下、Crは0.
05%以下、Zrは0.05%以下に規制され、しかも
その他の不純物元素の合計量が0.1%以下に規制され
、残部が実質的にAlよりなり、金属間化合物粒子の粒
径が10μm以下であることを特徴とする、150〜3
50℃の範囲内の温度での成形のための温間成形用アル
ミニウム合金。
(2) Contains Mg2.0 to 6.0% and Cu
0.05-2.0%, 1 of Zn0.5-2.5%
Fe, Si containing one or two species and as impurities
, Mn, Cr, Zr, Fe is 0.2% or less, S
i is 0.2% or less, Mn is 0.05% or less, and Cr is 0.
Zr is regulated to 0.05% or less, Zr is regulated to 0.05% or less, the total amount of other impurity elements is regulated to 0.1% or less, the balance is substantially made of Al, and the particle size of the intermetallic compound particles is 150-3, characterized in that it is 10 μm or less
Warm forming aluminum alloy for forming at temperatures in the range of 50°C.
JP24742389A 1989-09-22 1989-09-22 Aluminum alloy for warm forming Pending JPH03107439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24742389A JPH03107439A (en) 1989-09-22 1989-09-22 Aluminum alloy for warm forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24742389A JPH03107439A (en) 1989-09-22 1989-09-22 Aluminum alloy for warm forming

Publications (1)

Publication Number Publication Date
JPH03107439A true JPH03107439A (en) 1991-05-07

Family

ID=17163217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24742389A Pending JPH03107439A (en) 1989-09-22 1989-09-22 Aluminum alloy for warm forming

Country Status (1)

Country Link
JP (1) JPH03107439A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241225A (en) * 2011-05-18 2012-12-10 Nippon Steel Corp Aluminum alloy sheet for warm forming
JP2016186125A (en) * 2015-03-27 2016-10-27 株式会社神戸製鋼所 Aluminum alloy sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207850A (en) * 1986-03-10 1987-09-12 Sky Alum Co Ltd Rolled aluminum alloy sheet for forming and its production
JPS63118045A (en) * 1986-11-05 1988-05-23 Sky Alum Co Ltd Aluminum alloy for bright disk wheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207850A (en) * 1986-03-10 1987-09-12 Sky Alum Co Ltd Rolled aluminum alloy sheet for forming and its production
JPS63118045A (en) * 1986-11-05 1988-05-23 Sky Alum Co Ltd Aluminum alloy for bright disk wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241225A (en) * 2011-05-18 2012-12-10 Nippon Steel Corp Aluminum alloy sheet for warm forming
JP2016186125A (en) * 2015-03-27 2016-10-27 株式会社神戸製鋼所 Aluminum alloy sheet

Similar Documents

Publication Publication Date Title
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
WO2008120237A1 (en) Alloy composition and preparation thereof
US5662750A (en) Method of manufacturing aluminum articles having improved bake hardenability
JPS623225B2 (en)
JPH027386B2 (en)
JPS63235454A (en) Prodution of flat rolled product of aluminum base alloy
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JP3734317B2 (en) Method for producing Al-Mg-Si alloy plate
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP5050577B2 (en) Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPS62207850A (en) Rolled aluminum alloy sheet for forming and its production
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JPH0959736A (en) Aluminum alloy sheet excellent in high speed superplastic formability and its formation
JPH03107439A (en) Aluminum alloy for warm forming
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JPH01127642A (en) Heat treatment type high strength aluminum alloy plate for drawing and its manufacture
JPS6410584B2 (en)
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH03294445A (en) High strength aluminum alloy having good formability and its manufacture