JPH03106019A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03106019A
JPH03106019A JP24390589A JP24390589A JPH03106019A JP H03106019 A JPH03106019 A JP H03106019A JP 24390589 A JP24390589 A JP 24390589A JP 24390589 A JP24390589 A JP 24390589A JP H03106019 A JPH03106019 A JP H03106019A
Authority
JP
Japan
Prior art keywords
oxide film
ion
etching rate
etching
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24390589A
Other languages
Japanese (ja)
Inventor
Toshiharu Takaramoto
敏治 宝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24390589A priority Critical patent/JPH03106019A/en
Publication of JPH03106019A publication Critical patent/JPH03106019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To make it possible to limit to the minimum the amount of thinning of an oxide film caused by wet cleaning by a method wherein the etching is started from the wet-cleaned oxide film having low etching rate to higher etching rate. CONSTITUTION:Dependence of the dosage, the type of ion species and the like affecting on the rate of etching is computed in advance. The order of ion implanting processes is selected in such a manner that the ion implanting process for the ion species and the dosage having the lowest etching rate is conducted first, and then the ion implanting process is conducted successively in the order of the etching rate which is becoming higher. For example, when the same ion species are implanted, a high dosage (1X10<14>/cm<-2> or higher) process is conducted after a low dosage (1X10<14>/cm<-2> or less) process. When different ion species such as B<+> of 1X10<14>/cm<-2> and As<+> of 1X10<14>/cm<-2>, for example, are ion-implanted, the B<+> of low etching rate is ion-etched, and then the As of high etching rate is ion-etched. As a result, the amount of thinning of an oxide film can be suppressed to the minimum, and the diffusion of impurities into a substrate from an interlayer insulating film can also be prevented.

Description

【発明の詳細な説明】 [概要] レジストパターニングイオン注入一レジスト除去一ウェ
ット洗浄という一連の工程を複数回連続して行う半導体
装置の製造方法に関し、ウェット洗浄での酸化膜の膜減
り量が最小限にとどめることを目的とし、 レジストのバターニング、酸化膜を貫通してのイオン注
入、前記レジストの除去、若干の酸化膜エッチングを伴
うウェット洗浄を順次行なうイオン注入工程を複数回行
なう半導体装置の製造方法において、ウェット洗浄によ
る酸化膜のエッチングレートが低い順に前記イオン注入
工程を順次行うように構成する。
[Detailed Description of the Invention] [Summary] A method for manufacturing a semiconductor device in which a series of steps of resist patterning, ion implantation, resist removal, and wet cleaning are performed multiple times in succession. In semiconductor devices, an ion implantation process is performed multiple times, with the aim of limiting the oxidation process to a minimum, and the ion implantation process is sequentially performed by patterning the resist, implanting ions through the oxide film, removing the resist, and wet cleaning with slight etching of the oxide film. In the manufacturing method, the ion implantation step is performed in order of decreasing etching rate of the oxide film by wet cleaning.

[産業上の利用分野] 本発明は、半導体装置の製造方法に関し、さらに詳しく
述べるならば、レジストパターニングイオン注入一レジ
スト除去一ウェット洗浄という一連の工程を複数回連続
して行う半導体装置の製造方法に関するものである。
[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a semiconductor device in which a series of steps of resist patterning, ion implantation, resist removal, and wet cleaning are performed multiple times in succession. It is related to.

〔従来の技術] 従来の半導体装置の製造工程において、レジストのパタ
ーニングーイオン注入−レジスト除去という一連のイオ
ン注入工程を複数回連続して行い、導電型、濃度、注入
場所などが異なるイオン注入領域を作ることが普通に行
なわれている。これらのイオン注入領域を作る順序につ
いては、レジストパターンニングが最も能率的になるよ
うな?点から定められており、レジストバターニングに
制約がなければその順序は可変であるとされており、そ
の他の点については無意識に構成していた。
[Prior Art] In the conventional manufacturing process of semiconductor devices, a series of ion implantation steps including resist patterning, ion implantation, and resist removal is performed multiple times in succession to create ion implanted regions with different conductivity types, concentrations, implant locations, etc. It is common practice to create. Is there an order in which to create these ion implantation regions that will make resist patterning most efficient? It was determined from the points, and the order was said to be variable if there were no restrictions on resist patterning, and the other points were configured unconsciously.

ところが、レジスト除去の後、ゴミ除去用として例えば
NH40H/HaO■によるウェット洗浄を行うとイオ
ン注入によってドーバントを取り込んだ酸化膜(SiO
a)が若干エッチングされる。
However, when wet cleaning is performed using NH40H/HaO2 to remove dust after removing the resist, the oxide film (SiO
a) is slightly etched.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図{イ}〜(ハ)は、本発明者が950〜1100
℃で酸化膜(厚み231人)を一部に形成したSi基板
に、B”  (加速エネルギ50kev)、P”(同じ
< 120key) 、As”  (同じ<180ke
y)でイオン注入した後、sH4oH/}IaOi  
エッチング液(温度22.5℃および80℃)によるの
酸化膜エッチングレートを不純物ドーズ量に対して示し
たグラフである。
Figure 2 {A} to (C) are 950 to 1100
B" (acceleration energy 50 keV), P" (same < 120 key), As" (same < 180 ke
After ion implantation with y), sH4oH/}IaOi
It is a graph showing the oxide film etching rate with an etching solution (temperatures of 22.5° C. and 80° C.) versus the impurity dose.

このグラフより、高温エッチングの場合はドーズ量およ
びイオン種によりエッチングレートは変わることが分か
る。
From this graph, it can be seen that in the case of high temperature etching, the etching rate changes depending on the dose and ion species.

このためにイオン注入のイオン種ドーズ量と工程順の関
係で酸化膜の膜減り量が異なるという事が起こる。
For this reason, the amount of thinning of the oxide film varies depending on the dose of ion species in ion implantation and the order of the steps.

以下、同一イオン種による2回のB”イオン注入を行な
う従来工程の例を第3図を参照として説明する。
An example of a conventional process in which B'' ions are implanted twice using the same ion species will be described below with reference to FIG.

図中、lはSL基板、2はフィールド酸化膜、3はレジ
スト、4はゲート酸化膜,5はゲート電極、6はゲート
電極上の酸化膜、7はレジスト、8はPSGなとの層間
絶縁膜である。
In the figure, l is the SL substrate, 2 is the field oxide film, 3 is the resist, 4 is the gate oxide film, 5 is the gate electrode, 6 is the oxide film on the gate electrode, 7 is the resist, and 8 is the interlayer insulation with PSG. It is a membrane.

第3図(イ)において、B”を例えば1×10l8cm
””のドーズ量でSi基板1およびゲート電極5に注入
することにより、高ドーズイオン注入を含む工程を先に
行う。この工程では、レジスト3は後工程で低ドーズ量
でイオン注入する領域(図示せず)を被覆している。
In Figure 3 (a), B” is, for example, 1×10l8cm.
By implanting into the Si substrate 1 and gate electrode 5 at a dose of "", a process including high-dose ion implantation is performed first. In this step, the resist 3 covers a region (not shown) into which ions will be implanted at a low dose in a subsequent step.

次にレジスト3を除去して(第3図(口))、ゴミを除
去するためにNH40H/H202  系エッチング液
で洗浄を行なうと、I X 1 0 ”cm−”のドー
ズ量で39が注入された、例えば150A/10分?エ
ッチングレートで溶解され(第2図(イ)の1 x 1
 0lIlcm−” (横軸)に対応する縦軸の値参照
)、一方第3図(イ)においてレジスト3で被覆されて
いたSi基板1は前者の175の30人/10分のエッ
チングレートで溶解される。続いて、第3図(ハ)に示
すように、レジスト7により選択的に被覆し、露出され
た領域(図示せず)のSi基板1に低ドーズ量(例えば
I X 1 0 ”c m−”)でB3注入を行なう。
Next, the resist 3 is removed (Fig. 3 (opening)) and cleaned with an NH40H/H202-based etching solution to remove dust, and 39 is implanted at a dose of I For example, 150A/10 minutes? It is dissolved at the etching rate (1 x 1 in Figure 2 (a)).
0lIlcm-" (see the value on the vertical axis corresponding to the horizontal axis), while the Si substrate 1 covered with the resist 3 in FIG. Subsequently, as shown in FIG. 3(C), the Si substrate 1 is selectively covered with a resist 7, and exposed areas (not shown) of the Si substrate 1 are coated with a low dose (for example, IX10''). Perform B3 injection at cm-”).

続いて、第3図(ロ)と同様にレジスト除去とNH40
11/HzO*  系エッチング液による洗浄を行なう
と、低ドーズ領域のSiftは50人/10分のエッチ
ングレートで溶解され、一方第3図に示される高ドーズ
量領域のSiO■(4.6)は3倍の150人/lO分
のエッチングレートで溶解される。したがって、それぞ
れの洗浄を5分間行なったとすると、高ドーズ領域の酸
化膜4.6は2X(150人/10分)×1/2=15
0人溶解され、一方低ドーズ領域の酸化膜は(30人/
10分+50人710分)×1/2=40人溶解される
。したがって、低ドーズイオン注入を含む工程を後に行
った場合高ドーズ領域の酸化膜が極端に薄くなってしま
う。その後、第3図(ホ)において暦間絶縁膜8の形成
を行なうと、層間絶縁膜8から基板lやゲート電極6へ
不純物が拡敢してしまうといった問題を生じている。
Next, as in Fig. 3 (b), resist removal and NH40
When cleaning with a 11/HzO*-based etching solution, Sift in the low dose region is dissolved at an etching rate of 50 people/10 minutes, while SiO■ (4.6) in the high dose region shown in Figure 3 is dissolved. is dissolved at an etching rate three times higher than that of 150 people/lO min. Therefore, if each cleaning is carried out for 5 minutes, the oxide film in the high dose area will be 2X (150 people/10 minutes) x 1/2 = 15
0 people were dissolved, while the oxide film in the low dose area was (30 people/
10 minutes + 50 people, 710 minutes) x 1/2 = 40 people will be dissolved. Therefore, if a step including low-dose ion implantation is performed later, the oxide film in the high-dose region becomes extremely thin. Thereafter, when the interlayer insulating film 8 is formed in FIG. 3(E), a problem arises in that impurities spread from the interlayer insulating film 8 to the substrate 1 and the gate electrode 6.

以上、単一種のイオン注入を例にとって説明したが、B
0とAs”のように異種のイオンを注入する場合もドー
ズ量の多い工程を先に行うと、その後のウェット洗浄回
数が多くなる為、同様に高ドーズ領域の酸化膜の膜減り
量が多く酸化膜が極端に薄くなってしまう。
The above explanation was given using a single type of ion implantation as an example, but B
When implanting different types of ions such as 0 and As, if the process with a high dose is performed first, the number of subsequent wet cleanings will increase, and the amount of film loss in the oxide film in the high dose area will be large as well. The oxide film becomes extremely thin.

近年の半導体素子の微細化に伴って、酸化膜が200〜
400人と薄くなっているために膜減りによる影響が大
きくなり、不純物の突き抜けなどが起こり易くなった。
With the miniaturization of semiconductor devices in recent years, the oxide film has become smaller than 200 mm.
Because it is 400 people thinner, the effect of film thinning is greater, making it easier for impurities to penetrate.

したがって、本発明は、ウェット洗浄での酸化膜の膜減
り量が最小限にとどめ、前記の様な不具合が起こらない
様にすることを目的とする。
Therefore, an object of the present invention is to minimize the amount of loss of the oxide film during wet cleaning, and to prevent the above-mentioned problems from occurring.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、ウェット洗浄による酸化膜のエッチングレー
トが低い工程から順に行なうことを特徴とする。
The present invention is characterized in that the wet cleaning steps are performed in order of decreasing etching rate of the oxide film.

かかるエッチングレートはドーズ量、イオン種などに依
存するので、これを予め求めておき、エッチングレート
が最も低いイオン種およびドーズ量のイオン注入工程を
先ず行ない、エッチングレートが最も高いイオン種およ
びドーズ量のイオン注入工程を最後に行ない、3工程以
上の場合は順次エッチングレートが高くなるようにイオ
ン注入工程の順番を選択する。
Since such etching rate depends on the dose, ion species, etc., it is determined in advance, and the ion implantation process with the ion species and dose with the lowest etching rate is performed first, and then the ion implantation process with the ion species and dose with the highest etching rate is performed. The ion implantation step is performed last, and if there are three or more steps, the order of the ion implantation steps is selected so that the etching rate increases sequentially.

本発明では、例えば同一イオン種でイオン注入する場合
は、高ドーズ(I X 1 0 ”am−”以上)の工
程を、低ドーズ(1×l○”c m−”未満)の工程よ
り後に行なうようにする。異なるイオン種をイオン注入
する場合、例えば、B0を1×1 0”am−’で、A
s  ″″をI X 1 0 ”cm−”でイオン注入
する場合は、まず、エッチングレートが遅いB0を、次
に、エッチングレートが速いAs”?イオン注入する。
In the present invention, for example, when ion implantation is performed using the same ion species, the high-dose process (I x 10 "am-" or more) is performed after the low-dose process (less than 1xl○"cm-"). Let's do it. When implanting different ion species, for example, B0 is 1×10"am-', A
When ion-implanting s"" at IX10"cm-", first ions of B0 having a slow etching rate are implanted, and then As"? ions having a fast etching rate are implanted.

〔作用〕[Effect]

本発明によれば、ウェット洗浄による酸化膜のエッチン
グレートが低い工程から順に行なうことにより、ドーバ
ントを多く取り込んだ酸化膜のウェット洗浄回数を最小
限にとどめている。
According to the present invention, the number of times of wet cleaning of an oxide film that incorporates a large amount of dopant is minimized by sequentially performing steps in which the etching rate of the oxide film by wet cleaning is low.

したがって、酸化膜の膜減りによる層間絶縁膜から基板
への不純物の拡散を防止できる。
Therefore, diffusion of impurities from the interlayer insulating film to the substrate due to thinning of the oxide film can be prevented.

〔実施例] 第1図は本発明の一実施例図であり、MOSFETのG
ate電極形成以降の工程を示している。
[Example] Figure 1 is a diagram showing an example of the present invention, in which G of the MOSFET is
The process after forming the ate electrode is shown.

第1図(イ)において、B”をIXIOcm−”のドー
ズ量でSL基板lおよびゲート電極5に注入する。この
工程では、レジスト3は後工程で高ドーズ量でイオン注
入する領域(図示せず)を被覆している。
In FIG. 1(A), B'' is implanted into the SL substrate l and the gate electrode 5 at a dose of IXIOcm-''. In this step, the resist 3 covers a region (not shown) into which ions will be implanted at a high dose in a subsequent step.

次にレジスト3を除去して(第1図(ロ))、ゴミを除
去するためにNH401{/H20■系エッチング液で
洗浄を行なう。続いて、第3図(ハ)に示すように、レ
ジストアにより選択的に被覆し、露出された領域(図示
せず)のSt基板1に高ドーズ量(L X 1 0 ”
c m−”)でB″″注入を行なう。続いて、第1図(
ロ)と同様にレジスト除去とNH.OH/H202系エ
ッチング液による洗浄を行なう(第1図(二))。
Next, the resist 3 is removed (FIG. 1(b)), and cleaning is performed with an NH401{/H20■ based etching solution to remove dust. Subsequently, as shown in FIG. 3(c), the St substrate 1 is selectively covered with resist and exposed areas (not shown) are coated with a high dose (L x 10'').
Perform B″″ injection at cm-”). Then, perform B″″ injection at
b) Similarly, resist removal and NH. Cleaning is performed using an OH/H202 etching solution (FIG. 1 (2)).

ここで、第3図を参照して説明したところと同一のエッ
チング条件では高ドーズ領域では(30入/10分+1
50人/10分)Xi/2=90人、低ドーズ領域では
2X (50人/10分)×172=50人、の酸化膜
膜滅り量となる。したがって、高ドーズ領域の酸化膜が
極端に薄くなることはなくなる。
Here, under the same etching conditions as explained with reference to FIG.
(50 people/10 minutes) Xi/2 = 90 people, and in the low dose region, the amount of oxide film destruction is 2X (50 people/10 minutes) x 172 = 50 people. Therefore, the oxide film in the high dose region will not become extremely thin.

[発明の効果] 以上説明した様に、本発明によれば酸化膜の膜減り量が
最小限に抑えられる効果を奏し、層間絶縁膜から基板へ
の不純物の拡散を防止出来、係る半導体装置の性能向上
に寄与するところが大きい。
[Effects of the Invention] As explained above, according to the present invention, the amount of film loss of the oxide film can be minimized, and the diffusion of impurities from the interlayer insulating film to the substrate can be prevented, thereby improving the performance of such semiconductor devices. It greatly contributes to performance improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例図、 第2図(イ),(ロ),(ハ)はNH.OH/}120
2系エッチング液による酸化膜のエッチングレートを示
すグラフ、 第3図(イ)〜(ホ)は従来法の工程図である。 図中、l−Si基板、2−フィールド酸化膜、3−レジ
スト、4−ゲート酸化膜、5−ゲート電極、6−ゲート
電極上の酸化膜、7−レジスト、8−PSGなどの層間
絶縁膜 イΔF−ス゜゛イオJ注入 第1図(イ) t/ジスl−玲云/エヅナンq′ 第1図(口) ヌリ,4賃薫ド′−ヌ゛4オヴ注入 第1図(ハ) レジスト除云/エツテノフ゛ 第1図(二) 高F′−ス゛イオJ′/主人 第3図(づ) I/ラスl−除云/エツテヴグ′゜ 第3図(口) 刃17,4負美致1岱雪−ス゜′4オυシ主入第3図(
ハ) 第 3 図に)
FIG. 1 is an embodiment of the present invention, and FIGS. 2 (a), (b), and (c) are NH. OH/}120
A graph showing the etching rate of an oxide film by a two-system etching solution, and FIGS. 3(A) to 3(E) are process diagrams of the conventional method. In the figure, an l-Si substrate, 2-field oxide film, 3-resist, 4-gate oxide film, 5-gate electrode, 6-oxide film on gate electrode, 7-resist, 8-interlayer insulating film such as PSG IΔF-S゜゛IOJ injection Figure 1 (A) t/Jisl-Reiun/Ezunanq' Figure 1 (mouth) Exclusion/Etsutenofu Figure 1 (2) High F'-Swio J'/Main Figure 3 (Du) I/Last L-Exclusion/Etsutenofu Figure 3 (mouth) Blade 17, 4 Negative Beauty 1 Figure 3 (
c) In Figure 3)

Claims (1)

【特許請求の範囲】 1、レジストのパターニング、酸化膜を貫通してのイオ
ン注入、前記レジストの除去、若干の酸化膜エッチング
を伴うウェット洗浄を順次行なうイオン注入工程を複数
回行なう半導体装置の製造方法において、 前記ウェット洗浄による酸化膜のエッチングレートが低
い順に前記イオン注入工程を順次行うことを特徴とする
半導体装置の製造方法。
[Claims] 1. Manufacture of a semiconductor device in which an ion implantation process is performed multiple times, which sequentially includes resist patterning, ion implantation through an oxide film, removal of the resist, and wet cleaning with slight oxide film etching. A method for manufacturing a semiconductor device, wherein the ion implantation step is performed in order of decreasing etching rate of the oxide film by the wet cleaning.
JP24390589A 1989-09-20 1989-09-20 Manufacture of semiconductor device Pending JPH03106019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24390589A JPH03106019A (en) 1989-09-20 1989-09-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24390589A JPH03106019A (en) 1989-09-20 1989-09-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03106019A true JPH03106019A (en) 1991-05-02

Family

ID=17110745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24390589A Pending JPH03106019A (en) 1989-09-20 1989-09-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03106019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722591B2 (en) * 2005-07-01 2011-07-13 株式会社 ワールドリング Method for manufacturing a garment having a hollow portion comprising an outer ring body and an inner ring body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4722591B2 (en) * 2005-07-01 2011-07-13 株式会社 ワールドリング Method for manufacturing a garment having a hollow portion comprising an outer ring body and an inner ring body

Similar Documents

Publication Publication Date Title
JPH03106019A (en) Manufacture of semiconductor device
JPH05175190A (en) Manufacture of semiconductor device
JPS63175420A (en) Manufacture of semiconductor device
JPH0115148B2 (en)
JP2662453B2 (en) GaAs wafer, method of manufacturing the same, and method of ion implantation into GaAs wafer
KR100256246B1 (en) Method of forming gate electrode in semiconductor device
JPH03265172A (en) Manufacture of semiconductor device
JPS63153862A (en) Manufacture of semiconductor device
JPS6072274A (en) Manufacture of semiconductor device
JPS62145821A (en) Manufacture of semiconductor device
JPS62295462A (en) Manufacture of semiconductor device
JPS6081863A (en) Manufacture of semiconductor device
JPH03154378A (en) Manufacture of radiation-resistant semiconductor device
JPH04306841A (en) Manufacture of semiconductor device
JPS6376376A (en) Manufacture of metal-oxide semiconductor (mos) device
JPS62165950A (en) Manufacture of semiconductor device
JPS62165951A (en) Manufacture of semiconductor device
JPH03263864A (en) Semiconductor device and manufacture thereof
JPH0529240A (en) Manufacture of semiconductor device
JPH08316220A (en) Manufacture of semiconductor device
JPS59145522A (en) Manufacture of semiconductor device
JPS62269352A (en) Manufacture of semiconductor device
JP2000100970A (en) Semiconductor device and its manufacture
JPH0298173A (en) Manufacture of semiconductor memory
JPS63202920A (en) Manufacture of semiconductor integrated circuit device