JPS62165951A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62165951A
JPS62165951A JP835186A JP835186A JPS62165951A JP S62165951 A JPS62165951 A JP S62165951A JP 835186 A JP835186 A JP 835186A JP 835186 A JP835186 A JP 835186A JP S62165951 A JPS62165951 A JP S62165951A
Authority
JP
Japan
Prior art keywords
film
oxide film
substrate
thickness
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP835186A
Other languages
Japanese (ja)
Inventor
Yasuhide Kamata
鎌田 康秀
Norio Koide
小出 典男
Toshiyuki Yamazaki
山崎 利幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP835186A priority Critical patent/JPS62165951A/en
Publication of JPS62165951A publication Critical patent/JPS62165951A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To reduce bird beaks in a semiconductor device by superposing an oxide film and an oxidation resistant mask on an Si substrate, selectively forming an ion implanted region through the oxide film, and rapidly forming an element separating film by low temperature oxidation accelerating. CONSTITUTION:A thermal oxide film 2 is formed on a P-type Si substrate 1, and an Si3N4 film 3 is superposed. A resist mask 5 is formed, the film 3 is opened, and ion implanted through the exposed film 2. In this case, ion mean flying strokes are equalized to the thickness of the film 2 by selecting the dosage, accelerating voltage and impurity type, and the peak position of the density is disposed on the surface of the substrate. Then, the film 2 is opened by etching, and the resist 5 is removed. Subsequently, a low temperature oxidation is accelerated by utilizing a variation, defect and dislocation of a crystal structure at the ion density peak position to form an element separating oxide film 7 in a short time. Since the oxidizing time is extremely shortened, bird beaks formed on the periphery of the film 7 are suppressed to remarkably improve the decrease in the integration.

Description

【発明の詳細な説明】 くイ)産業上の利用分野 本発明は半導体装置の製造方法、特にLOGO8構造の
素子分離酸化膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION B) Industrial Application Field The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming an element isolation oxide film having a LOGO8 structure.

(ロ)従来の技術 従来、半導体装置では第2図イ乃至第2図二に示す様に
素子分離酸化膜を形成している。
(B) Prior Art Conventionally, in a semiconductor device, an element isolation oxide film is formed as shown in FIGS. 2A to 2B.

まず第2図イに示す如く、P型のシリコン基板(11)
上に、例えば膜厚1000人の熱酸化膜(12)、膜厚
2000人の5ixNa膜(13)を順次形成する。続
いて第2図口に示す如く、この5isNa膜〈13)上
にレジストバター’/ (14)を形成した後、このレ
ジストパターン(14)をマスクとしてSi、N4膜(
13)を選択的にエツチング除去し、5ijN4パター
ン(13’)を形成する。次いで第2図ハに示す如く、
同じレジストパターン(14)をマスクとして、基板(
11)にチャンネルストッパー用のボロンイオンを加速
電圧80Ke■、ドーズ量IXIQ”7cm”の条件で
イオン注入し、注入領域(15)を形成する。更に第2
図二に示す如く、レジストパターン(14)を除去後、
5isN4パターン(13’ )をマスクとして基板(
11)を約1μmの厚さに熱酸化して分離用のフィール
ド酸化膜(16)を形成し、同時に注入領域(15)の
ボロンイオンを拡散してチャンネル阻止領域(17)を
形成している。
First, as shown in Figure 2A, a P-type silicon substrate (11)
For example, a thermal oxidation film (12) with a thickness of 1000 ml and a 5ixNa film (13) with a thickness of 2000 ml are sequentially formed thereon. Subsequently, as shown in the opening of Figure 2, after forming a resist butter'/ (14) on this 5isNa film (13), a Si, N4 film (14) is formed using this resist pattern (14) as a mask.
13) is selectively etched away to form a 5ijN4 pattern (13'). Next, as shown in Figure 2 C,
Using the same resist pattern (14) as a mask, the substrate (
11), boron ions for a channel stopper are implanted under the conditions of an acceleration voltage of 80 Ke and a dose of IXIQ of "7 cm" to form an implanted region (15). Furthermore, the second
As shown in Figure 2, after removing the resist pattern (14),
Using the 5isN4 pattern (13') as a mask, the substrate (
11) is thermally oxidized to a thickness of about 1 μm to form a field oxide film (16) for isolation, and at the same time boron ions in the implanted region (15) are diffused to form a channel blocking region (17). .

斯る従来技術はLOGO3構造として周知である。Such prior art is known as the LOGO3 structure.

(ハ)発明が解決しようとする問題点 しかしながら従来のLOGO3構造を有する半導体装置
の製造方法ではフィールド酸化に約4時間の熱酸化を必
要とし、作業効率を著しく悪化させていた。またフィー
ルド酸化膜(16)の両端にはバーズビーク(18)が
形成され、集積度の低下を招いていた。
(c) Problems to be Solved by the Invention However, in the conventional method for manufacturing a semiconductor device having the LOGO3 structure, field oxidation requires about 4 hours of thermal oxidation, which significantly deteriorates work efficiency. Moreover, bird's beaks (18) are formed at both ends of the field oxide film (16), leading to a decrease in the degree of integration.

(ニ)問題点を解決するための手段 本発明は斯る欠点に鑑みてなされ、半導体基板(1)上
に選択的にイオン注入領域(4)を設け、低温熱酸化に
よりイオン注入領域(4)上に増速酸化により厚い素子
分離酸化膜(7)を形成することにより、従来の欠点を
改善した半導体装置の製造方法を提供するものである。
(d) Means for Solving the Problems The present invention has been made in view of the above drawbacks, and the ion implantation regions (4) are selectively provided on the semiconductor substrate (1), and the ion implantation regions (4) are formed by low-temperature thermal oxidation. ) By forming a thick element isolation oxide film (7) on the semiconductor device by accelerated oxidation, a method for manufacturing a semiconductor device is provided which improves the conventional drawbacks.

(ホ)作用 本発明に依れば、イオン注入領域〈4)のイオン濃度の
ピーク位置での基板表面の結晶構造の変化、欠陥、転位
等を利用して低温増速酸化を行い、短時間で厚い素子分
離酸化膜(7)を実現している。
(E) Effect According to the present invention, low-temperature accelerated oxidation is performed by utilizing changes in the crystal structure, defects, dislocations, etc. of the substrate surface at the peak position of ion concentration in the ion implantation region <4), and This realizes a thick element isolation oxide film (7).

くべ)実施例 本発明の一実施例を第1図イ乃至第1図口を参照して詳
述する。
Embodiment An embodiment of the present invention will be described in detail with reference to FIGS.

先ず本発明の第1の工程は半導体基板(1〉表面に所定
の厚さを有するパッド酸化膜(2)および耐酸化マスク
層(3)を形成することにある(第1図イ)。
First, the first step of the present invention is to form a pad oxide film (2) and an oxidation-resistant mask layer (3) having a predetermined thickness on the surface of a semiconductor substrate (1) (FIG. 1A).

本工程では第1図イに示す如く、半導体基板(1)とし
てP型シリコンで、10〜14Ωσのものを用い、基板
(1)表面にパッド酸化膜(2)を熱酸化により形成す
る。パッド酸化膜(2)の厚みは第3図に示す特性図よ
り決められ、不純物のイオン濃度のピークが基板表面に
来る様にその厚みを決定している。具体的にはヒ素(A
、)をドーズ量5X10”cm−”でイオン注入する場
合、加速電圧40KeVでは220人の厚みに、加速電
圧80KeVでは380人の厚みに、加速電圧130K
eVでは620人の厚みに設定する。
In this step, as shown in FIG. 1A, a P-type silicon of 10 to 14 Ωσ is used as the semiconductor substrate (1), and a pad oxide film (2) is formed on the surface of the substrate (1) by thermal oxidation. The thickness of the pad oxide film (2) is determined from the characteristic diagram shown in FIG. 3, and is determined so that the peak of the impurity ion concentration is located on the substrate surface. Specifically, arsenic (A
, ) at a dose of 5X10"cm-", an acceleration voltage of 40KeV results in a thickness of 220 people, an acceleration voltage of 80KeV results in a thickness of 380 people, and an acceleration voltage of 130K.
For eV, the thickness is set to 620 people.

更に本工程ではパッド酸化膜(2)上に耐酸化マスク層
として働<5isN<膜(3)を膜厚2000人に形成
している。
Furthermore, in this step, a <5isN< film (3) serving as an oxidation-resistant mask layer is formed on the pad oxide film (2) to a thickness of 2000 nm.

本発明の第2の工程は基板(1)表面にパッド酸化膜(
2)を介して選択的にイオン注入領域〈4〉を形成する
ことにある(第1図口)。
The second step of the present invention is to form a pad oxide film (
2) to selectively form an ion implantation region <4> (see Figure 1).

本工程ではSi、N4膜(3)上にレジストパターン(
5)を形成し、フィールド領域(6〉上の5isN4膜
(3)をエツチング除去してパッド酸化膜(2)を露出
している。続いてレジストパターン(5)およびSi3
N4膜(3)をマスクとしてパッド酸化膜(2)上から
不純物のイオン注入を行い、基板(1〉のフィールド領
域(6)表面にイオン注入領域(4)を形成する。この
イオン注入では不純物の種類(A5.P、B) 、ドー
ズ量、加速電圧を所定の値に選択し、イオン注入に依る
イオン濃度のピーク位置が基板(1)の表面あるいはそ
の近傍に来る様にする。イオン注入に依るイオン濃度は
第4図に示す如く、イオンの平均飛程屯がパッド酸化膜
(2〉の厚みと略等しくなる様に設定すると実線で示す
ガウス分布をする。またイオン注入のドース量は第7図
に示す特性図より増速酸化の効果がある範囲内で選ばれ
、ヒ素の場合は加速電圧80KeVで5XIQI′c1
TI−”以上、リンの場合は加速電圧80KeVで1×
1016cITl−2以上に設定される。本実施例では
ヒ素を不純物として用い、ドース量5XIQ”cTI!
−”に設定している。
In this step, a resist pattern (
5) is formed, and the 5isN4 film (3) on the field region (6>) is removed by etching to expose the pad oxide film (2).Subsequently, a resist pattern (5) and the Si3
Using the N4 film (3) as a mask, impurity ions are implanted from above the pad oxide film (2) to form an ion implantation region (4) on the surface of the field region (6) of the substrate (1). The type (A5.P, B), dose amount, and accelerating voltage are selected to predetermined values so that the peak position of ion concentration due to ion implantation is at or near the surface of the substrate (1).Ion implantation As shown in Figure 4, the ion concentration due to From the characteristic diagram shown in Figure 7, it is selected within the range that has the effect of accelerated oxidation, and in the case of arsenic, it is 5XIQI'c1 at an accelerating voltage of 80 KeV.
TI-” or higher, in the case of phosphorus, 1× at an accelerating voltage of 80 KeV
It is set to 1016cITl-2 or higher. In this example, arsenic is used as an impurity, and the dose is 5XIQ"cTI!
−” is set.

本発明の第3の工程はパッド酸化膜(2)を除去しイオ
ン注入領域(4)表面を露出することにある(第1図ハ
)。
The third step of the present invention consists in removing the pad oxide film (2) to expose the surface of the ion implantation region (4) (FIG. 1C).

本工程ではレジストパターン(5)を利用してパッド酸
化膜(2)をプラズマエッチ等のドライエツチングある
いはウェットエツチングにより除去し、イオン注入領域
(4)表面を露出している。
In this step, the pad oxide film (2) is removed by dry etching such as plasma etching or wet etching using the resist pattern (5) to expose the surface of the ion implantation region (4).

然る後レジストパターン(5)も除去する。After that, the resist pattern (5) is also removed.

本発明の第4の工程は基板(1)を低温で熱酸化してイ
オン注入領域(4)上に他より厚い素子分離フィールド
酸化膜(7)を増速酸化により形成することにある(第
1図口)。
The fourth step of the present invention is to thermally oxidize the substrate (1) at a low temperature to form a device isolation field oxide film (7) thicker than the others on the ion implantation region (4) by accelerated oxidation. Figure 1).

本工程は本発明の最も特徴とする工程であり、露出した
イオン注入領域(4)表面を低温熱酸化して、イオン注
入領域(4)上には増速酸化による厚い素子分離フィー
ルド酸化膜(7)を形成している。他の領域上は5is
Nt膜(3)で被覆きれているので酸化されず、パッド
酸化膜(2)のまま、維持きれる。この熱酸化処理に於
いて低温で処理することにより増速酸化を行っており、
実施例では875°Cで20分間のパイロ酸化(水素燃
焼酸化法)を行っている。低温処理する理由を第6図を
参照して説明すると、ヒ素の活性化率を低く抑えて熱酸
化しないと増速酸化の効果が得られないためである。ヒ
素を加速電圧100KeVでドーズ量5X10”ClT
l−2イオン注入した場合、活性化率を50%以下に抑
えるには950℃以下で熱処理をしなくてはならない。
This step is the most characteristic step of the present invention, in which the exposed surface of the ion implantation region (4) is subjected to low-temperature thermal oxidation, and a thick element isolation field oxide film ( 7). 5is on other areas
Since it is completely covered with the Nt film (3), it is not oxidized and can be maintained as the pad oxide film (2). In this thermal oxidation treatment, accelerated oxidation is performed by processing at a low temperature.
In the example, pyro oxidation (hydrogen combustion oxidation method) was performed at 875°C for 20 minutes. The reason for performing the low-temperature treatment will be explained with reference to FIG. 6. This is because the effect of accelerated oxidation cannot be obtained unless the activation rate of arsenic is kept low and thermal oxidation is not performed. Arsenic at an acceleration voltage of 100KeV and a dose of 5X10”ClT
When l-2 ions are implanted, heat treatment must be performed at a temperature of 950° C. or less in order to suppress the activation rate to 50% or less.

従来ではイオン注入で形成される基板表面の欠陥の回復
のため1000℃以上で30分間のアニールを必ず行っ
ているのに対して、本発明では低温で処理して欠陥をそ
のまま利用して増速酸化する点に特徴がある。
Conventionally, annealing for 30 minutes at 1000°C or higher is required to recover defects on the substrate surface formed by ion implantation, but in the present invention, processing is performed at a low temperature and the defects are used as they are to increase speed. It is characterized by oxidation.

本工程に於ける増速酸化のフィールド酸化膜(7)の厚
みとパッド酸化膜(2)の厚みの関係を第5図を参照し
て説明する。第4図はヒ素をドーズ量5XIQ”cTn
−2で加速電圧40KeV、80KeV、130KeV
の場合の特性図であり、点線は1000°Cで30分間
のアニールを行った基板の再酸化の特性図である。加速
電圧40KeVの場合、パッド酸化膜(2)が約140
人のときフィールド酸化膜(7)の厚きは4000人と
ピークとなる。加速電圧80KeVの場合、パッド酸化
膜<2〉が約350人のときフィールド酸化膜(7)の
厚さは4000人とピークとなる。更に加速電圧130
KeVの場合、パッド酸化膜(2)が約600人のとき
フィールド酸化膜(7)の厚さは4000人とピークと
なる。この結果よりフィールド酸化膜(7)がピークの
厚みとなるのは第3図に示した如く、イオン濃度のピー
クが基板(1)表面に位置する様にパッド酸化膜(2)
の厚みを加速電圧40KeVで220人、加速電圧80
KeVで380人、加速電圧130KeVで620人と
した値と良く一致していることが明らかである。これか
ら本発明の増速酸化は次の様に解析される。イオン注入
時の平均飛程R7近傍にイオン注入による欠陥のピーク
が存在し、パッド酸化膜(2)の厚みを6の近傍に設定
すると基板(1)表面に欠陥ピークが現れイ、。この基
板(1)表面を低温で熱酸化すると欠陥がアニールされ
る前に酸化が進み、欠陥ピークによる増速酸化が続くの
である。
The relationship between the thickness of the field oxide film (7) and the thickness of the pad oxide film (2) in accelerated oxidation in this step will be explained with reference to FIG. Figure 4 shows arsenic at a dose of 5XIQ”cTn.
-2 acceleration voltage 40KeV, 80KeV, 130KeV
The dotted line is a characteristic diagram for reoxidation of a substrate annealed at 1000° C. for 30 minutes. When the acceleration voltage is 40 KeV, the pad oxide film (2) is approximately 140
The thickness of the field oxide film (7) reaches its peak at 4000 people. In the case of an accelerating voltage of 80 KeV, the thickness of the field oxide film (7) reaches a peak of 4000 layers when the pad oxide film <2> has a thickness of about 350 layers. Further acceleration voltage 130
In the case of KeV, when the pad oxide film (2) has a thickness of about 600, the thickness of the field oxide film (7) reaches a peak of 4000. From this result, the field oxide film (7) has a peak thickness as shown in Figure 3, and the pad oxide film (2) has a peak ion concentration on the surface of the substrate (1).
The thickness is 220 people at an accelerating voltage of 40 KeV, and the accelerating voltage is 80
It is clear that there is good agreement with the values of 380 people at KeV and 620 people at acceleration voltage 130KeV. The accelerated oxidation of the present invention will now be analyzed as follows. A defect peak due to ion implantation exists near the average range R7 during ion implantation, and when the thickness of the pad oxide film (2) is set near 6, a defect peak appears on the surface of the substrate (1). When the surface of this substrate (1) is thermally oxidized at a low temperature, oxidation proceeds before defects are annealed, and accelerated oxidation continues due to defect peaks.

第5図に示す点線の特性図はヒ素を加速電圧80KeV
、ドーズff15X10”am−”でイオン注入した後
、1000℃で30分間アニール処理をした場合であり
、フィールド酸化膜(7)は875℃で30分間のパイ
ロ酸化しても増速酸化されず約1700人の厚みにしか
ならない。またパッド酸化膜厚に対して点線の特性はピ
ークを形成せず、アニールにより基板表面の欠陥が回復
していることが分る。この実験により本発明の増速酸化
は基板表面の欠陥ピークに依ることが明らかである。
The dotted line characteristic diagram shown in Figure 5 shows arsenic at an accelerating voltage of 80 KeV.
This is the case where the field oxide film (7) was annealed at 1000°C for 30 minutes after ion implantation at a dose of ff15x10"am-", and the field oxide film (7) did not undergo accelerated oxidation even after pyrooxidation at 875°C for 30 minutes. It will only be 1,700 people deep. Further, the characteristics indicated by the dotted line do not form a peak with respect to the pad oxide film thickness, indicating that defects on the substrate surface are recovered by annealing. It is clear from this experiment that the accelerated oxidation of the present invention depends on defect peaks on the substrate surface.

なお本工程では875°Cで100分間のパイロ酸化を
行い、ヒ素のイオン注入領域(4〉上には約8000人
の素子分離フィールド酸化膜(6)を形成している。一
方基板(1)表面は約380人のパッド酸化膜(2)で
被覆きれているので、実質的に約7600人の厚み差が
得られる。なおパイロ酸化後513N を膜〈3)はエ
ツチング除去きれる。
In this process, pyrooxidation is performed at 875°C for 100 minutes to form an approximately 8,000 element isolation field oxide film (6) on the arsenic ion implantation region (4).On the other hand, the substrate (1) Since the surface is completely covered with the pad oxide film (2) of approximately 380 layers, a thickness difference of approximately 7,600 layers is substantially obtained.After the pyro-oxidation, the 513N film (3) can be removed by etching.

(ト)発明の効果 本発明に依れば、素子分1酸化膜(7)を100分と短
時間で厚く付若できるので極めて作業効率の向上を図れ
る利点を有する。
(G) Effects of the Invention According to the present invention, the oxide film (7) for one element can be thickened in a short time of 100 minutes, which has the advantage of greatly improving work efficiency.

また本発明では素子分離酸化膜(7)の周辺に形成され
るバーズビークが酸化時間の短縮により極めて短くなり
、バーズビークによる集積度の低下等を大巾に改善でき
る。
Further, in the present invention, the bird's beak formed around the element isolation oxide film (7) is extremely shortened due to the shortening of the oxidation time, and the reduction in the degree of integration caused by the bird's beak can be greatly improved.

更に本発明では他の領域を5isNa膜(3)で被覆し
ているので、イオン注入領域(4)上の素子分離酸化膜
(7)の厚みが実質的LOGO3構造の厚みとなり、極
めて設計が容易となる。また素子分離酸化膜(7)を十
分に厚く形成できる利点も有する。
Furthermore, in the present invention, since other regions are covered with the 5isNa film (3), the thickness of the element isolation oxide film (7) on the ion implantation region (4) becomes substantially the thickness of the LOGO3 structure, making the design extremely easy. becomes. It also has the advantage that the element isolation oxide film (7) can be formed sufficiently thick.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ乃至第1図二は本発明の半導体装置の製造方法
を説明する断面図、第2図イ乃至第2図二は従来の半導
体装置の製造方法を説明する断面図、第3図は本発明に
於けるパッド酸化膜とイオン濃度の関係を説明する特性
図、第4図は本発明に於けるイオン濃度のピークを説明
する断面図、第5図は本発明に於けるバンド酸化膜厚と
フィールド酸化膜厚の関係を説明する特性図、第6図は
本発明に於けるアニール温度とヒ素の活性化率の関係を
説明する特性図、第7図は本発明に於けるドーズ量とフ
ィールド酸化膜厚の関係を説明する特性図である。 (1)は半導体基板、(2)はパッド酸化膜、(3)は
5iSN、膜、(4)はイオン注入領域、(5〉はレジ
ストパターン、(6)はフィールド領域、(7)は素子
分離酸化膜である。 出願人 三洋電機株式会社 外1名 代理人 弁理士  佐 野 静 夫 第1図イ 丘            丘 丘 第2図ハ 第3図 AsL−−ス゛(k 5に10′6 パ、7ド醸イ乙J4 第4図 竿6 E3 7二−ル漬度
1A to 1B are cross-sectional views explaining the method of manufacturing a semiconductor device according to the present invention, FIGS. 2A to 2B are cross-sectional views explaining the conventional method of manufacturing a semiconductor device, and FIG. is a characteristic diagram illustrating the relationship between the pad oxide film and ion concentration in the present invention, FIG. 4 is a cross-sectional diagram illustrating the peak of ion concentration in the present invention, and FIG. A characteristic diagram illustrating the relationship between film thickness and field oxide film thickness, FIG. 6 is a characteristic diagram illustrating the relationship between annealing temperature and arsenic activation rate in the present invention, and FIG. FIG. 3 is a characteristic diagram illustrating the relationship between field oxide film thickness and field oxide film thickness. (1) is the semiconductor substrate, (2) is the pad oxide film, (3) is the 5iSN film, (4) is the ion implantation region, (5> is the resist pattern, (6) is the field region, and (7) is the element It is an isolated oxide film. Applicant Sanyo Electric Co., Ltd. and one other representative Patent attorney Shizuo Sano 7 Dojoi Otsu J4 Fig. 4 Rod 6 E3 7 Neil pickling degree

Claims (1)

【特許請求の範囲】 1、半導体基板表面に所定の厚さを有するパッド酸化膜
と耐酸化マスク層を形成する工程、前記基板表面に前記
パッド酸化膜を介して選択的にイオン注入領域を形成す
る工程、 前記イオン注入領域上の前記パッド酸化膜を除去し前記
イオン注入領域表面を露出する工程、前記基板を低温で
熱酸化して前記イオン注入領域上に厚い素子分離酸化膜
を増速酸化により形成する工程とを具備することを特徴
とした半導体装置の製造方法。
[Claims] 1. Forming a pad oxide film and an oxidation-resistant mask layer having a predetermined thickness on the surface of a semiconductor substrate, selectively forming an ion implantation region on the surface of the substrate via the pad oxide film. removing the pad oxide film on the ion implantation region to expose the surface of the ion implantation region; thermally oxidizing the substrate at a low temperature to accelerate oxidation of a thick element isolation oxide film on the ion implantation region; 1. A method of manufacturing a semiconductor device, comprising: a step of forming a semiconductor device.
JP835186A 1986-01-17 1986-01-17 Manufacture of semiconductor device Pending JPS62165951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP835186A JPS62165951A (en) 1986-01-17 1986-01-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP835186A JPS62165951A (en) 1986-01-17 1986-01-17 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62165951A true JPS62165951A (en) 1987-07-22

Family

ID=11690802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP835186A Pending JPS62165951A (en) 1986-01-17 1986-01-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62165951A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153762A (en) * 2008-11-27 2010-07-08 Toshiba Corp Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153762A (en) * 2008-11-27 2010-07-08 Toshiba Corp Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPS6037775A (en) Production of wafer by injection through protective layer
JPS6269666A (en) Ion implanting method
JPS62165951A (en) Manufacture of semiconductor device
JPH0268930A (en) Manufacture of semiconductor device
JPH05259418A (en) Semiconductor substrate and fabrication thereof
JPS63110658A (en) Manufacture of semiconductor device
JPH05175190A (en) Manufacture of semiconductor device
JPS62165950A (en) Manufacture of semiconductor device
JPH04267336A (en) Manufacture of semiconductor device
JP3297102B2 (en) Method of manufacturing MOSFET
JPH0432246A (en) Manufacture of semiconductor device
JPH04309226A (en) Manufacture of semiconductor device
JPS62145821A (en) Manufacture of semiconductor device
JPS62131538A (en) Manufacture of semiconductor device
JPS63262864A (en) Manufacture of semiconductor device
JPS6081863A (en) Manufacture of semiconductor device
JPS6353946A (en) Manufacture of semiconductor device
JPH0198246A (en) Manufacture of semiconductor device
JPS6062135A (en) Manufacture of semiconductor device
JPS62145820A (en) Manufacture of semiconductor device
JPS61270860A (en) Manufacture of cmos semiconductor device
JPS59145522A (en) Manufacture of semiconductor device
JPH0766278A (en) Manufacture of semiconductor element
JPS59119761A (en) Manufactuer of semiconductor device
JPH0298159A (en) Manufacture of semiconductor device