JPH03105858A - Manufacture of nonaqueous solvent secondary battery - Google Patents

Manufacture of nonaqueous solvent secondary battery

Info

Publication number
JPH03105858A
JPH03105858A JP1240515A JP24051589A JPH03105858A JP H03105858 A JPH03105858 A JP H03105858A JP 1240515 A JP1240515 A JP 1240515A JP 24051589 A JP24051589 A JP 24051589A JP H03105858 A JPH03105858 A JP H03105858A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
compound
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1240515A
Other languages
Japanese (ja)
Inventor
Shigeto Okada
重人 岡田
Junichi Yamaki
準一 山木
Shuji Yamada
修司 山田
Takahisa Osaki
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Toshiba Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Telegraph and Telephone Corp filed Critical Toshiba Corp
Priority to JP1240515A priority Critical patent/JPH03105858A/en
Publication of JPH03105858A publication Critical patent/JPH03105858A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nonaqueous solvent secondary battery which is excellent in the properties of battery capacity and charge and discharge cycle life, etc., by melting a specific crystalline compound in inactive atmosphere and then quenching the compound to form an amorphous compound, and preparing a positive electrode active material made from the amorphous compound. CONSTITUTION:A crystalline compound expressed by the expression I is melted in inactive atmosphere and is quenched to form an amorphous compound, and a positive electrode active material made from the amorphous compound is prepared. In the expression I, M is B2O3, P2O5, SiO2, Bi2O3, TeO2, WO3, MoO2, NbO2, GeO2, Ag2O, CuO, PbO, Sb2O3, SnO2, and TiO2, and x is 0.3<=x<=1 and y 0<=y<=30. Thus a nonaqueous solvent secondary battery excellent in charge and discharge cycle life property and whose discharge capacity does not decrease much is obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、非水溶媒二次電池の製造方法に関し、特に正
極活物質の調製工程を改良した非水溶媒二次電池の製造
方法に係わる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a non-aqueous solvent secondary battery, and in particular to a non-aqueous solvent secondary battery with an improved positive electrode active material preparation process. Relates to the manufacturing method.

(従来の技術) 近年、負極活物質としてリチウム、ナトリウム、アルミ
ニウム等の軽金属を用いた非水溶媒電池は高エネルギー
密度電池として注目されており、正極活物質に二酸化マ
ンガン(MnO2)、フッ化炭素[(CF)  ]  
塩化チオニル(sOcI 2 )等を用いた一次電池は
既に電卓、時計の電源やメモリのバックアップ電池とし
て多用されている。更に、近年、VTR,通信機器等の
各種の電子機器の小形、軽量化に伴い、それらの電源と
して高エネルギー密度の二次電池の要求が高まり、軽金
属を負極活物質とする非水溶媒二次電池の研究が活発に
行われている。
(Prior art) In recent years, non-aqueous solvent batteries that use light metals such as lithium, sodium, and aluminum as negative electrode active materials have attracted attention as high-energy density batteries. [(CF)]
Primary batteries using thionyl chloride (sOcI 2 ) and the like are already widely used as power sources for calculators and watches, and as backup batteries for memories. Furthermore, in recent years, with the miniaturization and weight reduction of various electronic devices such as VTRs and communication equipment, the demand for high energy density secondary batteries as their power sources has increased, and non-aqueous solvent secondary batteries using light metals as negative electrode active materials have increased. Batteries are being actively researched.

非水溶媒二次電池は、負極にリチウム、ナトリ巾ム、ア
ルミニウム等の軽金属を用い、電解液たして炭酸プロピ
レン(PC)、1.2−ジメトキン・エタン(DME>
,γ−プチロラクトン(γ一13 L ’)  テトラ
ヒドロフラン(THF)  などの非水溶媒中にLI 
CD Oa  Li BF4、J,l As F6、L
I PFb等の電解質を溶解したものから構成され、正
極活物質としては主にTiS2 、MO S2 、V2
 0s 、V6 013等のリチウムεの間でトボケミ
カル反応する化合物が研究されている。
Nonaqueous solvent secondary batteries use light metals such as lithium, sodium chloride, and aluminum for the negative electrode, and propylene carbonate (PC) and 1,2-dimethquine ethane (DME) for the electrolyte.
, γ-butyrolactone (γ-13 L') LI in a non-aqueous solvent such as tetrahydrofuran (THF)
CD Oa Li BF4, J, l As F6, L
It is composed of a dissolved electrolyte such as IPFb, and the positive electrode active materials are mainly TiS2, MO S2, V2
Compounds that undergo tobochemical reactions between lithium ε, such as 0s and V6013, have been studied.

しかしながら、上述した二次電池は現在、コイン形の小
容量のものが一部実用化されているのみで、円筒形等の
大容量電池は未だ実用化されていない。
However, as for the above-mentioned secondary batteries, only some small-capacity coin-shaped batteries are currently in practical use, and large-capacity batteries such as cylindrical batteries have not yet been put into practical use.

一・方、最近、非晶質横造を有する五酸化バナジr>A
 (V2 0s )を正極活物質とした非水溶媒電油が
特開昭61−116758号公報及び特開昭81−20
0667号公報に提案されている。非晶質五酸化バナジ
ウムを金属リチウムと組合わせて電池を構成した場合、
高電圧で、現行のニッケル●カドミウム蓄電池の二倍以
上のエネルギー密度がLX ?’)できるために注目さ
れている。
On the other hand, recently, vanadyl pentoxide with amorphous horizontal structures r>A
A nonaqueous solvent electrolyte using (V2 0s ) as a positive electrode active material is disclosed in JP-A-61-116758 and JP-A-81-20.
This is proposed in Publication No. 0667. When a battery is constructed by combining amorphous vanadium pentoxide with metallic lithium,
At high voltage, the LX has an energy density more than twice that of current nickel-cadmium storage batteries. ') is attracting attention because it can.

しかしながら、かかる五酸化バナジウムを正極活物質こ
した非水溶媒二次電池では1回目の放電で五酸化バナジ
ウム中に侵入したリチウムが次の充電で完全に五酸化バ
ナジウムから抜けずに一部残っており、リチウム負極は
五酸化バナジウム中に残った量だけ減少することになる
。また、結晶質五酸化バナジウムは充放電を繰返すに従
って放電容量が減少する。これに対し、五酸化バナジウ
ムを非品質にすることによって正極活物質の充放電サイ
クル特性の改善がなされる。しかしながら,、1回目の
放電で正極活物質中に侵入したリチウムが次の充電で完
全に正極活物質から抜けずに一部残り、リチウム負極の
減少を招《という問題は依然として起こる。かかるリチ
ウム負極の減少は、リチウム負極と正極の間に隙間を発
生させ、充電時に析出するリチウムがデンドライトにな
り易い傾向となる。
However, in non-aqueous solvent secondary batteries in which vanadium pentoxide is used as a positive electrode active material, the lithium that has entered the vanadium pentoxide during the first discharge does not completely escape from the vanadium pentoxide during the next charge, but some remains. As a result, the lithium negative electrode will be reduced by the amount remaining in the vanadium pentoxide. Further, as crystalline vanadium pentoxide is repeatedly charged and discharged, its discharge capacity decreases. On the other hand, by making vanadium pentoxide of inferior quality, the charge-discharge cycle characteristics of the positive electrode active material can be improved. However, the problem still occurs that the lithium that entered the positive electrode active material during the first discharge does not completely come out of the positive electrode active material during the next charge, but remains partially, leading to a decrease in the amount of lithium in the negative electrode. Such a decrease in the lithium negative electrode creates a gap between the lithium negative electrode and the positive electrode, and the lithium deposited during charging tends to become dendrites.

このような不可逆的なリチウムサイトを予めLi,Oを
添加して補償することが特開昭82−178054号に
提案されている。こうしたL120の添加によって、1
回目と2回目の放電量の差が小さくなり、充放電サイク
ルが向上する。
JP-A-82-178054 proposes compensating for such irreversible lithium sites by adding Li and O in advance. By such addition of L120, 1
The difference between the amount of discharge between the first and second times becomes smaller, and the charging/discharging cycle is improved.

j7かしながら、Lt 2 0の添加量を増大させても
未だ不可逆的なリチウムサイトを全て補償するこεがで
きない。
However, even if the amount of Lt 2 O added is increased, it is still not possible to compensate for all the irreversible lithium sites.

(発明が解決しようとする課題) 本発明は、上記従来の:II題を解決するためになされ
たもので、電池容量、充放電サイクル寿命等の諸特性の
優れた非水溶媒二次電池の製造方法を提供しようとする
ものである。
(Problems to be Solved by the Invention) The present invention was made to solve the above-mentioned conventional problem: The purpose is to provide a manufacturing method.

[発明の構戊] (課題を解決するための手段) 本発明は、リチウムもしくはリチウム合金からなる負極
と、正極活物質からなる正極と、非水溶媒中に電解質を
溶解した電解液とを備えた非水溶媒二次電池の製造にお
いて、一般式 (Ll . Vz Os ) too−y M,[但し
、式中のMはB203  P20SS102    B
I203    Te02   WO3Mo  o2 
  Nb  ()z   Ge  02   Ag  
2  0.CuO、 Pb  OS Sb  z  O
 3   Sn  02T1 02 、xは0.3≦X
≦l,yは0≦y≦30である]にて表される結晶質の
化合物を不活性雰囲である]にて表される結晶質の化合
物からf.Kる正極活物質を調製することを特徴とする
非水溶媒二次電池の製造方法である。
[Structure of the Invention] (Means for Solving the Problems) The present invention comprises a negative electrode made of lithium or a lithium alloy, a positive electrode made of a positive electrode active material, and an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent. In the production of nonaqueous solvent secondary batteries, the general formula (Ll.VzOs) too-y M, [where M in the formula is B203 P20SS102 B
I203 Te02 WO3Mo o2
Nb ()z Ge 02 Ag
2 0. CuO, Pb OS Sb z O
3 Sn 02T1 02 , x is 0.3≦X
f. This is a method for manufacturing a non-aqueous solvent secondary battery, which is characterized by preparing a positive electrode active material of 10% or less.

上記式においてリチウムの配合割合( X ) ’5’
yO、3未満にすると、その添加効果を充分に発揮でき
なくなり、かといってリチウムの配合割含が1を越える
と取り扱いが難しくなる等の問題が生eる。
In the above formula, the blending ratio of lithium (X) '5'
If yO is less than 3, the effect of the addition cannot be fully exhibited, whereas if the lithium content exceeds 1, problems such as difficulty in handling may occur.

上記式においてMの配合割合(y)が0の場合には、五
酸化バナジウムのみから正極活物質が構成されるが、サ
イクル特性の改善の観点から式中のMで示される酸化物
を加えることが有効でり、特i:BzOi、P20s、
St02、B1z03、M O O 2 、W O i
を加えると顕著な効果を発揮できる。前記酸化物の配合
割合(y)が30モル%を越えると、電池容量が低下す
る。より好ましい酸化物(M)の比率(y)は1〜20
モル%である。
In the above formula, when the blending ratio (y) of M is 0, the positive electrode active material is composed only of vanadium pentoxide, but from the viewpoint of improving cycle characteristics, an oxide represented by M in the formula may be added. is valid, special i:BzOi, P20s,
St02, B1z03, M O O 2 , W O i
Adding can have a significant effect. If the blending ratio (y) of the oxide exceeds 30 mol%, the battery capacity will decrease. More preferable ratio (y) of oxide (M) is 1 to 20
It is mole%.

上記一般式で表される結晶質の化合物は、例えばV20
9粉末、シュウ酸リチウムなどのリチウム塩粉末及びP
20,などの酸化物粉末をアルゴン、ヘリウムなどの不
活性ガス雰囲気中で400℃以上、溶融温度未満で焼成
する方法により得る。
The crystalline compound represented by the above general formula is, for example, V20
9 powder, lithium salt powder such as lithium oxalate, and P
It is obtained by a method in which oxide powder such as No. 20 is fired in an atmosphere of an inert gas such as argon or helium at a temperature of 400° C. or higher but below the melting temperature.

かかる結晶質の化合物を得るに際しては、この後の溶融
、急冷時と同様に不活性ガス雰囲気で焼成することが望
ましい。
When obtaining such a crystalline compound, it is desirable to perform firing in an inert gas atmosphere as in the subsequent melting and quenching.

上記不活性ガスとしては、アルゴン、ヘリウム等を挙げ
ることができる。この場合、不活性ガスとして窒素は除
かれる。
Examples of the inert gas include argon, helium, and the like. In this case, nitrogen is excluded as an inert gas.

上記結晶質化合物の溶融にあたっては、該化合物の溶融
温度以上、該化合物の分解温度未満で行なうことが望ま
しい。具体的には、800〜1000℃の温度範囲で溶
融することが望ましい。
When melting the crystalline compound, it is desirable to melt the compound at a temperature higher than the melting temperature of the compound and lower than the decomposition temperature of the compound. Specifically, it is desirable to melt in a temperature range of 800 to 1000°C.

上記溶融後の急冷手段としては、液体急冷法などによっ
て作製できるが、特に限定されない。液体急冷法による
場合には、単ロール、双ロール法のいずれでもよい。
The rapid cooling means after melting can be produced by a liquid rapid cooling method, but is not particularly limited. When using the liquid quenching method, either a single roll method or a twin roll method may be used.

上記正極表しては、正極活物質である前記非品質化した
非晶質Li  V,O,含有化合物粉末を導電材、結着
材と共に成形してベレット状にしたもの、非晶質LI 
 V205含有化合物粉末を導電材、結着材と共に混練
、シート化したシート状物、又は非晶質Li  V20
5含有化合物粉末、導電材及び結着材を適当な溶媒中に
懸濁し、これを基板上に塗布して塗膜としたもの等を挙
げることができる。
The above positive electrode is formed into a pellet shape by molding the non-quality amorphous Li V, O and containing compound powder, which is the positive electrode active material, together with a conductive material and a binder, and amorphous LI.
A sheet-like product obtained by kneading V205-containing compound powder with a conductive material and a binder, or amorphous Li V20
Examples include those in which a compound powder containing 5, a conductive material, and a binder are suspended in a suitable solvent, and the suspension is applied onto a substrate to form a coating film.

(作 用) 本発明によれば、前記一般式で表される結晶質の化合物
を不活性雰囲である]にて表される結晶質の非晶質LI
  V.O,含有化合物を調製し、これを正極の正極活
物質乏して用いることによって、前記一般式で表される
結晶質化合物を空気中で溶融、急冷した場合に生じる Lt  V20,の組成変動を解消できるため、充放電
特性を著しく向上することができる。
(Function) According to the present invention, the crystalline compound represented by the general formula is placed in an inert atmosphere.
V. By preparing a compound containing O, and using it as a positive electrode active material in the positive electrode, composition fluctuations in Lt V20, which occur when the crystalline compound represented by the above general formula is melted in air and rapidly cooled, can be eliminated. Therefore, charging and discharging characteristics can be significantly improved.

また、前記方法で調製した非品質 LI  V20,含有化合物を正極の正極活物質として
用いることによって、L回目の放電容量を抑え、リチウ
ム負極の消費度合を抑制できる。その結果、リチウム負
極と正極の間に生じる隙間を小さくでき、充電時に析出
するリチウムのデンドライトを抑えることができる。
Further, by using the non-quality LI V20-containing compound prepared by the above method as the positive electrode active material of the positive electrode, the L-th discharge capacity can be suppressed and the degree of consumption of the lithium negative electrode can be suppressed. As a result, the gap created between the lithium negative electrode and the positive electrode can be reduced, and lithium dendrites that are deposited during charging can be suppressed.

(実施例) 以下、本発明の実施例を第1図を参照して詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIG.

実施例1 まず、市販のV 2 0 s粉末とシュウ酸リチウム(
L1 2 C2 04 )粉末及びP205粉末をモル
比で100 : 40: 5の割合で混合し、該混合粉
末をアルゴン雰囲気下、550℃で6時間焼成した。こ
の焼戒物をX線回折測定したところ、 β一L1 o.IV2 09相と7−LIV209相か
らなることを確認した。つづいて、この焼成物をアルゴ
ン雰囲気下、850℃で2時間溶融した後、双ロール法
によって急冷し、得られた鱗片状物質を粉砕して非晶質
LIXV205化合物粉末を調製した。この粉末は、X
線回折により非品質物質であることを確認した。ひきつ
づき、前記非品質Li XV2 05化合物粉末80重
量%をアセチレンブラック15ffi量%及びボリテト
ラブルオロエチレン粉末5重量%と共に混合、シート化
し、エキスバンドメタル集電体に圧着することにより幅
40ms、長さ200■の帯状正極を作製した。
Example 1 First, commercially available V20s powder and lithium oxalate (
L1 2 C2 04 ) powder and P205 powder were mixed at a molar ratio of 100:40:5, and the mixed powder was fired at 550° C. for 6 hours in an argon atmosphere. When X-ray diffraction measurements were performed on this burned product, it was found that β-L1 o. It was confirmed that the phase consisted of IV209 phase and 7-LIV209 phase. Subsequently, this fired product was melted at 850° C. for 2 hours in an argon atmosphere, then rapidly cooled by a twin roll method, and the obtained scaly material was crushed to prepare an amorphous LIXV205 compound powder. This powder is
It was confirmed by line diffraction that it was a non-quality material. Subsequently, 80% by weight of the non-quality Li A strip-shaped positive electrode with a diameter of 200 cm was produced.

次いで、前記正極を用いて第1図に示す円筒形非水溶媒
二次電池を組立てた。即ち、第1図中の1は底部に絶縁
体2が配置された負極端子を兼ねる有底円筒状のステン
レス容器である。この容器l内には、電極群3が収納さ
れている。この電極群8は、前記方法で作製した正極4
、セバレータ5及び負極Bをこの順序で積層した帯状物
を該負極Bが外側に位置するように渦巻き状に巻回した
構造になっている。前記セバレータ5は、ボリブロビレ
ン性多孔質フィルムから形或されている。
Next, a cylindrical nonaqueous solvent secondary battery shown in FIG. 1 was assembled using the positive electrode. That is, numeral 1 in FIG. 1 is a bottomed cylindrical stainless steel container which also serves as a negative electrode terminal and has an insulator 2 disposed at the bottom. An electrode group 3 is housed in this container l. This electrode group 8 includes the positive electrode 4 produced by the method described above.
, a separator 5, and a negative electrode B are laminated in this order, and the strip is spirally wound so that the negative electrode B is located on the outside. The separator 5 is formed from a polypropylene porous film.

前記負極6は、ニッケルエキスバンドメタル集電体に帯
状リチウム箔を圧着した形状になっている。
The negative electrode 6 has a shape in which a band-shaped lithium foil is crimped onto a nickel expanded band metal current collector.

また、前記容器l内には、1.5モル濃度の六フッ化砒
酸リチウム(LIASF6)が溶解された2−メチルテ
トラヒドロフランの電解液が収容されている。前記電極
群3上には、中央部が開口された絶縁紙7が載置されて
いる。更に、前記容器1の上部開口部には、絶縁封口板
8が該容器1へのかしめ加工等に液密に設けられており
、かつ該絶縁封口板8の中央には正極端子9が嵌合され
ている。
Further, the container 1 contains an electrolytic solution of 2-methyltetrahydrofuran in which lithium hexafluoroarsenate (LIASF6) of 1.5 molar concentration is dissolved. An insulating paper 7 with an opening in the center is placed on the electrode group 3. Further, an insulating sealing plate 8 is provided at the upper opening of the container 1 in a liquid-tight manner by caulking the container 1, and a positive electrode terminal 9 is fitted in the center of the insulating sealing plate 8. has been done.

この正極端子9は、前記電極群3の正極4に正極リード
lOを介して接続されている。なお、電極群3の負極6
は図示しない負極リードを介して負極端子である容$1
に接続されている。
This positive electrode terminal 9 is connected to the positive electrode 4 of the electrode group 3 via a positive electrode lead IO. Note that the negative electrode 6 of the electrode group 3
is the negative terminal via the negative lead (not shown).
It is connected to the.

実施例2 市販のV2 0q粉末とシュウ酸リチウム(Ll 2 
C2 0a )粉末及びP2 0%粉末をモル比で10
0:30:  5の割合で混合し、該混合粉末をアルゴ
ン雰囲気下、550℃でB時間焼成した焼成物を、アル
ゴン雰囲気下、850℃で2時間溶融した後、双ロール
法によって急冷し、得られた鱗片状物質を粉砕して非品
質LI  V205化合物粉末をを調製し、この非晶質
LI  VzOs化合物粉末を正極活物質とした正極を
用いた以外、実施例1と同構成の非水溶媒二次電池を組
立てた。
Example 2 Commercially available V2 0q powder and lithium oxalate (Ll 2
C2 0a) powder and P2 0% powder in a molar ratio of 10
The mixed powder was mixed at a ratio of 0:30:5, and the mixed powder was fired at 550°C for B hours under an argon atmosphere.The fired product was melted at 850°C for 2 hours under an argon atmosphere, and then rapidly cooled by a twin roll method. The obtained scaly material was pulverized to prepare a non-quality LI V205 compound powder, and a non-aqueous battery having the same structure as in Example 1 was used, except that a positive electrode containing this amorphous LI VzOs compound powder as the positive electrode active material was used. A solvent secondary battery was assembled.

比較例1 市販のV 2 0 5粉末とシュウ酸リチウム(L1 
2 C2 04 )粉末及びP2 09粉末をモル比で
100:40:  5の割合で混合し、該混合粉末をア
ルゴン雰囲気下、550℃で6時間焼或した焼成物を、
空気中、850℃で2時間溶融した後、双ロール法によ
って急冷し、得られた鱗片状物質を粉砕して非晶質Ll
  v,o,化合物粉末を調製し、この非晶質LI  
V,05化合物粉末を正極活物質とした正極を用いた以
外、実施例1と同構戊の非水溶媒二次電池を組立てた。
Comparative Example 1 Commercially available V205 powder and lithium oxalate (L1
2 C2 04 ) powder and P2 09 powder were mixed at a molar ratio of 100:40:5, and the mixed powder was fired at 550°C for 6 hours in an argon atmosphere.
After melting in air at 850°C for 2 hours, it was rapidly cooled by a twin-roll method, and the resulting scaly material was crushed to obtain amorphous Ll.
v, o, compound powder is prepared, and this amorphous LI
A non-aqueous solvent secondary battery having the same structure as in Example 1 was assembled, except that a positive electrode containing V,05 compound powder as the positive electrode active material was used.

比較例2 市販のV 2 0 s粉末とp,o,粉末をモル比で9
5:5の割合で混合し、該混合粉末をアルゴン雰囲気下
、1200℃で2時間溶融した後、双ロール法によって
急冷した非晶質V2 0s化合物粉末を正極活物質とし
た正極を用いた以外、実施例1と同構成の非水溶媒電池
を組立てた。
Comparative Example 2 Commercially available V 2 0 s powder and p, o, powder in a molar ratio of 9
Other than using a positive electrode in which the positive electrode active material was an amorphous V20s compound powder mixed at a ratio of 5:5, melted at 1200 ° C. for 2 hours under an argon atmosphere, and then rapidly cooled by a twin roll method. A non-aqueous solvent battery having the same configuration as in Example 1 was assembled.

しかして、本実施例1、2及び比較例1、2の非水溶媒
二次電池について800m Aの電流で電池電圧が2.
OVになるまで放電し、100m Aの電流で電池電圧
が3,5vになるまで充電する充放電サイクルを繰返し
、充放電サイクルと放電容量との関係を調べたところ、
第2図に示す特性図を得た。
Therefore, for the non-aqueous solvent secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2, the battery voltage was 2.0 at a current of 800 mA.
The relationship between the charge/discharge cycle and the discharge capacity was investigated by repeating the charge/discharge cycle of discharging the battery until it reached OV and then charging it with a current of 100 mA until the battery voltage reached 3.5 V.
A characteristic diagram shown in FIG. 2 was obtained.

なお、第2図中のA−Dはそれぞれ本実施例1、2比較
例1、2の非水溶媒二次電池の特性線である。
Note that A to D in FIG. 2 are characteristic lines of the non-aqueous solvent secondary batteries of Examples 1 and 2 and Comparative Examples 1 and 2, respectively.

6第2図から明らかなように、比較例2の電池は1回目
の放電では約1000m A hの放電容量とかなり大
きい値を示すが、2回目からの放電では約550m A
 hの放電容量となり、約450m A hのリチウム
が減少したことになる。これに対し、本実施例1、2の
電池では 1回目の放電では約1330mAhの放電容
量で、2回目の放電では約[i00mAhの放電容量と
なり、リチウムの減少は約30mAhとなり、比較例2
の電池に比べてリチウムの減少が非常に少ないことがわ
かる。また、空気中で非品質化した正極活物質を用いた
比較例1の電池に比べてサイクル寿命も大きく改善され
ていることがわかる。更に、充放電サイクル初期におい
ても放電容量の落ち込みが少なく、安定した放電容量が
得られることがわかる。
6 As is clear from Figure 2, the battery of Comparative Example 2 shows a fairly large discharge capacity of about 1000mA h in the first discharge, but about 550mA in the second discharge.
h discharge capacity, which means that lithium was reduced by about 450 mA h. On the other hand, in the batteries of Examples 1 and 2, the first discharge had a discharge capacity of about 1330 mAh, and the second discharge had a discharge capacity of about [i00 mAh, and the decrease in lithium was about 30 mAh.
It can be seen that the loss of lithium is very small compared to the battery. Furthermore, it can be seen that the cycle life is greatly improved compared to the battery of Comparative Example 1, which uses a positive electrode active material that has deteriorated in quality in air. Furthermore, it can be seen that there is little drop in discharge capacity even at the beginning of the charge/discharge cycle, and a stable discharge capacity can be obtained.

[発明の効果] 以上詳述した如く、本発明によれば放電容量の減少が少
なく、充放電サイクル寿命特性の優れた非水溶媒二次電
池の製造方法を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a method for manufacturing a non-aqueous solvent secondary battery with less decrease in discharge capacity and excellent charge/discharge cycle life characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の大施例で組立てられた円筒型非水溶媒
二次電池を示す断面図、第2図は本実施例1、2及び比
較例1、2の非水溶媒二次電池の充放電サイクル数と放
電容量との関係を示す特性図である。 l・・・ステンレス容器、3・・・電極群、4・・・正
極、5・・・セバレータ、B・・・負極、8・・・封口
板、9・・・正極端子。
FIG. 1 is a cross-sectional view showing a cylindrical nonaqueous solvent secondary battery assembled in a large example of the present invention, and FIG. 2 is a nonaqueous solvent secondary battery of Examples 1 and 2 and Comparative Examples 1 and 2. FIG. 3 is a characteristic diagram showing the relationship between the number of charge/discharge cycles and discharge capacity. l... Stainless steel container, 3... Electrode group, 4... Positive electrode, 5... Separator, B... Negative electrode, 8... Sealing plate, 9... Positive electrode terminal.

Claims (1)

【特許請求の範囲】  リチウムもしくはリチウム合金からなる負極と、正極
活物質からなる正極と、非水溶媒中に電解質を溶解した
電解液とを備えた非水溶媒二次電池の製造において、一
般式 (Li_xV_2O_5)_1_0_0_−_yM、[
但し、式中のMはB_2O_3、P_2O_5、SiO
_2、Bi_2O_3、TeO_2、WO_3、MoO
_2、NbO_2、GeO_2、Ag2O、CuO、P
bO、Sb_2O_3、SnO_2、TiO_2、xは
0.3≦x≦1、yは0≦y≦30である]にて表され
る結晶質の化合物を不活性雰囲気中で溶融、急冷して非
晶質化した化合物からなる正極活物質を調製することを
特徴とする非水溶媒二次電池の製造方法。
[Claims] In the production of a non-aqueous solvent secondary battery comprising a negative electrode made of lithium or a lithium alloy, a positive electrode made of a positive electrode active material, and an electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent, the general formula (Li_xV_2O_5)_1_0_0_-_yM, [
However, M in the formula is B_2O_3, P_2O_5, SiO
_2, Bi_2O_3, TeO_2, WO_3, MoO
_2, NbO_2, GeO_2, Ag2O, CuO, P
bO, Sb_2O_3, SnO_2, TiO_2, x is 0.3≦x≦1, y is 0≦y≦30] is melted in an inert atmosphere and rapidly cooled to form an amorphous compound. 1. A method for producing a non-aqueous solvent secondary battery, which comprises preparing a positive electrode active material made of a purified compound.
JP1240515A 1989-09-19 1989-09-19 Manufacture of nonaqueous solvent secondary battery Pending JPH03105858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240515A JPH03105858A (en) 1989-09-19 1989-09-19 Manufacture of nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240515A JPH03105858A (en) 1989-09-19 1989-09-19 Manufacture of nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH03105858A true JPH03105858A (en) 1991-05-02

Family

ID=17060672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240515A Pending JPH03105858A (en) 1989-09-19 1989-09-19 Manufacture of nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH03105858A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582438A1 (en) * 1992-08-01 1994-02-09 United Kingdom Atomic Energy Authority Electrochemical cell
EP0634803A1 (en) * 1993-06-07 1995-01-18 Honda Giken Kogyo Kabushiki Kaisha Cathode materials for lithium batteries
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material
US5780185A (en) * 1993-06-07 1998-07-14 Honda Giken Kogyo Kabushiki Kaisha Cathode materials for lithium batteries and methods for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0582438A1 (en) * 1992-08-01 1994-02-09 United Kingdom Atomic Energy Authority Electrochemical cell
US5441832A (en) * 1992-08-01 1995-08-15 United Kingdom Atomic Energy Authority Electrochemical cell
EP0634803A1 (en) * 1993-06-07 1995-01-18 Honda Giken Kogyo Kabushiki Kaisha Cathode materials for lithium batteries
US5780185A (en) * 1993-06-07 1998-07-14 Honda Giken Kogyo Kabushiki Kaisha Cathode materials for lithium batteries and methods for producing the same
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material

Similar Documents

Publication Publication Date Title
JP3433173B2 (en) Sulfide-based crystallized glass, solid electrolyte and all-solid secondary battery
US6007945A (en) Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
EP0880187B1 (en) Non-aqueous electrolyte secondary battery
JP2003115293A (en) Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
JPH06325765A (en) Nonaqueous electrolytic secondary battery and its manufacture
JPH03105858A (en) Manufacture of nonaqueous solvent secondary battery
JPH01128354A (en) Nonaqueous solvent cell
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JPH01128355A (en) Nonaqueous solvent cell
JPH1145712A (en) Nonaqueous electrolytic secondary battery
JP2664710B2 (en) Non-aqueous solvent battery
JP2002260661A (en) Negative electrode for nonaqueous electrolyte secondary battery
JPS62176054A (en) Lithium battery
JPH1140159A (en) Nonaqueous electrolyte secondary battery
JP3406636B2 (en) Secondary battery, positive electrode material for secondary battery, and method of manufacturing the same
JPH0424828B2 (en)
JP2559055B2 (en) Lithium battery
JP3005688B2 (en) Lithium battery
JPS62222575A (en) Lithium secondary battery
JPH02215043A (en) Nonaqueous solvent secondary battery
JPS62219475A (en) Secondary cell of lithium
JPH09213329A (en) Non-aqueous secondary battery
JPH0350385B2 (en)
JPH03225760A (en) Nonaqueous electrolytic secondary battery