JPH1145712A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH1145712A
JPH1145712A JP10115594A JP11559498A JPH1145712A JP H1145712 A JPH1145712 A JP H1145712A JP 10115594 A JP10115594 A JP 10115594A JP 11559498 A JP11559498 A JP 11559498A JP H1145712 A JPH1145712 A JP H1145712A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
active material
electrolyte secondary
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10115594A
Other languages
Japanese (ja)
Other versions
JP4101927B2 (en
Inventor
Makoto Noshiro
誠 能代
Seisaku Kumai
清作 熊井
Yoshiaki Fujie
良紀 藤江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seimi Chemical Co Ltd
Original Assignee
Seimi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co Ltd filed Critical Seimi Chemical Co Ltd
Priority to JP11559498A priority Critical patent/JP4101927B2/en
Publication of JPH1145712A publication Critical patent/JPH1145712A/en
Application granted granted Critical
Publication of JP4101927B2 publication Critical patent/JP4101927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide battery performance which has a high discharge potential, a large discharge capacity, and is excellent in safety and cycle characteristics, by constituting negative electrode active material with a compound oxide which contains Sn, Zn, and P. SOLUTION: Composition ratio of Zn and P to Sn is important to provide noncrystalline compound oxide containing Sn, Zn, and P, and this is compound oxide represented by a formula SnZnh PiOj (where, 0.01<=h<=1.0, 0.1<=i<=2.0, 2.0<=j<=5.0). In order to provide further noncrystallization, it is more preferably 0.02<=h<=0.2, 0.25<=i<=1.5, 2.0<=j<=4.0. In negative electrode active material, preferably in respect of noncrystallization, component other than Sn, Zn, P, or O is at least one kind selected in a group of F, Al, Cu, Ni, Mn, Co, Fe, Bi, Sb, Cr, Ti, Zr, In, and Ga. Total amount of these components is preferably not more than 20 atom% to Sn, more preferably not more than 10 atom%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電電位、放電容
量及び充放電サイクル寿命等の充放電特性に優れ、かつ
安全性の高い負極活物質を用いた非水電解液二次電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a negative electrode active material which is excellent in charge / discharge characteristics such as discharge potential, discharge capacity and charge / discharge cycle life and has high safety.

【0002】[0002]

【従来の技術】非水電解液二次電池用負極活物質として
は、リチウム二次電池の商品化当初から検討されたリチ
ウム金属やリチウム合金が代表的であるが、充放電中に
リチウム金属が樹枝状に成長し、内部ショートしたり、
発火する危険性があった。
2. Description of the Related Art As a negative electrode active material for a non-aqueous electrolyte secondary battery, a lithium metal or a lithium alloy which has been studied since the beginning of commercialization of a lithium secondary battery is typical. It grows dendritic and shorts inside,
There was a risk of fire.

【0003】これに対し、安全性を高めるために実用化
されたのが、リチウムを吸蔵、放出できる焼成炭素質材
料である。しかし、このような炭素質材料も、それ自体
が導電性を有するので、過充電や急速充電した場合、炭
素質材料の上に樹枝状のリチウム金属が析出する危険性
があった。現状での対策としては、充電器の工夫や過充
電を防ぐシステムが導入されているが、そのため本来炭
素質材料が有する充放電容量が制限されてきた。また、
炭素質材料は密度が小さいため、単位体積あたりの容量
が小さい欠点がある。
On the other hand, fired carbonaceous materials that can store and release lithium have been put to practical use to enhance safety. However, since such a carbonaceous material itself has conductivity, there is a risk that dendritic lithium metal is deposited on the carbonaceous material when overcharged or rapidly charged. As a countermeasure at present, a system for preventing a charger and overcharging has been introduced. However, the charge / discharge capacity of the carbonaceous material has been limited. Also,
Since the carbonaceous material has a low density, there is a disadvantage that the capacity per unit volume is small.

【0004】これに対し、高度に安全性が配慮され、か
つ高放電電位、高放電容量を有する非水電解液二次電池
を実用化するための負極活物質の検討が数多くなされて
きた。最近では、負極材料としてSn酸化物及びSnを
含む複合酸化物が提案されている(特開平6−3383
25、特開平7−122274、特開平7−28812
3、特開平8−138653、特開平8−20352
7)。しかし、これらの酸化物、複合酸化物系材料を負
極活物質として使用した場合でも、サイクル特性は充分
なものではなく、充放電サイクル特性がさらに優れ、よ
り高放電電位、より高放電容量を有する非水電解液二次
電池を得るための負極活物質材料が望まれている。
[0004] On the other hand, many studies have been made on a negative electrode active material for practical use of a non-aqueous electrolyte secondary battery which is highly safe and has a high discharge potential and a high discharge capacity. Recently, Sn oxides and composite oxides containing Sn have been proposed as negative electrode materials (JP-A-6-3383).
25, JP-A-7-122274, JP-A-7-28812
3, JP-A-8-138653, JP-A-8-20352
7). However, even when these oxides and composite oxide-based materials are used as the negative electrode active material, the cycle characteristics are not sufficient, and the charge / discharge cycle characteristics are more excellent, and have higher discharge potential and higher discharge capacity. A negative electrode active material for obtaining a non-aqueous electrolyte secondary battery is desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、負極活物質
を検討することにより、安全性が高く、高放電電位、高
放電容量を有し、かつサイクル特性が優れた非水電解液
二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a non-aqueous electrolyte secondary battery having high safety, high discharge potential, high discharge capacity, and excellent cycle characteristics by examining a negative electrode active material. It is intended to provide a battery.

【0006】[0006]

【課題を解決するための手段】本発明は、正極、負極、
及びリチウム塩を含む非水電解液からなる非水電解液二
次電池において、前記負極の活物質がSn、Zn、及び
Pを含む複合酸化物であることを特徴とする非水電解液
二次電池を提供する。
SUMMARY OF THE INVENTION The present invention provides a positive electrode, a negative electrode,
And a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing a lithium salt, wherein the active material of the negative electrode is a composite oxide containing Sn, Zn, and P. Provide batteries.

【0007】本発明者らは非水電解液二次電池の負極活
物質材料を鋭意検討した結果、負極活物質材料のSnと
Pの複合酸化物に対して、Znを加えることが、二次電
池のサイクル特性を向上させ、高性能化をはかるうえで
顕著な効果があることを見出した。
The present inventors have conducted intensive studies on the negative electrode active material of the non-aqueous electrolyte secondary battery, and found that adding Zn to the composite oxide of Sn and P as the negative electrode active material is secondary. It has been found that there is a remarkable effect in improving the cycle characteristics of the battery and achieving higher performance.

【0008】理由は明確ではないが、SnとPの複合酸
化物において吸蔵、放出可能なリチウムの量が8当量で
あるのに対し、この複合酸化物にZnを加えることによ
り、吸蔵、放出可能なリチウムの量が10当量程度まで
増加し、その結果二次電池の容量が増大し、性能が高ま
ると考えられる。また、Znを加えることによりSnと
Pの複合酸化物の構造がリチウムを吸蔵した状態で安定
化し、その結果としてサイクル特性が改良されると考え
られる。なお、本明細書においてSnとPの複合酸化物
にA当量のリチウムが吸蔵されるとは、該複合酸化物中
のSn1原子に対して吸蔵されるリチウム原子の数がA
であることを示し、例えばSnZnhij において
はLiA SnZnhij となることをいう。
[0008] Although the reason is not clear, the amount of lithium that can be stored and released in the composite oxide of Sn and P is 8 equivalents, but by adding Zn to this composite oxide, it is possible to store and release lithium. It is considered that the amount of lithium increases to about 10 equivalents, and as a result, the capacity of the secondary battery increases and the performance increases. It is also considered that the addition of Zn stabilizes the structure of the composite oxide of Sn and P in a state where lithium is absorbed, and as a result, the cycle characteristics are improved. In the present specification, the expression “A equivalent of lithium is occluded in the composite oxide of Sn and P” means that the number of lithium atoms occluded with respect to Sn1 atoms in the composite oxide is A
Indicates that this is, for example, in the SnZn h P i O j means that the Li A SnZn h P i O j .

【0009】本発明で用いるSn、Zn、及びPを含む
複合酸化物は、非水電解液二次電池用負極活物質として
用いたときに高性能かつ高持続性を発現するためには非
晶質であることが好ましい。ここでいう非晶質とは、C
uKα線を用いたX線回折において、少量の結晶性のピ
ークを有してもよいが、全体としては2θ値で20〜7
0度の範囲の全域でブロードな散乱帯を与える物質をい
う。
The composite oxide containing Sn, Zn, and P used in the present invention is required to be amorphous in order to exhibit high performance and high durability when used as a negative electrode active material for a non-aqueous electrolyte secondary battery. Preferably, it is quality. The term amorphous here means C
In X-ray diffraction using uKα ray, a small amount of crystalline peak may be present, but as a whole, 20 to 7 in 2θ value.
A substance that gives a broad scattering band over the entire range of 0 degrees.

【0010】また、本発明におけるSn、Zn、及びP
を含む複合酸化物は、2θ値が5〜30度の範囲内に結
晶性のピークを有してもよいが、そのピーク強度として
は2θ値で20〜40度の領域のブロードな散乱帯の山
の頂点の強度の3倍以下であることが好ましい。
In the present invention, Sn, Zn, and P
May have a crystalline peak in the range of 2 to 30 degrees in the 2θ value, and the peak intensity of the broad scattering band in the range of 20 to 40 degrees in the 2θ value is as follows. It is preferable that the intensity is not more than three times the intensity of the peak of the mountain.

【0011】本発明におけるSn、Zn、及びPを含む
複合酸化物の合成において、主原料としてはSn、Z
n、Pそれぞれの酸化物を用いることが好ましい。ここ
でいう原料の酸化物には、化学処理や加熱処理等により
酸化物となる化合物、例えば水酸化物や炭酸塩、硝酸塩
等の塩を含む。
In the synthesis of the composite oxide containing Sn, Zn, and P in the present invention, Sn, Z
It is preferable to use each oxide of n and P. Here, the oxide of the raw material includes a compound which becomes an oxide by a chemical treatment, a heat treatment, or the like, for example, a hydroxide, a salt of a carbonate, a nitrate, or the like.

【0012】原料となるSn化合物としては、SnO、
SnO2 、Sn水酸化物、及び熱分解により酸化物とな
るSn化合物は基本的にいずれも使用でき、例えばSn
の炭酸塩、硝酸塩、有機塩、ハロゲン塩等が挙げられ、
具体的には炭酸スズ、シュウ酸スズが挙げられる。原料
となるSn化合物のSnの価数は、得られる複合酸化物
の非晶質化及び構造の安定性の点から、2価であること
が好ましく、特にSnOが好ましい。
As the Sn compound as a raw material, SnO,
Basically, any of SnO 2 , Sn hydroxide, and Sn compound which becomes an oxide by thermal decomposition can be used.
Carbonates, nitrates, organic salts, halogen salts and the like,
Specific examples include tin carbonate and tin oxalate. The valence of Sn of the Sn compound as a raw material is preferably divalent, and particularly preferably SnO, from the viewpoints of amorphization and structural stability of the obtained composite oxide.

【0013】本発明において、Znは非晶質化を促進さ
せるものである。原料となるZn化合物としては、酸化
物、水酸化物、及び熱分解により酸化亜鉛となる化合物
は基本的にはいずれも使用でき、例えば炭酸亜鉛、シュ
ウ酸亜鉛を挙げられる。なかでも酸化亜鉛が特に好まし
い。原料となるP化合物としては、例えば五酸化リン、
五塩化リン、正リン酸等が挙げられる。
In the present invention, Zn promotes amorphization. As the Zn compound as a raw material, basically any oxide, hydroxide, or compound that becomes zinc oxide by thermal decomposition can be used, and examples thereof include zinc carbonate and zinc oxalate. Among them, zinc oxide is particularly preferred. Examples of the P compound as a raw material include phosphorus pentoxide,
Phosphorus pentachloride, orthophosphoric acid and the like.

【0014】本発明において、Sn、Zn、及びPを含
む複合酸化物を非晶質とするためには、Snに対するZ
n、Pの組成比が重要であり、式1で表されることが好
ましい。 SnZnhij ・・・式1 ただし、式1において、0.01≦h≦1.0、0.1
≦i≦2.0、2.0≦j≦5.0である。非晶質化を
進めるためには、式1において0.02≦h≦0.2、
0.25≦i≦1.5、2.0≦j≦4.0であること
がより好ましい。
In the present invention, in order to make the composite oxide containing Sn, Zn and P amorphous, Z
The composition ratio of n and P is important, and is preferably represented by Formula 1. SnZn h P i O j ··· Formula 1 However, in the formula 1, 0.01 ≦ h ≦ 1.0,0.1
≤ i ≤ 2.0 and 2.0 ≤ j ≤ 5.0. In order to promote the amorphization, in Expression 1, 0.02 ≦ h ≦ 0.2,
More preferably, 0.25 ≦ i ≦ 1.5 and 2.0 ≦ j ≦ 4.0.

【0015】また、本発明における負極活物質は、S
n、Zn、P、Oのみからなる複合酸化物でもよいが、
Sn、Zn、P、O以外の成分をSnに対して20原子
%以下含んでもよい。Sn、Zn、P、O以外の成分と
しては、F、Al、Cu、Ni、Mn、Co、Fe、B
i、Sb、Cr、Ti、Zr、In及びGaからなる群
から選ばれる少なくとも1種であることが非晶質化の観
点から好ましい。これらの成分は、合量でSnに対して
20原子%以下であることが好ましく、10原子%以下
であるとより好ましい。
In the present invention, the negative electrode active material is S
Although a composite oxide consisting of only n, Zn, P, and O may be used,
Components other than Sn, Zn, P, and O may be contained in an amount of 20 atomic% or less based on Sn. Components other than Sn, Zn, P, and O include F, Al, Cu, Ni, Mn, Co, Fe, and B.
From the viewpoint of amorphization, at least one selected from the group consisting of i, Sb, Cr, Ti, Zr, In and Ga is preferable. These components are preferably 20 atomic% or less, and more preferably 10 atomic% or less, based on Sn in total.

【0016】Al、Cu、Ni、Mn、Co、Fe、B
i、Sb、Cr、Ti、Zr、In及びGaの原料とし
ては、金属酸化物のほかに、炭酸塩、ハロゲン塩、有機
塩等化学処理、熱処理により、酸化物に変換できる化合
物がいずれも使用できる。また、Fの場合は、フッ化ス
ズの使用が好ましい。
Al, Cu, Ni, Mn, Co, Fe, B
As raw materials for i, Sb, Cr, Ti, Zr, In and Ga, in addition to metal oxides, any compounds that can be converted to oxides by chemical treatment and heat treatment, such as carbonates, halides, and organic salts, are used. it can. In the case of F, use of tin fluoride is preferred.

【0017】本発明で用いるSn、Zn、及びPを含む
複合酸化物は、原料を混合した後乾燥し、その後溶融焼
成して得ることが好ましい。原料の混合については、水
に分散させて湿式混合することもできるし、すべての原
料が固体の場合にはそのままジェットミルや回転式撹拌
器によって混合してもよい。湿式混合した場合、乾燥は
常圧又は減圧下にて加熱処理により行う。また溶融炉を
用いて乾燥、焼成を順次行うこともできる。
The composite oxide containing Sn, Zn and P used in the present invention is preferably obtained by mixing the raw materials, drying and then melting and firing. Regarding the mixing of the raw materials, they can be dispersed in water and wet-mixed, or when all the raw materials are solid, they may be mixed as they are with a jet mill or a rotary stirrer. In the case of wet mixing, drying is performed by heat treatment under normal pressure or reduced pressure. Drying and baking can also be performed sequentially using a melting furnace.

【0018】溶融焼成条件としては、焼成温度が800
〜1500℃であることが好ましい。焼成の雰囲気は、
空気雰囲気でも窒素又はアルゴン等の不活性雰囲気でも
よいが、不活性雰囲気の方がSnが2価の状態に保たれ
やすいので好ましい。溶融焼成物は、水破するか又は水
冷したローラ上に流し急速冷却することにより、フレー
ク状の非晶質の複合酸化物となる。これをボールミル等
の粉砕器を用いて、平均粒径が数十μmから数μm程度
となるまで粉砕し、さらに適宜分級して使用する。ま
た、粉砕物の形状はそろっていることが好ましく、球状
であるとより好ましく、集電体上に塗工するときに均一
に塗工でき、また電池性能が安定する。
The melting and firing conditions are as follows.
It is preferable that the temperature is 1500C. The firing atmosphere is
An air atmosphere or an inert atmosphere such as nitrogen or argon may be used, but an inert atmosphere is preferable because Sn is easily maintained in a divalent state. The melt-fired product is flake-like amorphous composite oxide by being ruptured or flown on a water-cooled roller and rapidly cooled. This is pulverized using a pulverizer such as a ball mill until the average particle size becomes about several tens μm to about several μm, and further classified appropriately for use. Further, the shape of the pulverized material is preferably uniform, and more preferably spherical, and can be uniformly applied when applied on the current collector, and the battery performance is stabilized.

【0019】本発明の非水電解液二次電池において使用
する正極活物質としては、リチウム含有金属酸化物が好
ましく、Lix CoO2 、LiNiO2 、LiMnO
2 、LiMn24 、Liy Coa Ni1-a2 (ただ
し、0.7≦x≦1.2、0.7≦y≦1.2、0.1
≦a≦0.9)等が挙げられる。
As the positive electrode active material used in the nonaqueous electrolyte secondary battery of the present invention, a lithium-containing metal oxide is preferable, and Li x CoO 2 , LiNiO 2 , LiMnO 2
2 , LiMn 2 O 4 , Li y Co a Ni 1-a O 2 (where 0.7 ≦ x ≦ 1.2, 0.7 ≦ y ≦ 1.2, 0.1
≤ a ≤ 0.9).

【0020】本発明の非水電解液二次電池に用いられる
正極及び負極は、正極合剤又は負極合剤を集電体上に塗
設、又はペレット状に成形して作ることができる。この
際、負極材料として、本発明のSn、Zn、及びPを含
む複合酸化物に従来使用されてきた種々の炭素材料、例
えばコークス、樹脂焼成体、黒鉛、黒鉛化メソカーボン
マイクロビーズ等を一部含むことができる。さらに正極
合剤又は負極合剤には、それぞれ正極活物質又は負極活
物質の他に、それぞれ導電剤、結着剤、分散剤、フィラ
ー、イオン導電剤、圧力増強剤や各種添加剤を含むこと
ができる。
The positive electrode and the negative electrode used in the non-aqueous electrolyte secondary battery of the present invention can be produced by coating a positive electrode mixture or a negative electrode mixture on a current collector or molding them into pellets. At this time, as the negative electrode material, various carbon materials conventionally used for the composite oxide containing Sn, Zn, and P of the present invention, for example, coke, resin fired body, graphite, graphitized mesocarbon microbeads and the like are used. Can be included. Further, the positive electrode mixture or the negative electrode mixture may contain, in addition to the positive electrode active material or the negative electrode active material, respectively, a conductive agent, a binder, a dispersant, a filler, an ionic conductive agent, a pressure enhancer, and various additives. Can be.

【0021】本発明で用いる負極活物質は、電池として
組み立てる前にあらかじめLiを吸蔵することができ
る。具体的には、リチウム金属、リチウム合金(Li−
Al等)、リチウム化合物(n−ブチルリチウム等)と
化学的、電気化学的に反応させることにより吸蔵でき
る。好ましくは、金属リチウムを電池で使用する電解液
の存在下で、混練又は圧着させる方法である。吸蔵量と
しては、負極材料中のSnに対し、1〜12当量程度ま
で吸蔵できるが、1〜6当量が好ましい。
The negative electrode active material used in the present invention can store Li in advance before assembling as a battery. Specifically, lithium metal, lithium alloy (Li-
Al) and a lithium compound (such as n-butyllithium) chemically and electrochemically. Preferably, it is a method in which metallic lithium is kneaded or pressure-bonded in the presence of an electrolytic solution used in a battery. The amount of occlusion can be up to about 1 to 12 equivalents to Sn in the negative electrode material, but is preferably 1 to 6 equivalents.

【0022】本発明で使用できる正極及び負極の導電剤
としてグラファイト、アセチレンブラック、カーボンブ
ラック等が使用できる。本発明で使用できる正極及び負
極の結着剤として、ポリテトラフルオロエチレン(以
下、PTFEという)、ポリフッ化ビニリデン、プロピ
レン−テトラフルオロエチレン共重合体、プロピレン−
テトラフルオロエチレン−フッ化ビニリデン共重合体等
が使用できる。
Graphite, acetylene black, carbon black and the like can be used as a conductive agent for the positive electrode and the negative electrode that can be used in the present invention. As a binder for the positive electrode and the negative electrode that can be used in the present invention, polytetrafluoroethylene (hereinafter, referred to as PTFE), polyvinylidene fluoride, propylene-tetrafluoroethylene copolymer, propylene-
A tetrafluoroethylene-vinylidene fluoride copolymer or the like can be used.

【0023】本発明において、正極の集電体としてはア
ルミニウム、ニッケル、チタン等が使用でき、負極の集
電体としては銅、ニッケル、金等が使用できる。正極と
負極の間に介装させるセパレータとしては、ポリオレフ
ィン系材料が好ましく使用でき、具体的にはポリプロピ
レン、ポリエチレンの多孔質フィルムが好ましく使用で
きる。
In the present invention, aluminum, nickel, titanium and the like can be used as the current collector of the positive electrode, and copper, nickel, gold and the like can be used as the current collector of the negative electrode. As the separator interposed between the positive electrode and the negative electrode, a polyolefin-based material can be preferably used, and specifically, a porous film of polypropylene or polyethylene can be preferably used.

【0024】本発明における非水電解液は、溶媒として
はプロピレンカーボネート、エチレンカーボネート、ジ
メチルカーボネート、ジエチルカーボネート、1,2−
ジメトキシエタン等が使用できる。また、電解質として
はLiClO4 、LiPF6、LiBF4 、LiCF3
CO2 等が使用できる。
In the non-aqueous electrolyte of the present invention, the solvent is propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-
Dimethoxyethane and the like can be used. As electrolytes, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3
CO 2 or the like can be used.

【0025】[0025]

【実施例】以下に、本発明の実施例及び比較例を挙げる
が、本発明は実施例に限定されない。なお、以下の各例
においては、相対する電極の活物質としてLi金属を使
用するため、電位の関係から本発明における負極活物質
を正極活物質として使用した。充放電特性についての活
物質の性能の相対評価は、その放電容量とサイクル特性
について評価した。
EXAMPLES Examples and comparative examples of the present invention will be described below, but the present invention is not limited to the examples. In each of the following examples, the negative electrode active material in the present invention was used as the positive electrode active material in view of the potential because Li metal was used as the active material of the opposing electrode. For the relative evaluation of the performance of the active material with respect to the charge and discharge characteristics, the discharge capacity and the cycle characteristics were evaluated.

【0026】[例1(実施例)]撹拌器を備えた1リッ
トル容量のガラス製3ツ口フラスコにSnOを310.
6g、ZnOを15.2g、純水を300g入れ、室温
で撹拌しながら正リン酸283.0gを1時間かけて滴
下した。得られたスラリを120℃で乾燥し、原料混合
物を得た。この原料混合物を石英るつぼに入れ、アルゴ
ン雰囲気中で1000〜1100℃で1時間溶融焼成
し、溶融液を水冷された回転式のローラ上に流していく
ことにより、フレーク状の非晶質化合物を得た。この化
合物の組成はSnP1.06Zn0.083.8 であった。これ
をボールミルで粗粉砕した後、続いてジェットミルで粉
砕して平均粒径5μmの微粉とした。
Example 1 (Example) 310 of SnO was placed in a 1-liter glass three-necked flask equipped with a stirrer.
6 g, 15.2 g of ZnO, and 300 g of pure water were added, and 283.0 g of orthophosphoric acid was added dropwise with stirring at room temperature over 1 hour. The obtained slurry was dried at 120 ° C. to obtain a raw material mixture. This raw material mixture was put in a quartz crucible, melted and fired in an argon atmosphere at 1000 to 1100 ° C. for 1 hour, and the melt was flowed on a water-cooled rotary roller to form a flake-like amorphous compound. Obtained. The composition of this compound was SnP 1.06 Zn 0.08 O 3.8 . This was coarsely pulverized by a ball mill and subsequently pulverized by a jet mill to obtain a fine powder having an average particle diameter of 5 μm.

【0027】上記の微粉、アセチレンブラック、及びP
TFEを80/16/4の重量比で混合した。この混合
物をローラプレスによりシート状に成形し、減圧下20
0℃で熱処理し、シート(厚さ0.2mm)を直径1
2.7mmに打ち抜いて、電極とした。
The above fine powder, acetylene black, and P
TFE was mixed at a weight ratio of 80/16/4. This mixture is formed into a sheet by a roller press,
Heat-treated at 0 ° C, the sheet (thickness 0.2mm)
An electrode was punched out to 2.7 mm.

【0028】得られた電極を正極として用い、負極にリ
チウム箔を用い、電解液としてはエチレンカーボネート
とジエチルカーボネートとの混合溶媒(重量比で1/
1)に1mol/lのLiPF6 を溶解した溶液を用い
て密閉加圧式二電極セル(J.Electroche
m.Soc.,136,3169(1989)に記載の
方法に準拠)を組み立て、充放電試験を行った。放電カ
ット電圧は0.02V、充電電圧は2.5Vとした。2
サイクル後、20サイクル後、及び100サイクル後の
放電容量を表1に示す。また2サイクル目と20サイク
ル目の充放電電位カーブによる充放電特性とサイクル特
性を図1に示した。
The obtained electrode was used as a positive electrode, a lithium foil was used as a negative electrode, and a mixed solvent of ethylene carbonate and diethyl carbonate (weight ratio of 1/1/1) was used as an electrolytic solution.
Using a solution in which 1 mol / l of LiPF 6 was dissolved in 1), a closed pressure type two-electrode cell (J. Electroche) was used.
m. Soc. , 136, 3169 (1989)) and a charge / discharge test was performed. The discharge cut voltage was 0.02 V and the charge voltage was 2.5 V. 2
Table 1 shows the discharge capacity after the cycle, after the 20th cycle, and after the 100th cycle. FIG. 1 shows charge / discharge characteristics and cycle characteristics based on charge / discharge potential curves at the second cycle and the 20th cycle.

【0029】[例2〜5(実施例)]例1と同様にし
て、下記に示す非晶質化合物を得た。なお、原料の混合
比としては原子比で、例1ではSn:P:Zn:Ni=
100:106:8:2、例2ではSn:P:Zn:C
o=100:106:8:2、例3ではSn:P:Z
n:In=100:106:8:2、例4ではSn:
P:Zn:F=100:106:8:2となるように混
合し、Ni、Co、In、Fの原料としてはそれぞれN
iO、Co34 、In23 、SnF2 を用いた。例
2〜5についても例1と同様にサイクル特性を測定し、
表1に示した。
Examples 2 to 5 (Examples) In the same manner as in Example 1, the following amorphous compounds were obtained. The mixing ratio of the raw materials is an atomic ratio. In Example 1, Sn: P: Zn: Ni =
100: 106: 8: 2, Example 2: Sn: P: Zn: C
o = 100: 106: 8: 2, and in Example 3, Sn: P: Z
n: In = 100: 106: 8: 2, and in Example 4, Sn:
P: Zn: F = 100: 106: 8: 2, and Ni, Co, In, F
iO, Co 3 O 4 , In 2 O 3 , and SnF 2 were used. For Examples 2 to 5, the cycle characteristics were measured in the same manner as in Example 1,
The results are shown in Table 1.

【0030】 例2:SnP1.06Zn0.08Ni0.024.0 、 例3:SnP1.06Zn0.08Co0.024.0 、 例4:SnP1.06Zn0.08In0.024.0 、 例5:SnP1.06Zn0.080.023.8Example 2: SnP 1.06 Zn 0.08 Ni 0.02 O 4.0 , Example 3: SnP 1.06 Zn 0.08 Co 0.02 O 4.0 , Example 4: SnP 1.06 Zn 0.08 In 0.02 O 4.0 , Example 5: SnP 1.06 Zn 0.08 F 0.02 O 3.8 .

【0031】[例6〜9(比較例)]例1と同様にし
て、下記に示す非晶質化合物を得た。なお、原料の混合
比としては原子比で、例6ではSn:P=100:10
6、例7ではSn:P:B=10:6:4、例8ではS
n:P=10:3、例9ではSn:B=10:3となる
ように混合し、Bの原料としてはB23 を用いた。例
6〜9についても例1と同様にサイクル特性を測定し、
表1に示した。
Examples 6 to 9 (Comparative Examples) In the same manner as in Example 1, the following amorphous compounds were obtained. The mixing ratio of the raw materials is an atomic ratio. In Example 6, Sn: P = 100: 10
6, Sn: P: B = 10: 6: 4 in Example 7, S in Example 8
n: P = 10: 3, and in Example 9, Sn: B = 10: 3 were mixed, and B 2 O 3 was used as a raw material of B. The cycle characteristics of Examples 6 to 9 were measured in the same manner as in Example 1,
The results are shown in Table 1.

【0032】例6:SnP1.063.2 、 例7:SnP0.60.43.1 、 例8:SnP0.3m 、 例9:SnB0.3n 。 ただし、例8において1.75≦m≦2.05であり、
例9において1.45≦n≦1.75である。
Example 6: SnP 1.06 O 3.2 , Example 7: SnP 0.6 B 0.4 O 3.1 , Example 8: SnP 0.3 O m , Example 9: SnB 0.3 O n . However, in Example 8, 1.75 ≦ m ≦ 2.05,
In Example 9, 1.45 ≦ n ≦ 1.75.

【0033】本発明におけるSn、Zn、及びPを含む
複合酸化物は、正極活物質として使用した場合、放電容
量が大きく、また充放電サイクル試験後の容量の維持率
が高い。したがって、これらの複合酸化物を負極活物質
として使用した場合でも放電容量が大きく、充放電サイ
クル特性に優れた二次電池が得られる。
When the composite oxide containing Sn, Zn, and P in the present invention is used as a positive electrode active material, it has a large discharge capacity and a high capacity retention rate after a charge / discharge cycle test. Therefore, even when these composite oxides are used as a negative electrode active material, a secondary battery having a large discharge capacity and excellent charge / discharge cycle characteristics can be obtained.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明によれば、放電容量が大きく、良
好なサイクル特性を有する非水電解液二次電池が提供で
きる。
According to the present invention, a non-aqueous electrolyte secondary battery having a large discharge capacity and good cycle characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】例1における2サイクル目と20サイクル目の
充放電特性のグラフ。
FIG. 1 is a graph of charge and discharge characteristics at the second cycle and the 20th cycle in Example 1.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極、負極、及びリチウム塩を含む非水電
解液からなる非水電解液二次電池において、前記負極の
活物質がSn、Zn、及びPを含む複合酸化物であるこ
とを特徴とする非水電解液二次電池。
1. A nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte containing a lithium salt, wherein the active material of the negative electrode is a composite oxide containing Sn, Zn, and P. Characteristic non-aqueous electrolyte secondary battery.
【請求項2】前記複合酸化物は非晶質である請求項1記
載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein said composite oxide is amorphous.
【請求項3】負極の活物質が、式1で示される複合酸化
物である請求項1又は2記載の非水電解液二次電池。 SnZnhij ・・・式1 (ただし、式1において、0.01≦h≦1.0、0.
1≦i≦2.0、2.0≦j≦5.0である。)
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the active material of the negative electrode is a composite oxide represented by Formula 1. SnZn h P i O j ··· Formula 1 (where in Formula 1, 0.01 ≦ h ≦ 1.0,0.
1 ≦ i ≦ 2.0 and 2.0 ≦ j ≦ 5.0. )
【請求項4】負極の活物質が、F、Al、Cu、Ni、
Mn、Co、Fe、Bi、Sb、Cr、Ti、Zr、I
n及びGaからなる群から選ばれる少なくとも1種を合
量でSnに対して20原子%以下含む請求項1、2又は
3記載の非水電解液二次電池。
4. An active material for a negative electrode comprising F, Al, Cu, Ni,
Mn, Co, Fe, Bi, Sb, Cr, Ti, Zr, I
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery contains at least one element selected from the group consisting of n and Ga in a total amount of 20 atomic% or less based on Sn.
JP11559498A 1997-05-28 1998-04-24 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4101927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11559498A JP4101927B2 (en) 1997-05-28 1998-04-24 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-138869 1997-05-28
JP13886997 1997-05-28
JP11559498A JP4101927B2 (en) 1997-05-28 1998-04-24 Non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007279250A Division JP2008078150A (en) 1997-05-28 2007-10-26 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1145712A true JPH1145712A (en) 1999-02-16
JP4101927B2 JP4101927B2 (en) 2008-06-18

Family

ID=26454086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11559498A Expired - Fee Related JP4101927B2 (en) 1997-05-28 1998-04-24 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4101927B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017948A1 (en) * 1998-09-18 2000-03-30 Canon Kabushiki Kaisha Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
KR20030015775A (en) * 2001-08-17 2003-02-25 주식회사 엘지화학 Sn ALLOY BASED NEGATIVE ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERIES AND METHOD FOR PREPARING THE SAME
KR100423030B1 (en) * 2000-03-13 2004-03-12 캐논 가부시끼가이샤 Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
EP1406325A1 (en) * 2001-07-10 2004-04-07 Sony Corporation Non-aqueous electrolyte secondary cell
JP2014096236A (en) * 2012-11-08 2014-05-22 Sony Corp Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic equipment
JP2018046012A (en) * 2016-09-12 2018-03-22 株式会社Gsユアサ Negative electrode active material, negative electrode, and nonaqueous electrolyte power storage device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078150A (en) * 1997-05-28 2008-04-03 Agc Seimi Chemical Co Ltd Nonaqueous electrolyte secondary battery
JP2007302300A (en) 2006-05-11 2007-11-22 Yuyama Manufacturing Co Ltd Cap feeding device
CH702406A1 (en) 2009-12-11 2011-06-15 M Tanner Ag Apparatus for sorting out incorrectly positioned cylindrical bodies in a separating and conveying device.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017948A1 (en) * 1998-09-18 2000-03-30 Canon Kabushiki Kaisha Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7183018B2 (en) * 1998-09-18 2007-02-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7534528B2 (en) 1998-09-18 2009-05-19 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
KR100423030B1 (en) * 2000-03-13 2004-03-12 캐논 가부시끼가이샤 Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
EP1406325A1 (en) * 2001-07-10 2004-04-07 Sony Corporation Non-aqueous electrolyte secondary cell
EP1406325A4 (en) * 2001-07-10 2009-04-01 Sony Corp Non-aqueous electrolyte secondary cell
KR20030015775A (en) * 2001-08-17 2003-02-25 주식회사 엘지화학 Sn ALLOY BASED NEGATIVE ELECTRODE MATERIAL FOR LITHIUM SECONDARY BATTERIES AND METHOD FOR PREPARING THE SAME
JP2014096236A (en) * 2012-11-08 2014-05-22 Sony Corp Active material for secondary battery, electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic equipment
JP2018046012A (en) * 2016-09-12 2018-03-22 株式会社Gsユアサ Negative electrode active material, negative electrode, and nonaqueous electrolyte power storage device

Also Published As

Publication number Publication date
JP4101927B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
JP4702510B2 (en) Lithium-containing silicon oxide powder and method for producing the same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
US20020127473A1 (en) Positive electrode active material and non-aqueous secondary battery using the same
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP2007522619A (en) Electrode additive coated with conductive material and lithium secondary battery comprising the same
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004538608A (en) Improved lithium-ion battery
JPH08124559A (en) Manufacture of lithium secondary battery and of negative electrode active material
JPH1083817A (en) Anode material and non-aqueous electrolytic secondary battery using the material
JPH08250120A (en) Lithium secondary battery
JPH09180758A (en) Nonaqueous secondary battery
JP2003109599A (en) Positive electrode active material, and nonaqueous electrolyte secondary battery using the same
JP2000149948A (en) Positive active material, lithium ion secondary battery and manufacture of its positive active material
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JPH08298121A (en) Nonaqueous secondary battery
KR101840885B1 (en) Thin film alloy electrodes
JPH1092429A (en) Manufacture of non-aqueous solvent secondary battery and non-aqueous solvent secondary battery
JP3661301B2 (en) Nonaqueous electrolyte for lithium secondary battery and nonaqueous electrolyte secondary battery
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JP4101927B2 (en) Non-aqueous electrolyte secondary battery
JPH09180703A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051229

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees