JPS62222575A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPS62222575A
JPS62222575A JP61064959A JP6495986A JPS62222575A JP S62222575 A JPS62222575 A JP S62222575A JP 61064959 A JP61064959 A JP 61064959A JP 6495986 A JP6495986 A JP 6495986A JP S62222575 A JPS62222575 A JP S62222575A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
secondary battery
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61064959A
Other languages
Japanese (ja)
Other versions
JPH0831338B2 (en
Inventor
Masayasu Arakawa
正泰 荒川
Shinichi Tobishima
真一 鳶島
Toshiro Hirai
敏郎 平井
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61064959A priority Critical patent/JPH0831338B2/en
Priority to US06/925,379 priority patent/US4737424A/en
Priority to DE3645116A priority patent/DE3645116C2/de
Priority to DE19863637146 priority patent/DE3637146A1/en
Priority to FR8615435A priority patent/FR2589631B1/en
Priority to CA000522087A priority patent/CA1290010C/en
Publication of JPS62222575A publication Critical patent/JPS62222575A/en
Publication of JPH0831338B2 publication Critical patent/JPH0831338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase conductivity and charge-discharge efficiency and to make it possible to use in a wide temperature range by using a specific mixed solvent in an electrolyte, and specifying the contents of moisture and the other impurities. CONSTITUTION:A negative active material is lithium or a lithium alloy capable of discharge of a lithium ion. A positive active material is a substance which performs reversible reaction electrochemically with a lithium ion. An electrolyte is a solution obtained by dissolving a lithium salt in an organic solvent. As the organic solvent of the electrolyte, a mixed solvent of ethylene carbonate and one or more solvents selected from a group of compounds having polar double bond of >C=O and/or >S=O, in a volume ratio of 40-90% is used. The moisture contents in the electrolyte are 150ppm or less and the impurity contents other than moisture are 1,000ppm or less. Thereby, charge-discharge capacity, cycle life, and energy density are increased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はリチウム二次電池、さらに詳細には良好な電解
液を有するリチウム二次電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having a good electrolyte.

〔発明の背景〕[Background of the invention]

リチウム電池は標準単極電位が高く、標準水素電極基準
で−3,03Vであり還元力が極めて強く、また原子量
が6.941と小さいため、重量あたりの容量密度は3
.86Ah/gと大きい。このためリチウムを負極活物
質として用いる電池(以下リチウム電池と称する)は小
型・高エネルギ密度を有する電池として研究されており
、すでに二酸化マンガン、フン化黒鉛などを正極活物質
として用いる電池が市販されている。しかし、これらの
市販のリチウム電池は一次電池であり、実用に供する充
放電可能なリチウム二次電池は実現されていないのが現
状である。リチウム電池が高エネルギ密度という放電特
性の利点を生かしながら、充電も可能となれば、従来の
電池系に比較して、極めて特性が優れた電池が実現する
ことになり、携帯用電子機器などの産業界に与える効果
は高い。
Lithium batteries have a high standard unipolar potential, -3.03V based on standard hydrogen electrodes, and have an extremely strong reducing power.Also, because the atomic weight is small at 6.941, the capacity density per weight is 3.
.. It is large at 86Ah/g. For this reason, batteries that use lithium as a negative electrode active material (hereinafter referred to as lithium batteries) are being researched as small-sized batteries with high energy density, and batteries that use manganese dioxide, graphite fluoride, etc. as positive electrode active materials are already commercially available. ing. However, these commercially available lithium batteries are primary batteries, and at present, a rechargeable and dischargeable lithium secondary battery for practical use has not been realized. If lithium batteries can be recharged while taking advantage of the discharge characteristics of high energy density, a battery with extremely superior characteristics compared to conventional battery systems will be realized, and it will be useful for portable electronic devices and other devices. The effects on industry are high.

リチウム電池を二次化するためには、正極活物質の選択
、電池構成法など、多くの解決すべき問題がある。特に
、電解液の選択は重要な課題である。常温作動型のリチ
ウム二次電池には非水電解液を使用することが実用の見
地より望ましいが、電解液の導電率は従来の電池系に用
いられる水溶液系よりも1桁も2桁も低いという欠点が
あったゆこのため電池の放電利用率向上のためには電解
液の導電率向上は不可欠である。同時に二次電池に適用
するためには、非水電解液中におけるリチウムの充放電
効率が高いことが要求されるのは当然である。すなわち
、リチウム二次電池に用いる電解液は、■高い導電率を
有すること、■高いリチウム充放電効率を有することの
二点を同時に充足する必要がある。
In order to secondaryize lithium batteries, there are many issues that need to be resolved, such as the selection of positive electrode active materials and battery construction methods. In particular, the selection of electrolyte is an important issue. Although it is desirable from a practical standpoint to use a non-aqueous electrolyte in a lithium secondary battery that operates at room temperature, the conductivity of the electrolyte is one or two orders of magnitude lower than that of the aqueous solution system used in conventional battery systems. Because of these drawbacks, it is essential to improve the conductivity of the electrolyte in order to improve the discharge utilization rate of the battery. At the same time, in order to apply it to secondary batteries, it is natural that lithium is required to have high charging and discharging efficiency in the non-aqueous electrolyte. That is, the electrolytic solution used in a lithium secondary battery needs to satisfy two requirements at the same time: (1) having high conductivity and (2) having high lithium charging and discharging efficiency.

リチウム二次電池に用いる電解液の導電率およびLiの
充放電効率を上昇させるためには、しiから溶媒への電
子移動反応性が低い溶媒を選択することや、溶媒系中の
Lf塩が解離しやすく、かつLi+イオンの移動性が大
きいことが必要であると考えられる。このような観点か
ら、高誘電率の溶媒を用いることは電解液の特性向上に
有利であると予想される。
In order to increase the conductivity of the electrolyte used in lithium secondary batteries and the charging/discharging efficiency of Li, it is necessary to select a solvent that has low reactivity for electron transfer from I to the solvent, and to increase the Lf salt in the solvent system. It is thought that it is necessary to be able to dissociate easily and to have high mobility of Li+ ions. From this point of view, it is expected that the use of a high dielectric constant solvent is advantageous in improving the properties of the electrolytic solution.

エチレンカーボネイトは、高誘電率(比誘電率89゜■
、40℃)であるが、その融点は約36℃であり、常温
では単独で使用しにくい欠点を存しているとともに、そ
の粘度は高い(1,9cP、40℃)という欠点もあっ
た。
Ethylene carbonate has a high dielectric constant (relative permittivity of 89°■
, 40°C), but its melting point is about 36°C, which makes it difficult to use alone at room temperature, and its viscosity is high (1.9 cP, 40°C).

〔発明の概要〕[Summary of the invention]

本発明は、このような現状に鑑みてなされたものであり
、その目的は導電率が高く、かつリチウムの充放電特性
の優れたリチウム二次電池を提供することにある。
The present invention has been made in view of the current situation, and its purpose is to provide a lithium secondary battery with high conductivity and excellent lithium charge/discharge characteristics.

したがって本発明によるリチウム二次電池は、負極活物
質はリチウムあるいはリチウムイオンを放電可能にする
リチウム合金であり、正極活物質はリチウムイオンと電
気化学的に可逆反応を行う物質であり、電解液はリチウ
ム塩を有機溶媒に溶解させたものであるリチウム二次電
池において、前記電解液の有機溶媒はエチレンカーボネ
ートと>C=0および/または>S=0の極性二重結合
を有する化合物の群より選択された一種以上との体積混
合比40〜90%の混合溶媒を主成分とするものであり
、前記電解液の含水量がtso ppm以下、水以外の
不純物が1)000pp以下であることを特徴とするも
のである。
Therefore, in the lithium secondary battery according to the present invention, the negative electrode active material is lithium or a lithium alloy that allows lithium ions to be discharged, the positive electrode active material is a substance that electrochemically performs a reversible reaction with lithium ions, and the electrolyte is In a lithium secondary battery in which a lithium salt is dissolved in an organic solvent, the organic solvent of the electrolyte is selected from the group of compounds having ethylene carbonate and a polar double bond of >C=0 and/or >S=0. The main component is a mixed solvent with a volume mixing ratio of 40 to 90% with one or more selected types, and the water content of the electrolyte is less than 100 ppm, and the content of impurities other than water is 1)000 ppm or less. This is a characteristic feature.

本発明によれば、リチウム二次電池の電解液として、エ
チレンカーボネートと>C=0および/または>S=0
の極性二重結合を有する化合物の群より選択された一種
以上との体積混合比が40〜90%の混合溶媒を用いる
とともに、水および水以外の不純物量を制御することを
最も主要な要旨とし、これによって高い導電率と充放電
効率を有し、かつ広い温度範囲で使用可能なリチウム二
次電池を実現するものである。
According to the present invention, ethylene carbonate and >C=0 and/or >S=0 are used as an electrolyte for a lithium secondary battery.
The most important points are to use a mixed solvent with a volume mixing ratio of 40 to 90% with one or more compounds selected from the group of compounds having polar double bonds, and to control the amount of water and impurities other than water. This makes it possible to realize a lithium secondary battery that has high conductivity and charge/discharge efficiency, and can be used over a wide temperature range.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明を更に詳しく説明する。 The present invention will be explained in more detail.

リチウム二次電池は、負極活物質がリチウムあるいはリ
チウムイオンを放電可能にするリチウム合金であり、正
極活物質がリチウムイオンと電気化学的に可逆反応を行
う物質であり、電解液がリチウム塩を有機溶媒に溶解さ
せた電池であるが、本発明のよれば、リチウム塩を有機
溶媒に溶解した電解液の有機溶媒として、エチレンカー
ポネートと>C=0および/または>S=0の極性二重
結合を有する化合物の群より選択された一種以上との体
積混合比が40〜90%の混合溶媒を用いている。
In a lithium secondary battery, the negative electrode active material is lithium or a lithium alloy that allows lithium ions to be discharged, the positive electrode active material is a material that electrochemically performs a reversible reaction with lithium ions, and the electrolyte is an organic According to the present invention, ethylene carbonate and a polar double of >C=0 and/or >S=0 are used as the organic solvent of the electrolyte in which a lithium salt is dissolved in an organic solvent. A mixed solvent having a volume mixing ratio of 40 to 90% with one or more selected from the group of compounds having a bond is used.

前述のようにエチレンカーボネイトは、高誘電率という
利点を有しながらも、融点が高く、低温では使用しにく
い欠点を有している。エチレンカーボネイトのモル凝固
点降下は5.5℃1モルであり、このようなエチレンカ
ーボネイトの利点を損なうことなく、欠点を補うために
、本発明にあって°は>C=0および/または>S=0
の極性二重結合を有し、相対的に誘電率が高い化合物の
一種以上を混合しているのである。
As mentioned above, ethylene carbonate has the advantage of a high dielectric constant, but has the disadvantage of a high melting point, making it difficult to use at low temperatures. The molar freezing point depression of ethylene carbonate is 5.5°C 1 mol, and in order to compensate for the disadvantages without impairing the advantages of ethylene carbonate, in the present invention, ° is >C=0 and/or >S =0
It contains one or more compounds having a polar double bond and a relatively high dielectric constant.

このような>C=0および/または>S =Oの極性二
重結合を有する化合物としては、たとえばプロピレンカ
ーボネイト、T−ブチルラクトン、T−バレロラクトン
、γ−オクタノイックラクトン、3−メチル−2−オキ
サゾリジン、スルホラン、3−メチルスルホラン、ジメ
チルスルホキシド、酢酸メチル、ギ酸メチル等より選択
された少なくとも一種以上を用いることが可能である。
Examples of compounds having polar double bonds of >C=0 and/or >S=O include propylene carbonate, T-butyl lactone, T-valerolactone, γ-octanoic lactone, and 3-methyl- It is possible to use at least one selected from 2-oxazolidine, sulfolane, 3-methylsulfolane, dimethylsulfoxide, methyl acetate, methyl formate, and the like.

エチレンカーボネートと>C=0および/または>S=
0の極性二重結合を有する化合物より選択された一種以
上の化合物との体積混合比は、40〜90%、好ましく
は60〜70%であるが、エチレンカーボネートの体積
混合比が90%を超えると、エチレンカーボネイト単独
系とあまり変化がなく、一方40%未満であると、>C
−0および/または>S−0の極性二重結合を有する化
合物より選択された一種以上の化合物単独系に近(なり
、いずれも充放電効率および導電率のの改善が充分では
なくなるからである。
Ethylene carbonate and >C=0 and/or >S=
The volume mixing ratio with one or more compounds selected from compounds having 0 polar double bonds is 40 to 90%, preferably 60 to 70%, but the volume mixing ratio of ethylene carbonate exceeds 90%. , there is not much change from ethylene carbonate alone, while if it is less than 40%, >C
-0 and/or >S-0 polar double bonds. .

前述の混合溶媒に溶解されるリチウム塩は、本発明にお
いて基本的に限定されるものではない。
The lithium salt dissolved in the above-mentioned mixed solvent is not fundamentally limited in the present invention.

たとえばLiAsF 6 、LtClOa 、LiBF
s 、LiPFe、Li^1cI4 、LiCF3SO
3、LiCF3 CO2、LiSbF 6などの一種以
上を有効に用いることができる。
For example, LiAsF 6 , LtClOa, LiBF
s, LiPFe, Li^1cI4, LiCF3SO
3. One or more of LiCF3 CO2, LiSbF6, etc. can be effectively used.

このようなリチウム塩は、前記混合溶媒に0.5〜2.
0モル/7!(M)添加するのがよい。この範囲を逸脱
すると、導電率が低下するのみならず、リチウムの充放
電効率も著しく低下する虞があるからである。
Such a lithium salt is added to the mixed solvent in an amount of 0.5 to 2.
0 moles/7! (M) It is good to add. This is because, if it deviates from this range, not only the conductivity will decrease, but also the lithium charging/discharging efficiency may decrease significantly.

本発明において使用される電解液の有機溶媒は前述のよ
うにエチレンカーボネートと>C−0および/または>
S=0の極性二重結合を有する化合物より選択された一
種以上の化合物との混合溶媒を主成分としている。
As mentioned above, the organic solvent of the electrolyte used in the present invention is ethylene carbonate and >C-0 and/or >
The main component is a mixed solvent with one or more compounds selected from compounds having a polar double bond with S=0.

このような混合溶媒に対し、溶質の溶解度を向上させる
ためなどの理由より、全電解液量に対する体積混合比が
50%未満(すなわち上記混合溶媒の体積混合比は50
%以上)の添加剤を使用することができる。このような
添加剤としては、たとえ”ばヘキサメチルリン酸トリア
ミド、N、N、N’、N’ −テトラメチルエチレンジ
アミン、ジグライム、トリゲタイム、テトラグライム、
1,2−ジメトキシエタン、テトラヒドロフラン、2−
メチルテロラヒドロフラン、テトラヒドロピラン、1,
2−ジェトキシエタンなどより選択された一種以上の化
合物を用いることができる。この添加剤の量が50%以
上であると、主成分的になって、混合溶媒としての効果
を発揮できなくなる虞がある。
For such mixed solvents, for reasons such as improving the solubility of the solute, the volume mixing ratio of the total amount of electrolyte is less than 50% (i.e., the volume mixing ratio of the above mixed solvent is 50%).
% or more) can be used. Examples of such additives include hexamethylphosphoric triamide, N,N,N',N'-tetramethylethylenediamine, diglyme, trigetime, tetraglyme,
1,2-dimethoxyethane, tetrahydrofuran, 2-
Methyltelorahydrofuran, tetrahydropyran, 1,
One or more compounds selected from 2-jethoxyethane and the like can be used. If the amount of this additive is 50% or more, it may become the main component and may not be effective as a mixed solvent.

このような電解液の含水量は、後述の実施例1および第
1表より明らかなように少ない程良好な充放電効率を示
すことが明らかになった。すなわち、本発明によるエチ
レンカーボネイトと>C=Oおよび/または>S=0の
極性二重結合を有する化合物の一種以上との混合溶媒を
用いる場合、含水量は150 ppn+以下、好ましく
は50ppm以下であるのがよい。含水量がtso p
pmを超えると、充放電効率が著しく低下するからであ
る。
As is clear from Example 1 and Table 1, which will be described later, it has become clear that the lower the water content of such an electrolytic solution, the better the charging and discharging efficiency. That is, when using a mixed solvent of ethylene carbonate according to the present invention and one or more compounds having polar double bonds of >C=O and/or >S=0, the water content is 150 ppn+ or less, preferably 50 ppm or less. It's good to have one. Water content is tso p
This is because if it exceeds pm, the charging/discharging efficiency will be significantly reduced.

また、同様に後述の実施例1および第1表より明らかな
ように、水以外の不純物の含有量も少ない方が良好な充
放電効率が得られる。すなわち、前記水以外の不純物含
有量は1)000pp以下、好ましくは700 ppm
以下である。前記不純物の含有量が1)000ppを超
えると、充放電効率を著しく損なうからである。
Further, as is also clear from Example 1 and Table 1, which will be described later, better charge/discharge efficiency can be obtained when the content of impurities other than water is also small. That is, the content of impurities other than water is 1) 000 ppm or less, preferably 700 ppm
It is as follows. This is because if the content of the impurities exceeds 1)000 pp, the charge/discharge efficiency will be significantly impaired.

本発明によるリチウム二次電池に用いる負極活物質は基
本的に限定されるものではなく、従来のリチウム電池に
用いられている負極活物質、すなわちリチウムあるいは
リチウムイオンを放電可能にするリチウム合金を用いる
ことができる。
The negative electrode active material used in the lithium secondary battery according to the present invention is basically not limited, and the negative electrode active material used in conventional lithium batteries, that is, lithium or a lithium alloy that can discharge lithium ions, is used. be able to.

また、同様に本発明において用いられる正極活物質も基
本的に限定されず、従来のリチウム二次電池に用いられ
ている正極活物質、すなわちリチウムイオンと電気化学
的に可逆反応を行う物質であることができる。
Similarly, the positive electrode active material used in the present invention is not fundamentally limited, and may be a positive electrode active material used in conventional lithium secondary batteries, that is, a material that electrochemically undergoes a reversible reaction with lithium ions. be able to.

このような正極活物質のうち、本発明における一すチ゛
ウムニ次電池においては、V2O5などのバナジウム酸
化物を主成分とする非晶質材料、たとえばV2O5単独
、v2o5にPies、↑eo t、Sb2O a 、
Bi2O3 、GeO1)−、 B 2O3% MoO
s、WO3、Too eなどの一種以上を添加した材料
が特に好ましいが、上述のようにこれに限定されるもの
ではなく、無機あるいは有機の正極活物質が有効に用い
られる。
Among such positive electrode active materials, in the monolithium rechargeable battery of the present invention, an amorphous material containing vanadium oxide as a main component such as V2O5, for example, V2O5 alone, V2O5 with Pieces, ↑eo t, Sb2O a ,
Bi2O3, GeO1)-, B2O3% MoO
Particularly preferred are materials to which one or more of s, WO3, Tooe, etc. are added, but as mentioned above, the material is not limited thereto, and inorganic or organic positive electrode active materials can be effectively used.

前述のν2osなどを主成分とし、P2O5などを添加
した非晶質材料は、■2O5と混合する成分、たとえば
P2O5を混合後、溶融急冷することによりえることが
できる。
An amorphous material containing the above-mentioned ν2os and the like as a main component and adding P2O5 and the like can be obtained by mixing a component to be mixed with 2O5, such as P2O5, and then melting and rapidly cooling the mixture.

以下実施例について説明する。Examples will be described below.

実施例1 1.5 M LiAsF s−エチレンカーボネート/
 7” l:1ピレンカーボネイト(体積混合比1/1
)中の不純物をコントロールした電解液を作製して、以
下に述べるようなリチウム二次電池を作製した。
Example 1 1.5 M LiAsF s-ethylene carbonate/
7” l:1 pyrene carbonate (volume mixing ratio 1/1
) An electrolytic solution with controlled impurities was prepared, and a lithium secondary battery as described below was fabricated.

正極には、活物質として95mo l %V2O55m
o1%P2O5の組成よりなる非晶質V2O5を70i
!1%、導電剤としてアセチレンブラックを25i1f
ffH%、バインダとしてテフロン5重量%の混合比で
作製した正極合剤ペレット(16III#Iφ)を用い
、負極としては金属リチウム(17m−φ、15mAh
 )を用い、さらにセパレータとして微孔性ポリプロピ
レンシートを用いて、コイン型リチウム電池を製造した
The positive electrode contains 95mol%V2O55m as an active material.
70i of amorphous V2O5 with a composition of o1% P2O5
! 1%, acetylene black as a conductive agent 25i1f
ffH% and Teflon as a binder at a mixing ratio of 5% by weight, a positive electrode mixture pellet (16III#Iφ) was used, and as a negative electrode, metallic lithium (17m-φ, 15mAh
) and a microporous polypropylene sheet as a separator to produce a coin-type lithium battery.

このリチウム電池を室温中、1 mAの電流値、2〜3
.5Vの電圧範囲で充放電試験を行ない、電解液の充放
電特性を評価した。
This lithium battery was heated at room temperature with a current value of 1 mA, 2 to 3
.. A charge/discharge test was conducted in a voltage range of 5 V to evaluate the charge/discharge characteristics of the electrolyte.

結果を第1図に示す。この第1図より明らかなように、
放電に関与できる過剰のリチウムが負極側において消費
され、充放電効率[に応じて徐々に放電容量が減少して
いくことになる。すなわち・Eを負極の充放電効率、C
nを第1回の放電容量とすると、 Cn =E XCn −1 が成立し、これより、 1nCn = (n −1) 1nE +Inetなる
関係が求まり、充放電効率を算出することができる。
The results are shown in Figure 1. As is clear from this figure 1,
Excess lithium that can participate in discharge is consumed on the negative electrode side, and the discharge capacity gradually decreases depending on the charge/discharge efficiency. That is, ・E is the charging/discharging efficiency of the negative electrode, C
When n is the first discharge capacity, Cn = E XCn −1 holds true, and from this, the relationship 1nCn = (n −1) 1nE + Inet can be found, and the charging and discharging efficiency can be calculated.

上記エチレンカーボネート:プロピレンカーボネイト=
1 : 1の混合溶媒を用いた電解液中の水および不純
物の量を変化させて、上記の式により充放電効率を算出
した結果を、下記の第1表に示す。
The above ethylene carbonate: propylene carbonate =
Table 1 below shows the results of calculating the charge/discharge efficiency using the above formula while varying the amounts of water and impurities in the electrolyte using a 1:1 mixed solvent.

第1表において、電解液lおよび電解液3、電解液4、
電解液5を比較すると、電解液の含水量が少ない程、E
の値は高くなることがわかる。また、第1表の電解液2
と電解液4を比較すると、水以外の不純物の含有量が少
なくなるとEの値は高くなることがわかった。
In Table 1, electrolyte 1, electrolyte 3, electrolyte 4,
Comparing electrolyte 5, the lower the water content of the electrolyte, the higher the E
It can be seen that the value of becomes high. Also, electrolyte 2 in Table 1
Comparing Electrolyte 4 with Electrolyte 4, it was found that the value of E increases as the content of impurities other than water decreases.

この第1表より水およびその他の不純物を除去すること
によって、充放電効率は大幅に向上することが明らかに
なうた。これによれば、電解液の含水量は、150 p
pm以下、好ましくは50ppm以下で、水以外の不純
物が1)000pp以下、好ましくは700ppm以下
であるときには、特に高い充放電効率が得られることが
わかった。
From Table 1, it is clear that by removing water and other impurities, the charging and discharging efficiency is greatly improved. According to this, the water content of the electrolyte is 150 p
It has been found that particularly high charge/discharge efficiency can be obtained when the concentration of impurities other than water is 1) 000 ppm or less, preferably 700 ppm or less.

以下に示す実施例においては、特に断らないときには、
上記電解液4に極めて近い組成のものが電解液として使
用している。
In the examples shown below, unless otherwise specified,
An electrolyte having a composition very similar to the electrolyte 4 is used as the electrolyte.

PC:ア口ビレンカーポネイト 実施例2 電解液としてエチレンカーボネイト−プロピレンカーボ
ネイトの混合溶媒(体積混合比1 /1 )に1.5 
M LiAsF eを溶解させたものを用いた。この電
解液の25℃における導電率は、プロピレンカーボネイ
ト単独より約2O%高い値、すなわち6.2xio−3
S crm−’を示した。また、1.5 M LiAs
F s−エチレンカーボネイトは2O℃以下では固化し
始しめ、電解液として使用できないが、第2図に示すよ
うに本発明による上記電解液は低温側でも高い導電率を
示すという利点を有する。
PC: Akutobilene carbonate Example 2 1.5% of the electrolyte was added to a mixed solvent of ethylene carbonate and propylene carbonate (volume mixing ratio 1/1).
A solution of M LiAsFe was used. The conductivity of this electrolyte at 25°C is approximately 20% higher than propylene carbonate alone, or 6.2xio-3
S crm-' was shown. Also, 1.5 M LiAs
Although Fs-ethylene carbonate begins to solidify at temperatures below 2O<0>C and cannot be used as an electrolyte, the electrolyte according to the present invention has the advantage of exhibiting high conductivity even at low temperatures, as shown in FIG.

実施例3 電解液として、1.5 M LiAsF a−エチレン
カーボネート/プロピレンカーボネイト(体積混合比l
/1)を用いて、リチウムの充放電効率を測定した。充
放電効率(Ea)は作用極に白金極を対極にリチウムを
、参照電極としてリチウムを用いた電池を組み、以下の
ように測定した。測定は、まず、0.5mA/cnlの
定電流で80分間、白金極上にリチウムを析出させた後
(2,4C/、ff1) 、この析出させたリチウムの
一部(0,6C/cIA>をLi”イオンとして放電し
、再びさらに0.6C/cdの容量で放電するサイクル
試験を繰り返した。
Example 3 As an electrolyte, 1.5 M LiAsF a-ethylene carbonate/propylene carbonate (volume mixing ratio l
/1) to measure the charging and discharging efficiency of lithium. The charge/discharge efficiency (Ea) was measured as follows using a battery using a platinum electrode as a working electrode, lithium as a counter electrode, and lithium as a reference electrode. In the measurement, first, lithium was deposited on a platinum electrode for 80 minutes at a constant current of 0.5 mA/cnl (2,4C/, ff1), and then a portion of this deposited lithium (0,6C/cIA> A cycle test was repeated in which the battery was discharged as Li'' ions and then further discharged at a capacity of 0.6 C/cd.

充放電効率(Ea)は、白金極の電位の変化より求め、
見掛は上100%の効率を示すサイクル数をnとすると
、下記の式<1)より、前記Haを求めることができる
The charge/discharge efficiency (Ea) is determined from the change in potential of the platinum electrode,
Assuming that the number of cycles showing an apparent efficiency of 100% is n, the above-mentioned Ha can be determined from the following formula <1).

結果を第2表に示す。エチレンカーボネイト/プロピレ
ンカーボネイト混合系〔第2表(A)〕はプロピレンカ
ーボネイト〔第2表(B ”) ) 単独より高いリチ
ウムの充放電効率を示すことがわかった。
The results are shown in Table 2. It was found that the ethylene carbonate/propylene carbonate mixed system [Table 2 (A)] exhibited higher lithium charge/discharge efficiency than propylene carbonate [Table 2 (B'')] alone.

実施例4 電解液として、1,5 M LiAsF a−エチレン
カーボネート/ジメチルスルホキシド(体積混合比が1
 =1)を用いた以外は、実施例3と同様にしてリチウ
ムの充放電効率<Ea)を測定した。
Example 4 As an electrolyte, 1,5 M LiAsF a-ethylene carbonate/dimethyl sulfoxide (volume mixing ratio: 1
The charging and discharging efficiency of lithium <Ea) was measured in the same manner as in Example 3, except that Ea) was used.

結果を第2表に示す。この表より、エチレンカーボネイ
ト/ジメチルスルホキシド混合系〔第2表(C)〕はジ
メチルスルホキシド〔第2表(B)〕単独より高いリチ
ウムの充放電効率を示すことがわかる。
The results are shown in Table 2. From this table, it can be seen that the ethylene carbonate/dimethyl sulfoxide mixed system [Table 2 (C)] exhibits higher lithium charge/discharge efficiency than dimethyl sulfoxide [Table 2 (B)] alone.

実施例5 電解液として、1.5 M LiAsF e−エチレン
カーボネート/ギ酸メチル(体積混合比が2/3)を用
いた以外は、実施例3と同様にしてリチウムの充放電効
率(1!a)を測定した。
Example 5 The charging and discharging efficiency of lithium (1! a ) was measured.

結果を第2表に示す。この表より、エチレンカーボネイ
ト/ギ酸メチル混合系〔第2表(E)〕はギ酸メチル〔
第2表(F)〕単独より高いリチウムの充放電効率を示
すことがわかる。
The results are shown in Table 2. From this table, ethylene carbonate/methyl formate mixed system [Table 2 (E)] is different from methyl formate [Table 2 (E)].
Table 2 (F)] It can be seen that the charging and discharging efficiency of lithium is higher than that of lithium alone.

実施例6 電解液として、1.5 M LiAsF (3−エチレ
ンカーボネート/酢酸メチル(体積混合比が2/3)を
用いた以外は、実施例3と同様にしてリチウムの充放電
効率(Ba)を測定した。
Example 6 Lithium charge/discharge efficiency (Ba) was determined in the same manner as in Example 3, except that 1.5 M LiAsF (3-ethylene carbonate/methyl acetate (volume mixing ratio: 2/3) was used as the electrolyte. was measured.

結果を第2表に示す。この表より、エチレンカーボネイ
ト/酢酸メチル混合系〔第2表(G)〕は酢酸メチル〔
第2表(■)〕単独より高いリチウムの充放電効率を示
すことがわかる。
The results are shown in Table 2. From this table, ethylene carbonate/methyl acetate mixed system [Table 2 (G)] is different from methyl acetate [Table 2 (G)].
Table 2 (■)] It can be seen that the charging and discharging efficiency of lithium is higher than that of lithium alone.

(以下余白) 第2表 実施例7 電解液として1.5 M LiAsF s−エチレンカ
ーボネート/プロピレンカーボネイト(体積混合比1/
1)を用い、正極には、活物質として95mo 1%V
2O5−5鶴O1%P2O5の組成よりなる非晶質V2
O5を70重量%、導電剤としてアセチレンブラックを
25重量%、バインダとしてテフロン5重量%の混合比
で作製した正極合剤ベレット(161φ)を用い、負極
としては金属リチウム(16miφ、90mAh)を用
い、更にセパレータとして微孔性ポリプロピレンシート
を用いて、コイン型リチウム電池(23a+n+φ、厚
さ21II1))を製造した。
(Margin below) Table 2 Example 7 1.5 M LiAsF s-ethylene carbonate/propylene carbonate (volume mixing ratio 1/
1) was used, and the positive electrode contained 95mo 1%V as an active material.
Amorphous V2 with a composition of 2O5-5 TsuruO1%P2O5
A positive electrode mixture pellet (161φ) made with a mixing ratio of 70% by weight of O5, 25% by weight of acetylene black as a conductive agent, and 5% by weight of Teflon as a binder was used, and metallic lithium (16miφ, 90mAh) was used as a negative electrode. Furthermore, a coin-type lithium battery (23a+n+φ, thickness 21II1) was manufactured using a microporous polypropylene sheet as a separator.

25℃において、充電電流1m^/cd、放電電流3−
^/aJ、2〜3.5vの電圧範囲で充放電試験を行い
電池特性を評価した。
At 25℃, charging current 1 m^/cd, discharging current 3-
A charge/discharge test was conducted in a voltage range of 2 to 3.5 V to evaluate battery characteristics.

結果を第3図に示す。第3図においては1.5MLiA
sF e−エチレンカーボネイト/プロピレンカーボネ
イト(体積混合比1/1)の混合系の場合と、1.5 
M LiAsF a /プロピレンカーボネイト単独系
の場合の結果を示す。
The results are shown in Figure 3. In Figure 3, 1.5MLiA
sF e-ethylene carbonate/propylene carbonate (volume mixing ratio 1/1) mixed system and 1.5
The results are shown for the case of M LiAsF a /propylene carbonate alone system.

エチレンカーボネイト/プロピレンカーボネイト混合系
の場合、プロピレンカーボネイト単独系に比べて、良好
なサイクル特性を示していることがわかった。
It was found that the ethylene carbonate/propylene carbonate mixed system exhibited better cycle characteristics than the propylene carbonate single system.

実施例8 負極として2O0 mAhの金属リチウムを用いた以外
は、実施例7と同様にして、リチウム/V2Os  P
g05電池を作製した。この電池を25℃において、放
電電流密度が0.5〜6n+A/cdの範囲で放電試験
を行った。この試験による放電電圧が2Vになるまでの
V *Os  P IIOs、重量当たりの放電容量と
放電電流密度の関係を第4図に示す。
Example 8 Lithium/V2Os P
A g05 battery was produced. A discharge test was conducted on this battery at 25° C. with a discharge current density in the range of 0.5 to 6 n+A/cd. FIG. 4 shows the relationship between V*Os P IIOs, discharge capacity per weight, and discharge current density until the discharge voltage reaches 2V in this test.

第4図には、本発明の効果を示すための比較例として、
1.5 M LiAsF e−プロピレンカーボネイト
を電解液に用いた場合の結果も示しである。第4図より
わかるように、本発明による混合溶媒系電解液を用いる
ことによって電池の取得電流値は向上している。
FIG. 4 shows, as a comparative example to show the effect of the present invention,
Also shown are the results when 1.5 M LiAsFe-propylene carbonate was used as the electrolyte. As can be seen from FIG. 4, the obtained current value of the battery is improved by using the mixed solvent electrolyte according to the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によるリチウム二次電池によ
れば、充放電容量が大きく、かつ優れたサイクル寿命を
示す小型で、高エネルギ密度電池であり、種々の分野で
広く利用できるという利点がある。
As explained above, the lithium secondary battery according to the present invention has the advantage that it is a small, high energy density battery with a large charge/discharge capacity and excellent cycle life, and can be widely used in various fields. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はり、5 M LiAsF e−エチレンカーボ
ネート/プロピレンカーボネイト(1/1 )系での1
5s+Ah Liを用いた電池の1 a+A、 2〜3
.5ν範囲のサイクル試験の放電容量の変化を示した図
、第2図は1.5 M LiAsF e〜エチレンカー
ボネート/プロピレンカーボネイトの導電率と温度の関
係を示した図、第3図は2〜3.5 Vの範囲でLi/
V 2O5−P2O5電池の充放電試験を行った際の電
池の容量と充放電サイクル数の関係を示した図、第4図
は、Li/V 2O5  P to s電池の2v終止
電圧の放電容量と放電電流密度の関係を示した図である
。 第1図 イイグル回数 (n) 宣2図 クコ −10O102O30
Fig. 1 beam, 1 in 5 M LiAsFe-ethylene carbonate/propylene carbonate (1/1) system
1 a+A of battery using 5s+Ah Li, 2-3
.. Figure 2 shows the change in discharge capacity in a cycle test in the 5ν range. Figure 2 shows the relationship between conductivity and temperature for 1.5 M LiAsFe - ethylene carbonate/propylene carbonate. Figure 3 shows the relationship between the conductivity and temperature of Li/ in the range of .5 V
Figure 4 shows the relationship between the battery capacity and the number of charge/discharge cycles when performing a charge/discharge test on a V2O5-P2O5 battery. It is a figure showing the relationship of discharge current density. Figure 1 Iiguru number of times (n) Figure 2 Kuko - 10O102O30

Claims (3)

【特許請求の範囲】[Claims] (1)負極活物質はリチウム或いはリチウムイオンを放
電可能にするリチウム合金であり、正極活物質はリチウ
ムイオンと電気化学的に可逆反応を行う物質であり、電
解液はリチウム塩を有機溶媒に溶解させたものであるリ
チウム二次電池において、前記電解液の有機溶媒はエチ
レンカーボネートと>C=0および/または>S=0の
極性二重結合を有する化合物の群より選択された一種以
上との体積混合比40〜90%の混合溶媒を主成分とす
るものであり、前記電解液の含水量が150ppm以下
、水以外の不純物が1000ppm以下であることを特
徴とするリチウム二次電池。
(1) The negative electrode active material is lithium or a lithium alloy that enables lithium ions to be discharged, the positive electrode active material is a material that electrochemically performs a reversible reaction with lithium ions, and the electrolyte is a lithium salt dissolved in an organic solvent. In the lithium secondary battery, the organic solvent of the electrolyte is a combination of ethylene carbonate and one or more compounds selected from the group of compounds having polar double bonds of >C=0 and/or >S=0. A lithium secondary battery, characterized in that the main component is a mixed solvent with a volumetric mixing ratio of 40 to 90%, the electrolytic solution has a water content of 150 ppm or less, and impurities other than water are 1000 ppm or less.
(2)前記電解液はLiAsF_6、LiClO_4、
LiBF_4、LiSbF_6、LiPF_6、LiA
lCl_4、LiCF_3SO_3、LiCF_3CO
_2より成る群より選択された一種以上のリチウム塩を
0.5〜2.0モル/l溶解したものであることを特徴
とする特許請求の範囲第1項によるリチウム二次電池。
(2) The electrolyte is LiAsF_6, LiClO_4,
LiBF_4, LiSbF_6, LiPF_6, LiA
lCl_4, LiCF_3SO_3, LiCF_3CO
A lithium secondary battery according to claim 1, characterized in that the lithium secondary battery is one or more lithium salts selected from the group consisting of _2 dissolved at 0.5 to 2.0 mol/l.
(3)前記正極活物質はV_2O_5単独又はV_2O
_5にP_2O_5、TeO_2、Sb_2O_3、B
i_2O_3、GeO_2、B_2O_3、MoO_3
、WO_3及びTiO_2の一種以上を添加した非晶質
材料であることを特徴とする特許請求の範囲第1項また
は第2項によるリチウム二次電池。
(3) The positive electrode active material is V_2O_5 alone or V_2O
P_2O_5, TeO_2, Sb_2O_3, B to_5
i_2O_3, GeO_2, B_2O_3, MoO_3
A lithium secondary battery according to claim 1 or 2, characterized in that the lithium secondary battery is an amorphous material to which one or more of , WO_3 and TiO_2 are added.
JP61064959A 1985-11-01 1986-03-25 Lithium secondary battery Expired - Lifetime JPH0831338B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61064959A JPH0831338B2 (en) 1986-03-25 1986-03-25 Lithium secondary battery
US06/925,379 US4737424A (en) 1985-11-01 1986-10-31 Secondary lithium battery
DE3645116A DE3645116C2 (en) 1985-11-01 1986-10-31
DE19863637146 DE3637146A1 (en) 1985-11-01 1986-10-31 LITHIUM SECONDARY BATTERY
FR8615435A FR2589631B1 (en) 1985-11-01 1986-10-31 RECHARGEABLE BATTERY
CA000522087A CA1290010C (en) 1985-11-01 1986-11-03 Secondary lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064959A JPH0831338B2 (en) 1986-03-25 1986-03-25 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS62222575A true JPS62222575A (en) 1987-09-30
JPH0831338B2 JPH0831338B2 (en) 1996-03-27

Family

ID=13273089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064959A Expired - Lifetime JPH0831338B2 (en) 1985-11-01 1986-03-25 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0831338B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128369A (en) * 1987-10-13 1989-05-22 American Teleph & Telegr Co <Att> Nonhydrant solid cell
JPH01144572A (en) * 1987-11-30 1989-06-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JPH02262242A (en) * 1989-03-09 1990-10-25 Saft (Soc Accumulateurs Fixes Traction) Sa Rechanging type electrochemical cell having lichium anode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) * 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte
JPS55165580A (en) * 1979-06-11 1980-12-24 Matsushita Electric Ind Co Ltd Cell
JPS57170463A (en) * 1981-04-13 1982-10-20 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte for lithium secondary battery
JPS5942784A (en) * 1982-09-03 1984-03-09 Showa Denko Kk Battery
JPS5996666A (en) * 1982-11-25 1984-06-04 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithium battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) * 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte
JPS55165580A (en) * 1979-06-11 1980-12-24 Matsushita Electric Ind Co Ltd Cell
JPS57170463A (en) * 1981-04-13 1982-10-20 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte for lithium secondary battery
JPS5942784A (en) * 1982-09-03 1984-03-09 Showa Denko Kk Battery
JPS5996666A (en) * 1982-11-25 1984-06-04 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithium battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128369A (en) * 1987-10-13 1989-05-22 American Teleph & Telegr Co <Att> Nonhydrant solid cell
JPH01144572A (en) * 1987-11-30 1989-06-06 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JPH02262242A (en) * 1989-03-09 1990-10-25 Saft (Soc Accumulateurs Fixes Traction) Sa Rechanging type electrochemical cell having lichium anode

Also Published As

Publication number Publication date
JPH0831338B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
CA1290010C (en) Secondary lithium battery
JPS60154478A (en) Electrolyte for lithium secondary battery
JPS62222575A (en) Lithium secondary battery
JP7301449B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP4194322B2 (en) Lithium secondary battery
JPH01128355A (en) Nonaqueous solvent cell
JPH0351068B2 (en)
JP3125075B2 (en) Non-aqueous electrolyte secondary battery
JPS62219475A (en) Secondary cell of lithium
JPS62271370A (en) Electrolyte for lithium battery
JPH0377626B2 (en)
JPH01128354A (en) Nonaqueous solvent cell
JPS62219477A (en) Secondary cell of lithium
JP2552652B2 (en) Electrolyte for lithium battery
JPS62222576A (en) Lithium secondary battery
JP2559055B2 (en) Lithium battery
JP3005688B2 (en) Lithium battery
JPH0424828B2 (en)
JPS63114075A (en) Electrolyte for lithium secondary battery
JPH03105858A (en) Manufacture of nonaqueous solvent secondary battery
JPH0456428B2 (en)
JPS62105375A (en) Lithium secondary cell
JPH053115B2 (en)
JPS62219476A (en) Secondary cell of lithium
JPH065309A (en) Electrolyte solvent for battery and battery electrolyte using same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term