JPH03102615A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH03102615A
JPH03102615A JP23938289A JP23938289A JPH03102615A JP H03102615 A JPH03102615 A JP H03102615A JP 23938289 A JP23938289 A JP 23938289A JP 23938289 A JP23938289 A JP 23938289A JP H03102615 A JPH03102615 A JP H03102615A
Authority
JP
Japan
Prior art keywords
bit shift
magnetic
recording medium
residual magnetization
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23938289A
Other languages
Japanese (ja)
Inventor
Koji Ichikawa
耕司 市川
Hajime Shinohara
篠原 肇
Shigeo Fujii
重男 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP23938289A priority Critical patent/JPH03102615A/en
Publication of JPH03102615A publication Critical patent/JPH03102615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide the recording medium which has excellent corrosion resistance, is small in bit shift and is large in residual magnetization by using Co-Cr- Nb or Co-Cr-V as the alloy compsn. to form a magnetic film. CONSTITUTION:The magnetic film is formed of the alloy consisting, by atomic %, of 5.0 to 15.0% Cr, 2.0 to 8.0% Nb, and the balance Co and unavoidable impurities. The corrosion resistance degrades if the content of the Cr is below 5.0atomic%. Namely, the rate of decrease in the saturation magnetization by an environmental change is large and the bit shift is increased. On the other hand, the degradation in output is resulted from a decrease in the residual magnetization and the increase in the bit shift is resulted as well if the content of the Cr exceeds 15.0atomic%. The Nb contributes to the improvement in the bit shift characteristics but this effect cannot be expected if the content thereof is below 2.0atomic%. On the other hand, the residual magnetization decreases and the degradation in the output and the increase in the bit shift are resulted if the content thereof exceeds 8.0atomic%. The magnetic recording medium which is particularly excellent in the corrosion resistance and is improved in the bit shift and residual magnetization characteristics is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば磁気ヘッドとの間において情報の記録お
よび再生を行う磁気記録媒体に関するものであり,特に
ビットシフトおよび残留磁化を向上させ得る磁気記録媒
体に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a magnetic recording medium for recording and reproducing information between, for example, a magnetic head. It is related to recording media.

(従来の技術〕 従来より磁気記録媒体上に情報を記録し.若しくは媒体
上に記録した情報を再生出力するために磁気ディスク装
置が使用されているが7上記の記録.再生を行う場合に
は磁気ヘッドと磁気記録媒体とを例えば0.2〜0.3
μmの微小間隙に保持するのが通常である.従って磁気
ヘッドと磁気記録媒体との接触による摩擦,摩耗および
/または両者の衝突に伴う損傷を防止するため2浮動ヘ
ンドスライダを使用する。すなわち磁気ヘンドスライダ
が,磁気記録媒体の表面との相対速度により両者の間隙
に発生する流体力学的浮上力を利用して.両者の微小間
隙を保持するように措威している。一方近年の磁気記録
媒体に要求される仕様は次第に厳しくなってきており,
記録密度が高いことは勿論のこと,ピントシフトが小で
あると共に残留磁化の大なる磁性膜が要求される。
(Prior Art) Magnetic disk devices have conventionally been used to record information on a magnetic recording medium or to reproduce and output information recorded on the medium. For example, the magnetic head and magnetic recording medium are 0.2 to 0.3
It is usually held in a micro gap of μm. Therefore, a two-floating hend slider is used to prevent friction and wear caused by contact between the magnetic head and the magnetic recording medium, and/or damage caused by collision between the two. In other words, the magnetic hend slider utilizes the hydrodynamic levitation force generated in the gap between the magnetic recording medium and the surface due to the relative speed between the two. Measures are taken to maintain a small gap between the two. On the other hand, the specifications required for magnetic recording media in recent years have become increasingly strict.
A magnetic film that not only has a high recording density but also has a small focus shift and a large residual magnetization is required.

〔発明が解決しようとする課題] 上記磁性膜を形成する材料としては, Co −NiP
t ,Co −Ni−Cr等の合金が使用されているが
,前者は保磁力が大であるという利点を有する反面にお
いて,S/N比が低くノイズが大であると共に,合金中
に貴金属であるptを含有するものであるため高価であ
るという欠点がある。
[Problem to be solved by the invention] The material for forming the magnetic film is Co-NiP.
Although the former has the advantage of a large coercive force, it has a low S/N ratio and large noise, and also contains precious metals in the alloy. Since it contains a certain pt, it has the disadvantage of being expensive.

一方後者は前者よりもコストが低く,ノイズを減少する
ことができるが,耐食性,すなわち環境の変化による飽
和磁化の減少率が大であり,信頼性の点で不充分である
という欠点がある。また近年の高密度記録を行う場合に
おいては,ビットシフトが大であるためエラーが多く,
例えば10−9のエラーレートにおいて28 ns程度
であり,信頼性に乏しい。更に所定の保磁力を確保する
ためには.下地膜として基板上に被着すべきCrlll
の厚さを大にする必要があり.所定IIR厚に形成する
ための時間が長く,生産性の低下を招来するという問題
点がある。
On the other hand, the latter is lower in cost than the former and can reduce noise, but has the disadvantage of being insufficient in terms of corrosion resistance, that is, the rate of decrease in saturation magnetization due to environmental changes, and reliability. In addition, when performing high-density recording in recent years, there are many errors due to large bit shifts.
For example, at an error rate of 10-9, it is about 28 ns, which is poor reliability. Furthermore, in order to ensure the specified coercive force. Crll to be deposited on the substrate as a base film
It is necessary to increase the thickness of the There is a problem in that it takes a long time to form to a predetermined IIR thickness, leading to a decrease in productivity.

上記の問題点を解央する一手段として,  CoCr−
Ta系合金によって磁性膜を形成するという提案がある
(例えば特開平1−133217号公報,IEEE T
ransactions on Magnetics,
 Vol. MAG.23,No,1 , Janua
ry 19B7等参照)。これらの提案により高保磁力
,低ノイズの磁気記録媒体が得られる旨の開示がされて
いる。しかしながら上記合金を構或するTaは価格が高
いという欠点の他に,下記のような問題点がある。すな
わち磁性膜を形或する手段として,最近においてはスパ
ッタリング法によるものが多用されているが.この場合
に使用するTaターゲントの製作が煩雑であるという欠
点がある。Taターゲットは所定の組或の合金を溶解し
てインゴット化した後,ロール圧延を行って製作される
のであるが,このロール圧延時において割れることが多
い。従って所定の厚さのターゲットを製作する作業が極
めて煩雑であるという問題点がある。
As a means to solve the above problems, CoCr-
There is a proposal to form a magnetic film using a Ta-based alloy (for example, Japanese Patent Application Laid-Open No. 1-133217, IEEE T
transactions on Magnetics,
Vol. M.A.G. 23, No. 1, January
ry 19B7 etc.). It is disclosed that a magnetic recording medium with high coercive force and low noise can be obtained by these proposals. However, Ta, which constitutes the above alloy, has the following problems in addition to being expensive. In other words, sputtering has recently been widely used as a means of forming magnetic films. There is a drawback that the Ta target used in this case is complicated to manufacture. Ta targets are manufactured by melting a predetermined set of alloys into ingots and then rolling them with rolls, but they often break during roll rolling. Therefore, there is a problem in that the task of manufacturing a target of a predetermined thickness is extremely complicated.

本発明は.上記従来技術に存在する問題点を解失し.特
に耐食性に優れると共に,ビットシフトおよび残留磁化
特性を向上させ得る磁気記録媒体を提供することを目的
とする。
The present invention is. Eliminates the problems existing in the above conventional technology. It is an object of the present invention to provide a magnetic recording medium that has particularly excellent corrosion resistance and can improve bit shift and residual magnetization characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため,まず第1の発明においては.
非磁性材料からなる基板の表面に非磁性材料からなる下
地膜を介して磁性材料からなる磁性膜を設けてなる磁気
記録媒体において,磁性膜を原子%でCr 5.0 〜
15.0%,  Nb 2.0 〜8.0%,残部Co
および不可避的不純物からなる合金によって形或する,
という技術的手段を採用した。
In order to achieve the above object, first of all, in the first invention.
In a magnetic recording medium in which a magnetic film made of a magnetic material is provided on the surface of a substrate made of a non-magnetic material with an underlying film made of a non-magnetic material interposed therebetween, the magnetic film has Cr 5.0 to 5.0 atomic %.
15.0%, Nb 2.0 to 8.0%, balance Co
formed by an alloy consisting of and unavoidable impurities,
A technical method was adopted.

また第2の発明においては,非磁性材料からなる基板の
表面に非磁性材料からなる下地膜を介して磁性材料から
なる磁性膜を設けてなる磁気記録媒体において,磁性膜
を原子%でCr 5.0〜l5.0%,  V 2.0
〜10.0%,残部Coおよび不可避的不純物からなる
合金によって形成する,という技術的手段を採用した。
Further, in a second invention, in a magnetic recording medium in which a magnetic film made of a magnetic material is provided on the surface of a substrate made of a nonmagnetic material with an underlying film made of a nonmagnetic material interposed therebetween, the magnetic film is made of Cr5 at atomic%. .0~l5.0%, V 2.0
A technical measure was adopted in which the alloy was formed from an alloy consisting of ~10.0% Co, the balance being Co and unavoidable impurities.

上記の発明において,Crが5.0原子%未満では耐食
性が低下する,すなわち環境の変化による飽和磁化の減
少率が大であると共に.ビ・7トシフトを増大させるた
め不都合である。一方Crが15.0原子%を超えると
,残留磁化の減少により出力の低下を招くと共に,ビッ
トシフトも増大するため好ましくない。
In the above invention, if the Cr content is less than 5.0 at%, the corrosion resistance decreases, that is, the rate of decrease in saturation magnetization due to environmental changes is large. This is disadvantageous because it increases the bit shift. On the other hand, if Cr exceeds 15.0 atomic %, this is not preferable because it causes a decrease in output due to a decrease in residual magnetization and also increases bit shift.

次番こNbはビットシフト特性の向上に寄与するが 2
.0原子%未満ではその作用が期待できず一方8.0原
子%を超えると残留磁化の減少を招来すると共に.出力
が低下し,ビットシフトを増大させるため好ましくない
Next, Nb contributes to improving bit shift characteristics, but 2
.. If it is less than 0 atomic %, no effect can be expected, whereas if it exceeds 8.0 atomic %, it will result in a decrease in residual magnetization. This is undesirable because it lowers the output and increases bit shifts.

また■もNbと同様にピントシフト特性向上に寄与する
元素であるが,2.0原子%未満ではその作用を期待す
ることができず.一方10.0原子%を超えると上記N
bの場合と同様にビットシフトの増大,残留磁化の減少
および出力の低下を招来するため好ましくない。
Also, like Nb, ■ is an element that contributes to improving the focus shift characteristics, but if it is less than 2.0 at%, no such effect can be expected. On the other hand, if it exceeds 10.0 at%, the above N
As in case b, this is not preferable because it causes an increase in bit shift, a decrease in residual magnetization, and a decrease in output.

なお下地膜をCr若しくはCr合金によって形戊するこ
とが好ましい。この場合においてCr合金としてはCr
 −Mo ’,Cr−V,Cr−Mn等の合金を使用す
ることができる。
Note that it is preferable that the base film is made of Cr or a Cr alloy. In this case, the Cr alloy is Cr
-Mo', Cr-V, Cr-Mn, and other alloys can be used.

また基板をアル壽ニウム若しくはアル逅ニウム基合金で
形戊すると好ましい。
It is also preferred that the substrate be made of aluminum or an aluminum-based alloy.

〔作 用〕[For production]

上記の構或により,例えば磁気ヘッドとの間において情
報の記録および再生を行うことができ,耐食性に優れる
と共に.ビットシフトおよび残留磁化性能の大なる磁気
記録媒体とすることができる. 〔実施例] マグネシウムを4重量%含有するアルミニウム合金から
なる基板の表面を旋削加工により平滑に形成し.外径9
5e+m,内径25m.厚さ1.27 rumの基板と
した。次にこの基板の表面にNi −P合金からなるメ
ッキ膜を5〜15 μ−の厚さに形或し,磁気記録媒体
の起動時および停止時における磁気ヘッド若しくはスラ
イダとの接触摺動(Contact Start an
d Stop,以下CSSと記す)特性を確保する。上
記のようにして被着したメッキ膜の表面を平滑に研磨す
ると共に,磁気へ冫ド若しくはスライダとの吸着を防止
するためのテクスチャー加工を施す。次に基板を洗浄後
,例えばDCマグネトロンスパッタ装置により,Crか
らなる下地膜と,Co −Cr−Nb合金からなる磁性
膜と,Cからなる保l膜とを順次積層して威膜する.こ
の場合下地膜のI′Ii膜には,スパッタ室内を1 x
to−’ Torr以下に排気後,基板を200゜Cに
おいて30分間加熱し,Arガスを導入してスバッタ室
内を5 mTorrに保持し.投入電力2000 W戒
膜速度400人/分の条件により5膜厚1000人に戒
膜した。次にこの下地膜の上に後記の第l表に示すCo
 −Cr−Nb合金からなる磁性膜を上記同欅にして.
投入電力2000 W,成膜速度1000人〆分の条件
で600入の膜厚に威膜した。
With the above structure, it is possible to record and reproduce information between, for example, a magnetic head, and it has excellent corrosion resistance. It can be used as a magnetic recording medium with high bit shift and residual magnetization performance. [Example] The surface of a substrate made of an aluminum alloy containing 4% by weight of magnesium was formed into a smooth surface by turning. Outer diameter 9
5e+m, inner diameter 25m. The substrate had a thickness of 1.27 rum. Next, a plating film made of Ni-P alloy is formed on the surface of this substrate to a thickness of 5 to 15 μ-. Start an
d Stop (hereinafter referred to as CSS) characteristics. The surface of the plated film deposited as described above is polished to be smooth and textured to prevent it from attracting magnetically or adhering to the slider. Next, after cleaning the substrate, a base film made of Cr, a magnetic film made of a Co-Cr-Nb alloy, and a holding film made of C are successively deposited using, for example, a DC magnetron sputtering device. In this case, for the I'Ii film as the base film, the inside of the sputtering chamber is 1 x
After evacuation to below to-' Torr, the substrate was heated at 200°C for 30 minutes, and Ar gas was introduced to maintain the inside of the spatter chamber at 5 mTorr. Under the conditions of input power of 2000 W and membrane speed of 400 people/min, the membrane thickness was reduced to 1000 people. Next, on top of this base film, Co as shown in Table 1 below is applied.
-A magnetic film made of a Cr-Nb alloy is made of the same material as above.
A film was formed to a thickness of 600 cm under conditions of input power of 2000 W and film formation speed of 1000 people.

なお保護膜は投入電力1000 W,或膜速度80 A
/分の条件で,前記磁性膜上に膜厚300人で戒膜した
. 上記のようにして作製した磁気記録媒体の表面に液体潤
滑剤を塗布し. 3.5 inφディスクドライブに装
着してビットシフトおよび残留磁化の測定を行った結果
を第1表に併記する.なお測定に際して使用した磁気ヘ
ッドは,Mn −Zn ミニモノシリンク型(トラック
幅20μm)であり,スライダ幅610μm,ジンバル
ばね圧9.5 gF .半径24 mの部位における浮
上量0、2μ.,TI1気記録媒体の回転数2400 
r.ρ.階の条件で測定した。
The protective film has an input power of 1000 W and a film speed of 80 A.
A film was deposited on the magnetic film at a thickness of 300 ml under conditions of 300 min. A liquid lubricant was applied to the surface of the magnetic recording medium prepared as described above. Table 1 also shows the results of measurements of bit shift and residual magnetization when installed in a 3.5 inφ disk drive. The magnetic head used in the measurement was a Mn-Zn mini-monosylink type (track width 20 μm), slider width 610 μm, gimbal spring pressure 9.5 gF. Flying height at a radius of 24 m 0, 2μ. , TI1 recording medium rotation speed 2400
r. ρ. Measurements were made under the following conditions.

(以 下 余 白) 第1表 第1表から明らかなように1NαlにおいてはCrの含
有量が小であるため耐食性が不充分であると共に.ビッ
トシフトが大である。Crの含有量の増大に伴って耐食
性が良好になると共に.ビットシフトの改善が認められ
る。しかしながら一方において残留磁化の値が凍少する
。特にNα6においては,Crの含有量が多すぎるため
,残留磁化の値が減少し,出力の低下を招来するのみな
らず.ビノトシフトの値が大となる結果を示している。
(Margins below) Table 1 As is clear from Table 1, 1Nαl has a low Cr content and therefore has insufficient corrosion resistance. Bit shift is large. Corrosion resistance improves as the Cr content increases. Improvement in bit shift is observed. However, on the other hand, the value of residual magnetization freezes. In particular, in Nα6, the Cr content is too high, which not only reduces the value of residual magnetization, but also causes a decrease in output. The results show that the value of the binoto shift is large.

次にNα7〜11においてNbの影響について考察する
.まず徹7においては,Nbの含有量が小であるため耐
食性およびビットシフトの値が不満足である。Nbil
の増大に伴って耐食性が良好になると共に,ビットシフ
トの値が小になる。しかし,NcLilにおいては残留
磁化の値が減少すると共に,ビットシフトの値が大とな
る結果となっている。
Next, consider the influence of Nb on Nα7-11. First, in Toru 7, the corrosion resistance and bit shift values are unsatisfactory because the Nb content is small. Nbil
As the value increases, the corrosion resistance becomes better and the bit shift value becomes smaller. However, in NcLil, the value of residual magnetization decreases and the value of bit shift increases.

これに対してN1112〜5およびN118〜10にお
いては,耐食性が良好であると共に,ビットシフトの値
が小であり,かつ残留磁化の値も所定の値を維持してい
ることが認められる。
On the other hand, in N1112-5 and N118-10, it is recognized that the corrosion resistance is good, the bit shift value is small, and the residual magnetization value also maintains a predetermined value.

次に磁性膜をCo −Cr −V合金によって形戊した
結果を第2表に示す。なお磁性膜の組成が異なること以
外は前記と同様である。
Next, Table 2 shows the results of forming a magnetic film using a Co-Cr-V alloy. Note that this is the same as above except that the composition of the magnetic film is different.

第2表 第2表から明らかなように.■も前記第1表におけるN
bと同様な作用を示すことがわかる。すなわちk1〜6
においてはCr量が5.0 〜15.0原子%の範囲に
おいて耐食性が良好であり.ピントシフトおよび残留磁
化の値が所定の範囲に入っている。またNo. 7〜1
1においては,■が2.0〜10.0原子%の範囲にお
いて,前記Nb同様に耐食性が良好であると共に.ビッ
トシフトおよび残留磁化の値が満足すべきものを示して
いる。
As is clear from Table 2. ■ is also N in Table 1 above.
It can be seen that it shows the same effect as b. i.e. k1-6
The corrosion resistance is good when the Cr content is in the range of 5.0 to 15.0 at%. The values of focus shift and residual magnetization are within predetermined ranges. Also No. 7-1
In No. 1, when ■ is in the range of 2.0 to 10.0 at %, the corrosion resistance is good like the above-mentioned Nb. The bit shift and residual magnetization values are satisfactory.

本実施例においては下地膜を形或する材料としてCrの
例について記述したが,下地膜としてはCrのみでな<
,Cr −Mo ,Cr−V,Cr −Mn等のCr合
金であってもよい。更に基板を形成する材料としてはマ
グネシウムを含むアルミニウム基合金のみに限らず,ア
ルくニウム若しくは他の金属材料または非金属材料を使
用してもよい。
In this example, an example of Cr was described as the material forming the base film, but Cr is not the only material that can be used as the base film.
, Cr-Mo, Cr-V, Cr-Mn, and other Cr alloys may be used. Furthermore, the material for forming the substrate is not limited to an aluminum-based alloy containing magnesium, but may also be aluminum, other metal materials, or non-metal materials.

また更に基板の加工手段は旋削のみに限らず,研削その
他によってもよい。なおスバッタ室内のArガス圧力は
2〜3Q mTorrの範囲で任意に選定できる。
Furthermore, the means for processing the substrate is not limited to turning, but may also be other methods such as grinding. Note that the Ar gas pressure in the spatter chamber can be arbitrarily selected within the range of 2 to 3 Q mTorr.

得ることができるという効果がある。特に磁性膜を形或
する合金組成としてCo −Cr−NbまたはCo −
Cr−Vを使用したものであるから.従来のCo −C
r−Ta合金を使用するものと比較して安価であるのに
拘わらず.同等の特性を具有する。また或膜時に使用す
るターゲット材の製作が極めて容易であるという効果が
ある。
There is an effect that can be obtained. In particular, Co-Cr-Nb or Co-
Because it uses Cr-V. Conventional Co-C
Although it is cheaper than those using r-Ta alloy. Possesses equivalent characteristics. Another advantage is that it is extremely easy to manufacture a target material used in forming a certain film.

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性材料からなる基板の表面に非磁性材料から
なる下地膜を介して磁性材料からなる磁性膜を設けてな
る磁気記録媒体において、磁性膜を原子%でCr5.0
〜15.0%、Nb2.0〜8.0%、残部Coおよび
不可避的不純物からなる合金によって形成したことを特
徴とする磁気記録媒体。
(1) In a magnetic recording medium in which a magnetic film made of a magnetic material is provided on the surface of a substrate made of a non-magnetic material with an underlying film made of a non-magnetic material interposed therebetween, the magnetic film has a Cr5.
15.0% of Nb, 2.0 to 8.0% of Nb, the balance being Co and inevitable impurities.
(2)非磁性材料からなる基板の表面に非磁性材料から
なる下地膜を介して磁性材料からなる磁性膜を設けてな
る磁気記録媒体において、磁性膜を原子%でCr5.0
〜15.0%、V2.0〜10.0%、残部Coおよび
不可避的不純物からなる合金によって形成したことを特
徴とする磁気記録媒体。
(2) In a magnetic recording medium in which a magnetic film made of a magnetic material is provided on the surface of a substrate made of a nonmagnetic material with an underlying film made of a nonmagnetic material interposed therebetween, the magnetic film is made of Cr5.0 at %.
15.0%, V2.0 to 10.0%, the balance being Co and inevitable impurities.
JP23938289A 1989-09-14 1989-09-14 Magnetic recording medium Pending JPH03102615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23938289A JPH03102615A (en) 1989-09-14 1989-09-14 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23938289A JPH03102615A (en) 1989-09-14 1989-09-14 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH03102615A true JPH03102615A (en) 1991-04-30

Family

ID=17043954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23938289A Pending JPH03102615A (en) 1989-09-14 1989-09-14 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH03102615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273141A (en) * 1995-03-27 1996-10-18 Akita Pref Gov Thin film magnetic recording medium
KR100500264B1 (en) * 2001-12-06 2005-07-11 죤 케이 졍커스 Washer, fastener provided with a washer, and method of and power tool for fastening with the use of the washer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273141A (en) * 1995-03-27 1996-10-18 Akita Pref Gov Thin film magnetic recording medium
US5759682A (en) * 1995-03-27 1998-06-02 Governor Of Akita Perfecture Thin film magnetic recording medium
KR100500264B1 (en) * 2001-12-06 2005-07-11 죤 케이 졍커스 Washer, fastener provided with a washer, and method of and power tool for fastening with the use of the washer

Similar Documents

Publication Publication Date Title
JP2513893B2 (en) Magnetic recording media
US6129981A (en) Magnetic recording medium and magnetic recording disk device
JPH0253222A (en) Magnetic recording medium
JPH03102615A (en) Magnetic recording medium
JPH0750008A (en) Magnetic recording medium
JP3625865B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JPH03102616A (en) Magnetic recording medium
JPH0770037B2 (en) Metal thin film magnetic recording medium for in-plane magnetization recording
JP2011192319A (en) Perpendicular magnetic recording medium
JPH02285507A (en) Magnetic recording medium
JPH05101933A (en) Magnetic recording medium
JPH02285506A (en) Magnetic recording medium
JPH0750009A (en) Magnetic recording medium
JPH05182171A (en) Magnetic recording medium
JPH0258723A (en) Magnetic recording medium and magnetic memory medium
JPH0460916A (en) Metal thin film type magnetic recording medium
JPS6052918A (en) Magnetic memory medium
JPH0268712A (en) Thin film magnetic recording medium
JPH02292715A (en) Magnetic recording medium and its production
JPH05189741A (en) Magnetic recording medium
JPH0467251B2 (en)
JPH05189739A (en) Magnetic recording medium
JPS62162223A (en) Thin film magnetic recording medium
JPH0312814A (en) Thin metallic film type magnetic recording medium
JPH05189740A (en) Magnetic recording medium