JPH03102207A - Height detecting apparatus for sample surface - Google Patents

Height detecting apparatus for sample surface

Info

Publication number
JPH03102207A
JPH03102207A JP1240341A JP24034189A JPH03102207A JP H03102207 A JPH03102207 A JP H03102207A JP 1240341 A JP1240341 A JP 1240341A JP 24034189 A JP24034189 A JP 24034189A JP H03102207 A JPH03102207 A JP H03102207A
Authority
JP
Japan
Prior art keywords
sample
electron beam
deflection
height
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1240341A
Other languages
Japanese (ja)
Other versions
JP2946336B2 (en
Inventor
Mamoru Nakasuji
護 中筋
Kenji Morita
憲司 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP24034189A priority Critical patent/JP2946336B2/en
Publication of JPH03102207A publication Critical patent/JPH03102207A/en
Application granted granted Critical
Publication of JP2946336B2 publication Critical patent/JP2946336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure with high accuracy by providing a detecting apparatus which obtains the height of the surface of a sample on the basis of detecting signals of a detector from two marks obtained through scanning. CONSTITUTION:An electron beam 1 projected from an electron beam generating apparatus 20 forms a reduced image of a source of the electron beams via a reducing lens 2 and a focus correcting lens 3 at a position 4. This image is formed on the surface of a sample 11 by an objective lens 7. A reflecting electron from the sample 11 is detected by an electron detector 10, amplified by an amplifier 13 and input to a control apparatus 14. Then, the apparatus 14 generates a control command based on the design data input from an input device 15 to a sample movement control apparatus 16 so that the center of a predetermined registration mark is found on the axis of an electro-optical system. As a result, a current to be fed to deflection coils 5, 6 is controlled to scan the registration mark with respect to a position 9 as the center of deflection. By taking an output of the amplifier 13 in synchronization with the scanning, the distance between the position 9 and the surface of the sample 11 can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子線を用いて試料面の高さを測定する装置に
関するものである. 〔従来の技術〕 例えば、従来、電子線措画装置において、試料面の高さ
を測定する場合には、対物レンズ近傍に光学系を別途設
け、試料面に斜めに光を入射させ、そこからの反射光の
結像位置から試料面の高さを測定していた. また、特別の測定光のための光学系を用いずに、描画用
の電子線の合焦条件から試料の高さを求めるようにした
ものもある. 〔発明が解決しようとする課題〕 しかしながら、光を用いて高さを検出するものは、電子
光学系の近くに測定光の光学系に不可欠なガラス等の絶
縁物を設ける必要があり、これが電子線によって帯電し
、電子線の位置ドリフトあるいは非点収差を生ずる原因
となると共に、電子光学系の他に光の光学系を必要とす
るため、装置が複雑、かつ高価になる欠点がある.また
、特別の測定光を用いた従来装置では描画面が平坦でか
つパターンが無い場合には正確な高さが測定できるが、
反射率の異るパターンがある場所や、描画面に凹凸があ
る場合には正確な高さが測定できない問題点があった. 他方、電子線の合焦条件から試料の高さを求めるように
したものでは、対物レンズの電流を何度か変化させる必
要があるため、測定に長時間を要する問題点があった。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an apparatus for measuring the height of a sample surface using an electron beam. [Prior Art] For example, conventionally, when measuring the height of a sample surface with an electron beam imaging device, an optical system is separately provided near the objective lens, and light is incident obliquely on the sample surface. The height of the sample surface was measured from the imaging position of the reflected light. There is also a method that calculates the height of the sample from the focusing conditions of the electron beam for drawing without using a special optical system for measuring light. [Problem to be solved by the invention] However, in devices that use light to detect height, it is necessary to install an insulator such as glass near the electron optical system, which is essential for the optical system of the measurement light. The electrostatic charge caused by the beam causes positional drift or astigmatism of the electron beam, and it also requires a light optical system in addition to the electron optical system, making the device complex and expensive. Additionally, conventional devices that use a special measurement light can accurately measure heights when the drawing surface is flat and has no pattern.
There was a problem that accurate height measurements could not be made in areas with patterns with different reflectances or in cases where the drawing surface was uneven. On the other hand, the method in which the height of the sample is determined from the focusing conditions of the electron beam has the problem that the measurement takes a long time because the current of the objective lens needs to be changed several times.

そこで本発明は、高さ測定に光を用いることなく、電子
光学系を用いて試料の高さを測定するに際し、高精度か
つ高速で測定することのできる試料面の高さ測定装置を
得ることを目的とするものである. [I題を解決するための手段] 上記課題を解決するために、本発明は、まず、電子線発
生装置からの電子線を試料上にて集束させる集束レンズ
系と、前記電子線を試料上で偏向走査させるための偏向
装置と、前記試料からの信号を検出する検出器と、前記
試料の表面の近辺を偏向支点として試料面上の予め間隔
の分かっている2つのマークを前記電子線により走査さ
せる制1Tj装置と、前記走査により、前記マークから
得られる信号を検出する前記検出器の検出信号に基づい
て前記試料面の高さを求める検出装置と、を設けたこと
を特徴とする試料面の高さ測定装置であり、 また、電子線発生装置からの電子線を試料上にて集束さ
せる集束レンズ系と、前記電子線を試料上にて偏向走査
するための偏向装置と、前記試料からの信号を検出する
検出器と、を少なくとも有する電子wti画装置の高さ
検出装置において、前記試料の表面の近辺を偏向支点と
して試料面上の予め間隔の分かっている2つのマークを
前記電子線により走査させる偏向手段を設けると共に、
前記マークから得られる信号を検出する前記検出器の検
出信号に基づいて前記試料面の高さを求める検出装置を
設けたことを特徴とする試料面の高さ測定装置であり、 さらに、前記偏向手段は軸合わせ用の2段のコイルであ
ることを特徴とする測定装置である.〔作 用〕 本発明に於いては、偏向支点と試料表面との距離を小さ
く (対物レンズの像点距離のl/10程度)するので
、試料上のある程度の間隔の2つのマークを走査した時
の偏向角度は大きくなる.即ち大きい角度を持つ斜入射
走査をすることになる.従って試料のわずかな上下変動
によってマーク間偏向角が大きく変り、高精度の測定が
可能となる.また、2つのマークの一度の走査で測定が
行なえるので、2つのマークを走査位置との関係で所定
の位置に持ってくる時間を考えたとしても、迅速な測定
が行なえることになる。
Therefore, the present invention provides a height measuring device for a sample surface that can measure the height of a sample with high precision and high speed using an electron optical system without using light for height measurement. The purpose is to [Means for Solving Problem I] In order to solve the above problems, the present invention first provides a focusing lens system that focuses an electron beam from an electron beam generator on a sample, and a focusing lens system that focuses the electron beam on a sample. a deflection device for deflecting and scanning the sample; a detector for detecting a signal from the sample; A sample characterized in that it is provided with a control device for scanning, and a detection device for determining the height of the sample surface based on a detection signal of the detector that detects a signal obtained from the mark by the scanning. It is a surface height measuring device, and also includes a focusing lens system that focuses an electron beam from an electron beam generator on a sample, a deflection device that deflects and scans the electron beam on the sample, and a deflection device that deflects and scans the electron beam on the sample. A height detecting device for an electronic WTI imaging device having at least a detector for detecting a signal from In addition to providing a deflection means for scanning by a line,
A height measuring device for a sample surface, further comprising: a detection device that determines the height of the sample surface based on a detection signal of the detector that detects a signal obtained from the mark; The measuring device is characterized by a two-stage coil for axis alignment. [Function] In the present invention, since the distance between the deflection fulcrum and the sample surface is made small (approximately 1/10 of the image point distance of the objective lens), two marks at a certain distance on the sample can be scanned. The deflection angle becomes larger. In other words, oblique incidence scanning with a large angle is performed. Therefore, the deflection angle between marks changes greatly with a slight vertical movement of the sample, allowing highly accurate measurements. Furthermore, since measurement can be performed by scanning two marks at once, even when considering the time required to bring the two marks to a predetermined position in relation to the scanning position, rapid measurement can be performed.

〔実施例〕〔Example〕

第1図は、本発明を電子線を用いた描画装置に利用した
場合の実施例の説明図である.電子線発生装置20から
出てきた電子&?t 1は、縮小レンズ2及び焦点補正
レンズ3を通り、電子線発生装置20の電子線発生源の
縮小像を位置4に結像させる.この像は、対物レンズ7
によって試料11の表面に結像される.対物レンズ7へ
の入射条件は軸合わせコイル5、6で決定され、描画用
偏向器8で試糾上の走査が行われ、陽画が実行される.
試料11は複数個のチップで構成され、第2図に示した
ように、各チップにはレジストレーションマーク12が
設けられている。そして、試料11は試料移動装W16
により移動制御される. 試料11からの反射電子は、反射電子検出器10にて検
出され、検出器IOの出力信号は、増幅器13にて増幅
され、制御装置14に入力される。
FIG. 1 is an explanatory diagram of an embodiment in which the present invention is applied to a drawing apparatus using an electron beam. Electrons &? emitted from the electron beam generator 20? At t 1 , a reduced image of the electron beam source of the electron beam generator 20 is formed at position 4 through the reduction lens 2 and the focus correction lens 3 . This image is shown by the objective lens 7
An image is formed on the surface of sample 11 by . The conditions of incidence on the objective lens 7 are determined by the alignment coils 5 and 6, and a preliminary scan is performed by the drawing deflector 8 to produce a positive image.
The sample 11 is composed of a plurality of chips, and each chip is provided with a registration mark 12, as shown in FIG. Then, the sample 11 is transferred to the sample moving device W16.
Movement is controlled by The backscattered electrons from the sample 11 are detected by the backscattered electron detector 10, and the output signal of the detector IO is amplified by the amplifier 13 and input to the control device 14.

制御装置14は、人力装置15からオペレータの指令、
試料l1の表面のパターンの設計値等を入力し、電子線
発生装置20、縮小レンズ2、焦点補正レンズ3、軸合
わせコイル5、6、描画用偏向器8、対物レンズ7、試
料移動装置16を制御する. 軸合わせコイル5、6は2段の偏向器であるから、軸合
わせコイル5、6を用いて電子線1が試料上を走査する
ように制御することができ、しかも、それぞれに流す電
流比を適当な値にすることによって、偏向支点を試料l
1の表面のすぐ上の位置9とするように設定できる. 本実施例は、軸合わせコイル5、6のこの性質を利用し
て、試料1lのレジストレーションマ−ク12a,12
bを走査する.この場合の電子線1の軌道を第1図に符
号17で示す。
The control device 14 receives operator commands from the human power device 15,
Input the design values of the pattern on the surface of the sample l1, etc., and proceed to the electron beam generator 20, the reduction lens 2, the focus correction lens 3, the alignment coils 5, 6, the drawing deflector 8, the objective lens 7, and the sample moving device 16. control. Since the alignment coils 5 and 6 are two-stage deflectors, the electron beam 1 can be controlled to scan over the sample using the alignment coils 5 and 6, and the current ratio flowing through each can be controlled. By setting the deflection fulcrum to an appropriate value,
It can be set to position 9 just above the surface of 1. This embodiment utilizes this property of the alignment coils 5 and 6 to mark the registration marks 12a and 12 on the sample 1l.
Scan b. The trajectory of the electron beam 1 in this case is shown by reference numeral 17 in FIG.

制御装置14は入力装置15から入力される設計情報に
基づき、所定のレジストレーションマーク12a,12
bの中心が電子光学系の軸上にくるように、試料移動制
御装置l6に制御指令を行い、位置9を偏向支点として
レジストレーションマーク12a,12bを走査するよ
うに軸合わせコイル5、6にそれぞれに流す電流値を制
御する。
The control device 14 selects predetermined registration marks 12a, 12 based on the design information input from the input device 15.
A control command is given to the sample movement control device l6 so that the center of point b is on the axis of the electron optical system, and a control command is given to the alignment coils 5 and 6 to scan the registration marks 12a and 12b using position 9 as a deflection fulcrum. Controls the current value flowing to each.

そして、電子線発生装置20から電子線1を射出せしめ
ると、電子線lは、第2図に示したように、レジストレ
ーションマーク12a,12bを走査する.走査に同期
して増幅r&13の出力を取り込むことにより、偏向支
点9から試料11表面までの距離を知ることができる.
すなわち、レジストレーションマーク12a,12bの
間隔2Lはあらかしめ分かっており、また、電子線1を
走査したときに、レジストレーションマーク12a,1
2bから得られる信号を増幅器13の出力から読み取る
ことにより、偏向支点9から2つのレジストレーション
マーク12aS 12bを見込む角度eが求まるので、
偏向中心9と試料11表面までの距HDを知ることがで
きる. すなわち、D=L/ Lane,である.そして、制御
装置l4は、求めた距離Dが所定位置になる様に対物レ
ンズ7に流す電流値を制御し、距離Dが所定の値になっ
たときに、測定した2つのレジストレーシゴンマーク1
2a,12bのあるチップに設計値に応した描画を行う
べく、描画用偏向器8に流す電流を制御する。
When the electron beam 1 is emitted from the electron beam generator 20, the electron beam 1 scans the registration marks 12a and 12b as shown in FIG. By capturing the output of the amplification r&13 in synchronization with scanning, the distance from the deflection fulcrum 9 to the surface of the sample 11 can be determined.
That is, the interval 2L between the registration marks 12a, 12b is known in advance, and when the electron beam 1 is scanned, the distance 2L between the registration marks 12a, 12b is known.
By reading the signal obtained from 2b from the output of the amplifier 13, the angle e at which the two registration marks 12aS and 12b are viewed from the deflection fulcrum 9 can be found.
The distance HD between the deflection center 9 and the surface of the sample 11 can be determined. That is, D=L/Lane. Then, the control device l4 controls the current value to be applied to the objective lens 7 so that the determined distance D becomes a predetermined position, and when the distance D reaches a predetermined value, the two measured registration marks 1
The current flowing through the drawing deflector 8 is controlled in order to perform drawing according to the design value on the chips 2a and 12b.

そして、膚画が終了すると、設計値に応して試料移動装
置16を制御し、同上のことを繰り返す.次に、第3図
を参照して測定精度について述べる. 偏向支点9と試料11表面までの距離をD、レジストレ
ーションマーク12a,12b間隔を2L、要求される
Z測定精度をdZ、マーク測定情度をdLとすると第2
図の2つの相似3角形から次の関係が得られる。
When the skin drawing is completed, the sample moving device 16 is controlled according to the design value, and the same process is repeated. Next, we will discuss measurement accuracy with reference to Figure 3. If the distance between the deflection fulcrum 9 and the surface of the sample 11 is D, the interval between the registration marks 12a and 12b is 2L, the required Z measurement accuracy is dZ, and the mark measurement sensitivity is dL, then the second
The following relationship is obtained from the two similar triangles in the figure.

D       L dZ      dL ココテ例えば2L=100IIm,dL=0.02pm
,D=2MとするとdZ=2μmが得られる。
D L dZ dL For example, 2L=100IIm, dL=0.02pm
, D=2M, dZ=2 μm is obtained.

即ち、偏向コイル2つによる偏向支点(中心)を試料上
2+wの位置に調整し、一走査でマーク間隔を測定でき
れば2μmの精度で測定できる.また偏向支点を試料よ
り下へ設け、試料l1より上方に偏向支点9を設定した
時の偏向角と、試料1lより下方の支点9゛を偏向中心
とした時のレジストレーションマーク12a、12bの
間隔が同じ値になる条件を求め、その中間に試1411
の位置があると算出してもよい. また、試料1lの表面が変動する可能性のある範囲のZ
位置外の2つのZ位置に較正用マークを設け、レンズに
近い側のマークで、偏向器に最大電流を与えた時丁度マ
ークが一走査で測定できる条件に偏向支点を設定すると
、レンズに遠い側のマーク及びすべての試料面位置のマ
ークは検出可能になる.2つの較正用マークでの測定値
間から内挿して任意の試料面でのZ測定を行えば、測定
の信頼性を向上することができる。
That is, if the deflection fulcrum (center) of the two deflection coils is adjusted to a position 2+w above the sample and the mark interval can be measured in one scan, the measurement can be performed with an accuracy of 2 μm. Also, the deflection angle when the deflection fulcrum is set below the sample and the deflection fulcrum 9 is set above the sample 11, and the distance between the registration marks 12a and 12b when the deflection center is at the fulcrum 9' below the sample 1l. Find the conditions under which the values are the same, and try 1411 between them.
It may be calculated if there is a position of . Also, Z in the range where the surface of the sample 1l may change
Calibration marks are provided at two Z positions outside the position, and the deflection fulcrum is set so that the mark near the lens can be measured in one scan when the maximum current is applied to the deflector. The side marks and marks at all sample surface positions become detectable. The reliability of the measurement can be improved by interpolating between the measured values at the two calibration marks and performing the Z measurement on any sample surface.

以上の説明では、電子線描画装置に本発明を適用した例
を上げたが、本発明を適用するのは電子線描画装置に限
られず、広く電子線を用いた試料面の高さ検出装置とし
てとらえることができる.そして、上記実施例では電子
光学系の2つの軸合わせコイル5、6を用いて高さ検出
のための走査を行なわせていたが、軸合わせコイル5、
6を兼用することは必ずしも必要なことではなく、高さ
検出専用の走査手段を設けてもよいことは当然のことで
ある. 〔発明の効果〕 以上述べたように本発明によれば、 (】)光の光学系が不要となるため、電子光学系が簡略
化され、光光学系の絶縁物による悪影響もないので、ビ
ームが安定する、 (2)対物レンズのレンズ電流を変えて合焦条件からZ
を求める方法に比べて、単にビームを複数回走査するだ
けであるから測定時間が大幅に短縮される、 (3)偏向支点を試料面近くに設定するため、測定精度
を向上することができる、等の効果がある.さらに本発
明の実施例によれば試料面の前方と後方とに偏向支点を
設けた場合のデータから測定することにより、さらに高
精度な測定を行なうことができ、また、2つの高さの異
る位置での較正用マークを走査した時のデータを参照す
ることにより、測定値の信頼性を向上させることができ
る。
In the above explanation, an example has been given in which the present invention is applied to an electron beam lithography system. However, the present invention is not limited to an electron beam lithography system, but can be applied to a wide range of devices for detecting the height of a sample surface using an electron beam. It can be captured. In the above embodiment, the two alignment coils 5 and 6 of the electron optical system were used to perform scanning for height detection, but the alignment coil 5,
6 is not necessarily required, and it is of course possible to provide a scanning means exclusively for height detection. [Effects of the Invention] As described above, according to the present invention, (]) Since the light optical system is not required, the electron optical system is simplified, and there is no adverse effect caused by the insulator of the light optical system, so that the beam (2) Change the lens current of the objective lens to adjust Z from the focusing condition.
(3) Measurement accuracy can be improved because the deflection fulcrum is set near the sample surface. It has the following effects. Furthermore, according to the embodiment of the present invention, by measuring from data obtained when deflection supports are provided in front and behind the sample surface, it is possible to perform even more accurate measurement, and it is also possible to perform measurements with even higher accuracy. By referring to the data obtained when the calibration mark is scanned at a certain position, the reliability of the measured value can be improved.

〔主要部分の符号の説明〕[Explanation of symbols of main parts]

5、6・・・軸合せコイル、9・・・偏向支点、lO・
・・反射電子検出器、l4・・・制御装置。
5, 6...Axis alignment coil, 9...Deflection fulcrum, lO・
... Backscattered electron detector, l4... Control device.

Claims (3)

【特許請求の範囲】[Claims] (1)電子線発生装置からの電子線を試料上にて集束さ
せる集束レンズ系と、 前記電子線を試料上で偏向走査させるための偏向装置と
、 前記試料からの信号を検出する検出器と、 前記試料の表面の近辺を偏向支点として試料面上の予め
間隔の分かっている2つのマークを前記電子線により走
査させる制御装置と、 前記走査により、前記マークから得られる信号を検出す
る前記検出器の検出信号に基づいて前記試料面の高さを
求める検出装置と、 を設けたことを特徴とする試料面の高さ測定装置。
(1) A focusing lens system that focuses an electron beam from an electron beam generator on a sample, a deflection device that deflects and scans the electron beam on the sample, and a detector that detects a signal from the sample. , a control device that causes the electron beam to scan two marks whose distance is known in advance on the sample surface using the vicinity of the surface of the sample as a deflection fulcrum; and the detection device that detects a signal obtained from the marks by the scanning. A detection device for determining the height of the sample surface based on a detection signal of the sample surface.
(2)電子線発生装置からの電子線を試料上にて集束さ
せる集束レンズ系と、 前記電子線を試料上にて偏向走査するための偏向装置と
、 前記試料からの信号を検出する検出器と、 を少なくとも有する電子線描画装置の高さ検出装置にお
いて、 前記試料の表面の近辺を偏向支点として試料面上の予め
間隔の分かっている2つのマークを前記電子線により走
査させる偏向手段を設けると共に、前記マークから得ら
れる信号を検出する前記検出器の検出信号に基づいて前
記試料面の高さを求める検出装置を設けたことを特徴と
する試料面の高さ測定装置。
(2) A focusing lens system that focuses the electron beam from the electron beam generator on the sample, a deflection device that deflects and scans the electron beam on the sample, and a detector that detects the signal from the sample. In a height detection device for an electron beam lithography apparatus having at least the following, a deflection means is provided that causes the electron beam to scan two marks on the sample surface whose distance is known in advance, using the vicinity of the surface of the sample as a deflection fulcrum. A height measuring device for a sample surface, further comprising a detection device that determines the height of the sample surface based on a detection signal from the detector that detects a signal obtained from the mark.
(3)前記偏向手段は軸合わせ用の2段のコイルである
ことを特徴とする請求項(2)記載の測定装置。
(3) The measuring device according to claim 2, wherein the deflection means is a two-stage coil for axis alignment.
JP24034189A 1989-09-16 1989-09-16 Sample surface height detector Expired - Fee Related JP2946336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24034189A JP2946336B2 (en) 1989-09-16 1989-09-16 Sample surface height detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24034189A JP2946336B2 (en) 1989-09-16 1989-09-16 Sample surface height detector

Publications (2)

Publication Number Publication Date
JPH03102207A true JPH03102207A (en) 1991-04-26
JP2946336B2 JP2946336B2 (en) 1999-09-06

Family

ID=17058046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24034189A Expired - Fee Related JP2946336B2 (en) 1989-09-16 1989-09-16 Sample surface height detector

Country Status (1)

Country Link
JP (1) JP2946336B2 (en)

Also Published As

Publication number Publication date
JP2946336B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
JP2835097B2 (en) Correction method for charged beam astigmatism
JP2002542042A (en) Laser calibration device and method
JPH0324771B2 (en)
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
JP2001202912A (en) Method of aligning opening in a charged particle beam system, having optical axis
JPH03102207A (en) Height detecting apparatus for sample surface
JPH09293477A (en) Charged beam adjusting method
JPH0652650B2 (en) Alignment method of charged beam
JPH08227840A (en) Adjusting method and drawing method in charged-particle-line drawing apparatus
JPH07218234A (en) Size measuring method for fine pattern
JP3357181B2 (en) Electron beam drawing apparatus and adjustment method thereof
JPH07190735A (en) Optical measuring device and its measuring method
JP3430788B2 (en) Sample image measuring device
JP2004528580A (en) Sample positioning system and method for optical surface inspection using video images
JP2005098703A (en) Electron beam measuring apparatus
JPH0282515A (en) Electron beam lithography
JPH0982264A (en) Pattern inspection device and scanning electron microscope
JP2828320B2 (en) Electron beam length measurement method
JPS6316687B2 (en)
JPS63187627A (en) Automatic focusing method for charged particle beam aligner
JP2629768B2 (en) Electron beam exposure system
JPH11304441A (en) Three-dimensional shape measuring device
JPS58106746A (en) Axis alignment process of electron lens
JPH01232300A (en) Method and device for axis alignment of electron beam device
JP2618919B2 (en) Electron beam drawing method and electron beam drawing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees