JPH03101087A - Heat radiating ceramic - Google Patents

Heat radiating ceramic

Info

Publication number
JPH03101087A
JPH03101087A JP1235554A JP23555489A JPH03101087A JP H03101087 A JPH03101087 A JP H03101087A JP 1235554 A JP1235554 A JP 1235554A JP 23555489 A JP23555489 A JP 23555489A JP H03101087 A JPH03101087 A JP H03101087A
Authority
JP
Japan
Prior art keywords
ceramic
silicon carbide
heating element
fiber bundle
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1235554A
Other languages
Japanese (ja)
Inventor
Shiro Yamamoto
山本 至郎
Keizo Shimada
島田 恵造
Toru Sawaki
透 佐脇
Akio Nakaishi
昭夫 中石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP1235554A priority Critical patent/JPH03101087A/en
Publication of JPH03101087A publication Critical patent/JPH03101087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To suppress change of electric resistance of a heat radiating ceramic for a long duration by covering the whole surface of a conductive silicon carbide-based fiber bundle prepared from an organic siliceous polymer raw material with another ceramic so as to specify the whole surface area. CONSTITUTION:A center part (core part) is composed with conductive silicon carbide-based fiber bundle with a relatively low volume resistance and its surface is so covered with a ceramic having higher volume resistance than the core part as to suppress the surface area (equivalent to the surface area of the practical upper surface layer) of the whole heat radiating body of a heater to 0.03-0.1cm<2>/W per a prescribed heat generation. In this way, a ceramic heater which can relatively easily be given an optional shape, whose temperature can easily be increased and whose electric resistance hardly changes for a long period, is realized.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は、耐熱性・耐酸化性等のセラミックス発熱体に
関する。更に詳しくは、有機ケイ素ポリマーを原料とす
る導電性シリコンカーバイド系繊維を主体とする導電発
熱体とした高温にも耐えるセラミックス発熱体で、特に
長期に汎りその電気抵抗が変わりにくいセラミックス発
熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic heating element having heat resistance, oxidation resistance, etc. More specifically, it is a ceramic heating element that can withstand high temperatures and is made mainly of conductive silicon carbide fibers made from organosilicon polymers, and in particular, ceramic heating elements that last for a long time and whose electrical resistance is difficult to change. .

[従来の技術] 電気ヒーターとして、特に高温用の電気ヒータ−として
セラミックスが用いられているのは公知の事実である。
[Prior Art] It is a well-known fact that ceramics are used as electric heaters, especially electric heaters for high temperatures.

しかしながら、セラミックスは固く、任意の形態のヒー
ター等は極めて作り難い。
However, ceramics are hard and it is extremely difficult to make heaters of any type.

例えば被加熱体に沿って蛇行したヒーター等を作成する
には種々の困難がある。この解決手段として導電性セラ
ミックス繊維を発熱体に用いることが考えられる。
For example, there are various difficulties in creating a heater that snakes along the heated object. One possible solution to this problem is to use conductive ceramic fibers as a heating element.

一方、電気ヒーターにおいて導電発熱体として用いられ
る素材は、一般に、使用とともに酸化劣化して抵抗値が
上昇することも知られている。特に高温で用いられるセ
ラミックスヒーターの場合には、セラミックスが高い耐
熱性を有するにもかかわらず、該ヒーターが特に高温で
用いられるため、この傾向は著しい。従って、かかるヒ
ーターは初期の使用条件と使用可能期間末期の使用条件
は著しく異なっているか短井命であるのが普通である。
On the other hand, it is also known that the materials used as conductive heating elements in electric heaters generally undergo oxidative deterioration and increase in resistance with use. This tendency is particularly noticeable in the case of ceramic heaters used at high temperatures, because the heaters are used at particularly high temperatures despite the fact that ceramics have high heat resistance. Therefore, the initial usage conditions of such heaters and the usage conditions at the end of their useful life are usually significantly different or different.

例えば、シリコンカーバイドはよく知られたヒーター材
料用のセラミックスであるが、この素材は当初の電気抵
抗の2ないし3倍の電気抵抗になった時点をもって寿命
としている。このため、この種の素材を用いたヒーター
はこの調節を行うのが比較的容易である工業用用途にほ
ぼ限られている。この問題は劣化が進みやすい形態、つ
まり比表面積の大きな繊維では、−層不利になる。
For example, silicon carbide is a well-known ceramic used as a heater material, and the life of this material is reached when the electrical resistance reaches two to three times the initial electrical resistance. For this reason, heaters using this type of material are largely limited to industrial applications where this adjustment is relatively easy to make. This problem becomes disadvantageous for fibers that are prone to deterioration, that is, fibers that have a large specific surface area.

また、繊維の特徴である比表面積が大きいことは放熱量
が大きいことであり、ヒーターとしたときの発熱温度が
上がり難いという問題もある。
In addition, the large specific surface area, which is a characteristic of fibers, means that they dissipate a large amount of heat, and there is also the problem that when used as a heater, it is difficult to raise the heat generation temperature.

[発明が解決しようとする課題] 本発明において解決しようとする課題は、従来のセラミ
ックスヒーターの欠点を解消した新規な発熱体を提供す
ることにある。即ち、任意の形が作り易く、長期に汎り
電気抵抗が比較豹変わり難く、かつ温度が上げ易い発熱
体を提供することにある。このような発熱体が提供でき
れば、家庭用品等、多くの分野で、セラミックスヒータ
ーを容易に使用できるようになると考えられる。
[Problems to be Solved by the Invention] The problems to be solved by the present invention are to provide a novel heating element that eliminates the drawbacks of conventional ceramic heaters. That is, the object of the present invention is to provide a heating element that can be easily formed into any shape, is durable over a long period of time, has relatively little change in electrical resistance, and can easily raise its temperature. If such a heating element could be provided, it would be possible to easily use ceramic heaters in many fields such as household products.

[問題点を解決するための手段] 本発明者らは、これらの問題の解決に鋭意努め、導電性
シリコンカーバイド系繊維を主たる導電体とし、これを
他のセラミックスで覆ったセラミックス発熱体は、上記
の課題を解決しうることを知見し、本発明に到達した。
[Means for Solving the Problems] The present inventors have made efforts to solve these problems, and have developed a ceramic heating element in which conductive silicon carbide fibers are used as the main conductor and this is covered with other ceramics. The inventors have discovered that the above problems can be solved and have arrived at the present invention.

本発明の発熱体は、中心部(芯部)を比較的体積電気抵
抗率の低い導電性シリコンカーバイド系繊維の束で構成
し、その表面を、好ましくはこれよりも体積電気抵抗率
の高いセラミックスで覆っていることに特徴がある。後
者のセラミックスの体積抵抗率は高いことが好ましいが
必須ではない。
The heating element of the present invention has a center portion (core portion) composed of a bundle of conductive silicon carbide fibers having a relatively low volume electrical resistivity, and a surface thereof preferably made of a ceramic material having a higher volume electrical resistivity. It is distinctive in that it is covered with It is preferable that the latter ceramic has a high volume resistivity, but it is not essential.

この体積電気抵抗率の高い相が緻密質特に5iOzを主
として含有するガラス質であることが好ましい。
It is preferable that this phase having a high volume electrical resistivity is dense, especially glassy containing mainly 5iOz.

一般に、セラミックスを電気抵抗発熱体に用いた場合、
セラミックスは表面から徐々に侵食される。
Generally, when ceramics are used for electrical resistance heating elements,
Ceramics are gradually eroded from the surface.

この侵食により、導電体部分の量が実質的に徐々に低下
することが電気抵抗の増加につながる。従って、表面相
の耐食性が著しく高いか、表面相が劣化しても全体の抵
抗が増えないようにすれば良いことになる。つまり、後
者は、表面相が内部の相に対して、体積固有抵抗が著し
く大きければよいことを意味している。また、前者はセ
ラミックスの耐食性の他に、腐食雰囲気に対する実際の
接触面積が小さいことが好ましいことにつながると考え
られる。本発明者らの研究の結果では、表層部を構成す
るセラミックスとして一般に好ましいとされている結晶
の焼結物であるより、ガラス質であることが好ましいこ
とが判った。ガラス質は結晶の焼結体の如く、結晶粒間
の間隙が無いことによると考えられる。結晶である場合
には高密度で、理論値に近く、空隙のないものが好まし
く、例えばX線解析で非晶に近い特性を示す微小結晶の
集合体等が好ましい。このような素材には、ガラスその
他のアモロファスセラミックスの他、微細な粉末を焼結
したアルミナ等が挙げられる。
This erosion results in a substantial gradual reduction in the amount of conductor portion, leading to an increase in electrical resistance. Therefore, it is sufficient that the surface phase has extremely high corrosion resistance or that the overall resistance does not increase even if the surface phase deteriorates. In other words, the latter means that the surface phase only needs to have significantly greater volume resistivity than the internal phase. Moreover, in addition to the corrosion resistance of ceramics, the former is considered to be advantageous in that the actual contact area with the corrosive atmosphere is small. According to the results of research conducted by the present inventors, it has been found that glass is more preferable than sintered crystals, which are generally preferred as ceramics constituting the surface layer. The glassiness is thought to be due to the absence of gaps between crystal grains, like a sintered body of crystals. If it is a crystal, it is preferable that it has a high density, close to the theoretical value, and has no voids; for example, an aggregate of microcrystals that exhibits characteristics close to amorphous in X-ray analysis is preferable. Examples of such materials include glass and other amorphous ceramics, as well as alumina made by sintering fine powder.

しかしながら、実用上はこの2相、つまり中心部の繊維
相と表層部のセラミックス相は広い温度範囲に汎って線
膨張係数が近似していないと境界面で破壊してしまう。
However, in practice, these two phases, that is, the fiber phase in the center and the ceramic phase in the surface layer, will break at the interface unless their linear expansion coefficients are similar over a wide temperature range.

このような条件を満たすものに、中心部の繊維を有機ケ
イ素ポリマーから作り、表層部のセラミックスを同じ有
機ケイ素ポリマーを原料として作り、出来れば前者の体
積固有抵抗値を後者の体積抵抗値より下げたものにする
ものが考えられる。
In order to meet these conditions, the core fibers are made from an organosilicon polymer, the surface ceramics are made from the same organosilicon polymer, and if possible, the volume resistivity of the former is lower than the volume resistivity of the latter. I can think of something to do with it.

本発明の発熱体は、上述の如く導電性のシリコンカーバ
イド系繊維の繊維束からなる芯部とそれを覆う他のセラ
ミックス層からなる表層部からなり、芯部の繊維束は表
層部を構成するセラミックスにより固着されている。
As described above, the heating element of the present invention consists of a core made of a fiber bundle of conductive silicon carbide fibers and a surface layer made of another ceramic layer covering the core, and the fiber bundle of the core constitutes the surface layer. Fixed by ceramics.

芯部を構成する繊維は、ポリシラン、ポリカルボシラン
、ポリシラスチレン、ポリカルボシラスチレン共重合体
等の有機ケイ素ポリマーを紡糸した前駆体繊維を加熱し
て不融化処理後、不活性雰囲気下で高温焼成することに
より、シリコンカーバイドを主とするセラミックス繊維
としたものである。このうちでも、特に、ポリカルボシ
ラスチレン共重合体を原料とし、ヨウ素を用いて実質的
に酸素不存在下に不融化した後、焼成したものが好まし
い。
The fibers that make up the core are made by heating precursor fibers made by spinning organosilicon polymers such as polysilane, polycarbosilane, polysilastyrene, and polycarbosilastyrene copolymers to make them infusible, and then spinning them under an inert atmosphere. By firing at a high temperature, it is made into a ceramic fiber mainly made of silicon carbide. Among these, it is particularly preferable to use a polycarbosilastyrene copolymer as a raw material, which is made infusible using iodine in substantially the absence of oxygen, and then fired.

本発明に用いる、導電性のシリコンカーバイド系繊維は
、電気抵抗がある領域のものであることが好ましい。電
気抵抗が高い繊維を用いると、断面に対して比表面積の
小さな製品を作らないと実用にならず、実際に試作する
とこのようなものは製作が極めて困難である。反対に電
気抵抗が低すぎると、通電昇温開始時に特殊な装置、テ
クニックを用いないと過大な電流を流し易く、ヒーター
を壊し易い。従って、この繊維は体積固有抵抗で10−
3〜102Ωcm程度、特に好ましくは10−2〜2O
3Ωcmかのもの好ましい。
The conductive silicon carbide fiber used in the present invention is preferably in a range of electrical resistance. If fibers with high electrical resistance are used, a product with a small specific surface area relative to the cross section must be made for practical use, and such a product would be extremely difficult to make in practice. On the other hand, if the electrical resistance is too low, it is easy to cause excessive current to flow and damage the heater unless special equipment and techniques are used when energizing and heating begins. Therefore, this fiber has a volume resistivity of 10-
About 3 to 102 Ωcm, particularly preferably 10-2 to 2O
It is preferable to have a resistance of 3 Ωcm.

一方、表層部は、これとは異なるセラミックスであれば
、その素材は限定されないが、上述の如く、緻密で電気
抵抗の比較的大きなものが好ましい。
On the other hand, the material of the surface layer is not limited as long as it is made of a different ceramic, but as mentioned above, it is preferably dense and has a relatively high electrical resistance.

かかる複合体からなる本発明の発熱体の具体例としては
、例えば、ポリシラン、ポリカルボシラン、ポリシラス
チレン、ポリカルボシラスチレン等の有機ケイ素ポリマ
ーを出発原料とするシリコンカーバイド系繊維を、Si
O2を主体とするガラスあるいはポリシロキサン、ポリ
シラザン等を出発原料とするアモロファスなシリコンカ
ーバイド系のセラミックスで覆ったもの、等が挙げられ
る。
As a specific example of the heating element of the present invention made of such a composite, for example, silicon carbide fibers starting from organosilicon polymers such as polysilane, polycarbosilane, polysilastyrene, and polycarbosilastyrene,
Examples include those covered with O2-based glass or amorphous silicon carbide-based ceramics made of polysiloxane, polysilazane, or the like as a starting material.

これらに類するものにアルコキシドを原料とじたAl1
03を主体とするアルミナやB2O3を主体とするボロ
ン系セラミックス等で覆うことが挙げられる。
Al1 similar to these with alkoxide added as a raw material
For example, it may be covered with alumina mainly composed of 03 or boron ceramics mainly composed of B2O3.

これらは、一般に、有機ケイ素ポリマーを原料として紡
糸、不融化及び焼成を行って得た導電性シリコンカーバ
イド系繊維を束ね、これの表面に上記セラミックスの前
駆体をまんべんなく塗布し、これを再び焼成する方法に
より製造することかできる。
These are generally made by bundling conductive silicon carbide fibers obtained by spinning, infusible, and firing an organosilicon polymer as a raw material, evenly coating the surface of the fiber with the ceramic precursor described above, and firing it again. It can be manufactured by a method.

繊維は比表面積が極めて大きく、フィラメント当りの表
面積は18rrf’/&程度であるが、シリコンカーバ
イド繊維は市販の繊維、公表されている研究中のSiC
繊維を含めて家庭用電源(100ボルト)につないでも
容易に赤熱しない。本発明の発熱体では、繊維を束状に
固め、がっその繊維束の表面を他のセラミックスで被覆
することにより、ヒーター発熱体全体の表面積(実際上
表層部の表面積に相当)を所要発熱量に対して0.03
〜0.1 ’cd/ワットに抑えることが必要である。
Fibers have an extremely large specific surface area, and the surface area per filament is about 18rrf'/&, but silicon carbide fibers are commercially available fibers, and SiC fibers under published research.
Even when connected to a household power source (100 volts), including the fibers, it does not easily become red hot. In the heating element of the present invention, the fibers are consolidated into a bundle and the surface of the fiber bundle is coated with other ceramics, thereby increasing the surface area of the entire heater heating element (corresponding to the surface area of the surface layer) to generate the required heat. 0.03 for the amount
It is necessary to keep it to ~0.1' cd/watt.

このような構成とすることにより、安定して700〜1
200’Cに保てるようになる。
With this configuration, it is possible to stably achieve 700 to 1
The temperature can now be maintained at 200'C.

本発明は、その主旨とするところから、上述の条件を満
足する限り、表層部となるセラミックスの原料の種類を
問わない。但し、シリコンカーバイド系繊維の体積固有
抵抗がこれを覆うセラミックスの体積固有抵抗より低い
ことが好ましい。さもないと、その劣化と共にセラミッ
クス発熱体の導電性能が著しく低下して好ましくない。
In view of the gist of the present invention, as long as the above-mentioned conditions are satisfied, the type of raw material for the ceramics forming the surface layer is not critical. However, it is preferable that the volume resistivity of the silicon carbide fiber is lower than the volume resistivity of the ceramic covering it. Otherwise, the conductive performance of the ceramic heating element will drop significantly as the ceramic heating element deteriorates, which is undesirable.

本発明の発熱体の形状は、通常は線状であるが、棒状、
テープ状、シート状でも構わない。テープ状、シート状
のものは、繊維束を平行に並べてセラミックスで被覆し
固めることにより製造される。
The shape of the heating element of the present invention is usually linear, but rod-shaped,
It may be in the form of a tape or a sheet. Tape-like and sheet-like products are manufactured by arranging fiber bundles in parallel, covering them with ceramics, and hardening them.

[発明の効果] 本発明のセラミックス発熱体は、比較的容易に任意の形
態とすることができ、温度が容易に上げられる、長期に
汎り電気抵抗が比較豹変わり難い、等の利点を有し、シ
リコンカーバイド系繊維を用いたセラミックスヒーター
となる。
[Effects of the Invention] The ceramic heating element of the present invention has advantages such as being able to be formed into any desired shape relatively easily, being able to easily raise the temperature, being durable over a long period of time, and having relatively little change in electrical resistance. This is a ceramic heater using silicon carbide fibers.

[実施例] 次に、本発明の実施例及び比較例を挙げるが、 0 本発明はこれにより限定されるものではない。尚、特に
断りのないかぎり各例中の「部」は重量部である。
[Examples] Next, Examples and Comparative Examples of the present invention will be given, but the present invention is not limited thereto. In addition, unless otherwise specified, "parts" in each example are parts by weight.

実施例1 ジクロルジメチルシシンとジクロルフェニルメチルシラ
ンの等モルを使い、トルエン中で金属ナトリウムを加え
て重合してポリシラスチレンを得た。このポリシラスチ
レンを400℃で窒素雰囲気中で処理し、軟化点240
℃のポリカルボシラスチレン共重合体を得た。このポリ
シラスチレン共重合体(pcss>を窒素気流中で溶融
紡糸し、紡糸温度280℃、紡糸速度600m/分で溶
融紡糸した。
Example 1 Polysilastyrene was obtained by polymerizing equimolar amounts of dichlorodimethylsilane and dichlorophenylmethylsilane in toluene with the addition of metallic sodium. This polysilastyrene was treated at 400°C in a nitrogen atmosphere to have a softening point of 240.
A polycarbosilastyrene copolymer at ℃ was obtained. This polysilastyrene copolymer (PCSS>) was melt-spun in a nitrogen stream at a spinning temperature of 280° C. and a spinning speed of 600 m/min.

次に、紡出糸にヨウ素を吸着/作用ぜしめた。その後ア
ンモニアガスを作用させ焼成原料とした。
Next, iodine was allowed to adsorb/act on the spun yarn. Thereafter, ammonia gas was applied to the material to form a raw material for firing.

コノ処理系を、10 g/ 10.000deの荷重下
にて1、200℃で焼成しな。得られたセラミックス繊
維は固体固有抵抗1Ωamであった。
The Kono treatment system was fired at 1,200° C. under a load of 10 g/10,000 de. The obtained ceramic fiber had a solid resistivity of 1 Ωam.

この繊維(ストランド)をフッ素樹脂「テフロン」の枠
に巻き付け、フッ酸の10%溶液にlO分間1 浸して水洗した。体積固有抵抗は同じく1Ωcmであっ
た。
This fiber (strand) was wound around a frame of fluororesin "Teflon", immersed in a 10% solution of hydrofluoric acid for 10 minutes, and washed with water. The volume resistivity was also 1 Ωcm.

このフッ素樹脂の枠に巻き付けた繊維束に、紡糸に用い
たものと同じポリカルボシラスチレン(PC8S)共重
合体をトルエンに溶かして10%とした溶液を塗布して
乾燥することを繰返し、最終的に繊維100部に対して
93部のpcssを塗布しな。乾燥後、フッ素樹脂の枠
から切り離し、そのまま窒素気流中で焼成した。焼成は
、600℃までは25℃/hrで昇温し、600〜1.
300℃を100℃/hrで昇温して実施した。冷却後
、取りだした試料はシリコンカーバイドを主なる繊維束
を芯部とし、表面が緻密なシリコンカーバイド系セラミ
ックスからなる複合体であった。これを計算上2体積繊
維率62%、常温の体積固有抵抗5.6Ωcmで、電源
100ボルトにつないだ場合800℃になるよう、表面
積が0.06cm?/ワットになるように試料を切り出
しく断面積6.5 Xl0−’alv、長さ5cm)、
家庭用電源に直接つないで800℃まで昇温し、連続発
熱させ得た。この発熱体の発熱量は16.7ワツト/−
2 であった。
A 10% solution of polycarbosilastyrene (PC8S) copolymer, the same as that used for spinning, dissolved in toluene was repeatedly applied to the fiber bundle wrapped around this fluororesin frame, and then dried. Apply 93 parts of PCSS to 100 parts of fiber. After drying, it was separated from the fluororesin frame and fired as it was in a nitrogen stream. For firing, the temperature was raised at a rate of 25°C/hr up to 600°C.
The temperature was increased from 300°C to 100°C/hr. After cooling, the sample taken out was a composite consisting of silicon carbide-based ceramics with a core made of silicon carbide fiber bundles and a dense surface. This is calculated with a 2 volume fiber ratio of 62%, a volume resistivity of 5.6 Ωcm at room temperature, and a surface area of 0.06 cm so that the temperature will reach 800°C when connected to a 100 volt power source. / Watt (cross-sectional area: 6.5 Xl0-'alv, length: 5 cm),
By directly connecting it to a household power source, it was able to raise the temperature to 800 degrees Celsius and generate continuous heat. The calorific value of this heating element is 16.7 watts/-
It was 2.

実施例2 実施例1で用いたシリコンカーバイド系セラミックス繊
維(ストランド〉を、全く同様にして「テフロン」の枠
に巻き付け、フッ酸処理して水洗した。得られた繊維束
に同じポリカルボシランを塗布した。最終的に繊維10
0部に対してポリカルボシラン183部を塗布しな。こ
れを「テフロン」から切り離し、大気中で180℃で3
時間、次いで、210℃で3時間保持して空気不融化(
酸素の導入〉をおこなった。
Example 2 The silicon carbide ceramic fibers (strands) used in Example 1 were wrapped around a Teflon frame in exactly the same manner, treated with hydrofluoric acid, and washed with water.The resulting fiber bundle was coated with the same polycarbosilane. Coated.Finally 10 fibers
Apply 183 parts of polycarbosilane to 0 parts. Separate this from "Teflon" and heat it at 180℃ in the atmosphere for 30 minutes.
time, then held at 210°C for 3 hours to make it air infusible (
Introduction of oxygen was carried out.

このサンプルを実施例1と同様に焼成した。得られた試
料は体積繊維率52%、常温の体積固有抵抗16.3Ω
cmで比表面積9&/g、発熱量17.8ワツ)/al
l<0.056 all/ワットに相当)で家庭用電源
に直接つないで赤熱出来た。
This sample was fired in the same manner as in Example 1. The obtained sample had a volume fiber ratio of 52% and a volume resistivity of 16.3Ω at room temperature.
cm, specific surface area 9&/g, calorific value 17.8 w)/al
l < 0.056 (equivalent to all/watt), it could generate red heat when connected directly to a household power source.

実施例3 実施例1で用いたセラミック繊維(ストランド〉3 を、実施例1と全く同様にして「テフロン」の枠に巻き
付け、フッ酸処理して水洗した。得られた繊維束に融点
248℃のポリカルボシラン(パーメチルポリシランの
熱転位物)を塗布し、最終的に繊維100部に対してポ
リカルボシラン90部となるようにした。
Example 3 The ceramic fibers (strand 3) used in Example 1 were wrapped around a Teflon frame in exactly the same manner as in Example 1, treated with hydrofluoric acid, and washed with water.The resulting fiber bundle was given a melting point of 248°C. of polycarbosilane (a thermally rearranged product of permethylpolysilane) was applied so that the final amount was 90 parts of polycarbosilane per 100 parts of fiber.

このサンプルを実施例1と同様に焼成した。得られた試
料は体積繊維率62%、常温の体積固有抵抗9.2Ωc
mで比表面積20cJ/g 、発熱量15.8ワツ)/
& (0,063ail/ワットに相当)で家庭用電源
に直接つないで赤熱出来た。
This sample was fired in the same manner as in Example 1. The obtained sample had a volume fiber ratio of 62% and a volume resistivity of 9.2Ωc at room temperature.
m, specific surface area 20 cJ/g, calorific value 15.8 W)/
& (equivalent to 0,063 ail/watt) and could generate red heat when connected directly to a household power source.

実施例4 実施例1で用いたセラミック繊維(ストランド)を加熱
し、全く同様にして「テフロン」の枠に巻き付け、フッ
酸処理して水洗し十分に乾燥した。
Example 4 The ceramic fiber (strand) used in Example 1 was heated, wrapped around a Teflon frame in exactly the same manner, treated with hydrofluoric acid, washed with water, and thoroughly dried.

切断し、得られた繊維束をパラフィン紙上に置き、アル
ミニウムアルコキシド(AI (OC4H[l) a 
)を塗布・含浸した。
The fiber bundle obtained by cutting was placed on paraffin paper, and aluminum alkoxide (AI (OC4H[l) a
) was applied and impregnated.

このサンプルを実施例1と同様に焼成した。得4 られな試料は、推定体積繊維率64%程度、常温の体積
固有抵抗10.2Ωcmで比表面積20cnY/g 、
発熱量14,7ワツト/CIl+(0,068cJ/ワ
ッI〜に相当〉で家庭用電源に直接つないで赤熱出来な
This sample was fired in the same manner as in Example 1. The sample that could not be obtained had an estimated volume fiber ratio of about 64%, a volume resistivity of 10.2 Ωcm at room temperature, and a specific surface area of 20 cnY/g.
It has a calorific value of 14.7 watts/CIl+ (equivalent to 0,068 cJ/watt I) and cannot generate red heat when directly connected to a household power source.

実施例5 市販のシリコンカーバイド繊維を入手しな。この繊維の
常温での体積固有抵抗は102Ωcmであった。
Example 5 Commercially available silicon carbide fibers were obtained. The volume resistivity of this fiber at room temperature was 102 Ωcm.

この繊維を実施例3で用いたポリカルボシラン溶液を用
いて逐次塗り固め、直径12mm、長さ50mmの棒状
に仕上げた。
This fiber was successively coated and solidified using the polycarbosilane solution used in Example 3, and finished into a rod shape with a diameter of 12 mm and a length of 50 mm.

このサンプルを実施例1と同様に焼成した。得られた試
料は″ひび′”が入っていたが、推定体積繊維率40%
程度、常温の体積固有抵抗120Ωcm、見掛は上の比
表面積1.7 c//g 、発熱量10.6ワツ)/c
nY (0,094cJ/ワッI・に相当)で家庭用電
源に直接つないで発熱出来た。
This sample was fired in the same manner as in Example 1. The obtained sample had "cracks", but the estimated volumetric fiber content was 40%.
The volume resistivity at room temperature is 120 Ωcm, the apparent specific surface area is 1.7 c//g, and the calorific value is 10.6 W)/c.
nY (equivalent to 0,094 cJ/watt I), it was possible to generate heat by connecting directly to a household power source.

Claims (6)

【特許請求の範囲】[Claims] (1)有機ケイ素ポリマーを原料とする導電性シリコン
カーバイド系繊維の繊維束を導電発熱体とし、かつ該繊
維束の全表面を他のセラミックスで被覆してなる発熱体
であって、全体の表面積が0.03ないし0.1cm^
2/ワットであることを特徴とするセラミックス発熱体
(1) A heating element comprising a fiber bundle of conductive silicon carbide fibers made from an organosilicon polymer as a conductive heating element, and the entire surface of the fiber bundle is coated with other ceramics, and the total surface area is 0.03 to 0.1cm^
A ceramic heating element characterized by having a power of 2/watt.
(2)有機ケイ素ポリマーをポリカルボシラスチレンと
する請求項(1)に記載のセラミックス発熱体。
(2) The ceramic heating element according to claim (1), wherein the organosilicon polymer is polycarbosilastyrene.
(3)シリコンカーバイド繊維の繊維束を覆うセラミッ
クスが有機ケイ素ポリマーを原料とするシリコンカーバ
イドを主たる成分とするセラミックスである請求項(1
)又は(2)に記載のセラミックス発熱体。
(3) Claim (1) wherein the ceramic covering the fiber bundle of silicon carbide fibers is a ceramic whose main component is silicon carbide made from an organic silicon polymer.
) or the ceramic heating element described in (2).
(4)シリコンカーバイド繊維の繊維束を覆うセラミッ
クスがSiO_2を含有するガラス質である請求項(1
)又は(2)に記載のセラミックス発熱体。
(4) Claim (1) wherein the ceramic covering the fiber bundle of silicon carbide fibers is vitreous containing SiO_2.
) or the ceramic heating element described in (2).
(5)シリコンカーバイド繊維の繊維束を覆うセラミッ
クスがAl_2O_3を含有するアルミナ系セラミック
スである請求項(1)又は(2)に記載のセラミックス
発熱体。
(5) The ceramic heating element according to claim 1 or 2, wherein the ceramic covering the fiber bundle of silicon carbide fibers is an alumina ceramic containing Al_2O_3.
(6)シリコンカーバイド繊維の繊維束を覆うセラミッ
クスがB_2O_3を含有するボロン系セラミックスで
ある請求項(1)又は(2)に記載のセラミックス発熱
体。
(6) The ceramic heating element according to claim (1) or (2), wherein the ceramic covering the fiber bundle of silicon carbide fibers is a boron-based ceramic containing B_2O_3.
JP1235554A 1989-09-13 1989-09-13 Heat radiating ceramic Pending JPH03101087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1235554A JPH03101087A (en) 1989-09-13 1989-09-13 Heat radiating ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235554A JPH03101087A (en) 1989-09-13 1989-09-13 Heat radiating ceramic

Publications (1)

Publication Number Publication Date
JPH03101087A true JPH03101087A (en) 1991-04-25

Family

ID=16987706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235554A Pending JPH03101087A (en) 1989-09-13 1989-09-13 Heat radiating ceramic

Country Status (1)

Country Link
JP (1) JPH03101087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0980193A1 (en) * 1998-08-05 2000-02-16 AKO-Werke GmbH &amp; Co. KG Heating layer element
US11464083B2 (en) * 2018-08-23 2022-10-04 JIKAN TECHNO, Inc. Electric cable, conductor, heating element, method for producing conductor and heating element, and heating device using heating element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0980193A1 (en) * 1998-08-05 2000-02-16 AKO-Werke GmbH &amp; Co. KG Heating layer element
US11464083B2 (en) * 2018-08-23 2022-10-04 JIKAN TECHNO, Inc. Electric cable, conductor, heating element, method for producing conductor and heating element, and heating device using heating element

Similar Documents

Publication Publication Date Title
JPH09100174A (en) Method for forming ceramic composite material, prepreg and fiber-reinforced ceramic matrix composite material
JPH08288103A (en) Electric resistance element
WO2011114810A1 (en) Inorganic fibers for fiber bundles, process for production of the inorganic fibers, inorganic fiber bundles for composite material produced using the inorganic fibers, and ceramic-based composite material reinforced by the fiber bundles
JPH03101087A (en) Heat radiating ceramic
JP2001505519A (en) Refractory composites protected from oxidation at high temperatures, precursors of the above materials, their production
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
JP3213841B2 (en) Carbon fiber nonwoven
JP4056669B2 (en) Insulating material and manufacturing method thereof
JP3888766B2 (en) Electrostatic chuck and manufacturing method thereof
JP4690845B2 (en) Microwave exothermic composite
KR20200072051A (en) Carbon material coated by a layer having improved oxidation stability, and a method therefor
JP2734013B2 (en) Insulation method
RU2286317C1 (en) Method of production of the hollow heaters with the preset electrical resistance and made out of the carbon-carbide-silicon composite material
JPH1171177A (en) Recrystallized silicon carbide sintered compact with both high electrical resistance and thermal conductivity and its production
JP3598726B2 (en) SiC-based composite material with improved oxidation resistance and method for producing the same
JP3918019B2 (en) SiC-MoSi2 composite heater
JPH05310487A (en) Production of sic-coated graphite material
JPH04332403A (en) Heat-resisting insulating wire and manufacture thereof and manufacture of heat-resisting insulating material
JP2004516629A (en) Resistor element for extreme temperatures
JP2012072042A (en) Method for manufacturing conductive silicon carbide honeycomb structure
JP2859904B2 (en) Heat resistant coil
JP3353043B2 (en) Manufacturing method of low order titanium oxide ceramics
JP3854323B2 (en) Method for manufacturing heat-resistant electrical insulation material and heat-resistant insulated wire
JPH0913278A (en) Heat-resistant fiber and heat-resistant insulated wire using the same
JPH0337155A (en) Electrically conductive ceramic composite material and its production