JP2734013B2 - Insulation method - Google Patents

Insulation method

Info

Publication number
JP2734013B2
JP2734013B2 JP26877088A JP26877088A JP2734013B2 JP 2734013 B2 JP2734013 B2 JP 2734013B2 JP 26877088 A JP26877088 A JP 26877088A JP 26877088 A JP26877088 A JP 26877088A JP 2734013 B2 JP2734013 B2 JP 2734013B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
temperature
alumina
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26877088A
Other languages
Japanese (ja)
Other versions
JPH02115689A (en
Inventor
公平 奥山
太助 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP26877088A priority Critical patent/JP2734013B2/en
Publication of JPH02115689A publication Critical patent/JPH02115689A/en
Application granted granted Critical
Publication of JP2734013B2 publication Critical patent/JP2734013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温焼成炉等に使用するための断熱方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a heat insulating method for use in a high-temperature firing furnace or the like.

(従来の技術) 近年、産業の技術的高度化により特にセラミックス、
半導体、炭素材料などの分野で1,500℃を超える温度で
熱処理をするような高温炉が多く使用されるようになっ
た。これらは黒鉛などのヒーターによる抵抗加熱法、あ
るいは、高周波を用いて黒鉛ルツボを発熱させる高周波
誘導加熱法により被加熱物を加熱する方法が一般的であ
る。熱処理の際の炉内の雰囲気は被加熱物にもよるが、
通常は窒素ガス、アルゴンガスなどを用いて不活性ガス
雰囲気とする。そして、断熱材には、高温下でも、耐え
うるような炭素繊維を主成分とするカーボンファイバー
(CF)断熱材等の炭素質断熱材や、“アルミナイファイ
バー”、“セラミックファイバー”などの名称で呼ばれ
ているアルミナとシリカを主成分とする繊維などからな
る断熱材などが使用される。一般に、たとえばCF断熱材
は3,000℃近くアルミナ/シリカ系断熱材は、アルミナ
の比率増加により高くなるが、1,700〜1,800℃までの高
温に対して使用されている。
(Prior art) In recent years, ceramics,
In the fields of semiconductors, carbon materials, etc., high-temperature furnaces that perform heat treatment at a temperature exceeding 1,500 ° C. have been widely used. These are generally a method of heating an object to be heated by a resistance heating method using a heater such as graphite or a high frequency induction heating method in which a graphite crucible is heated using high frequency. The atmosphere in the furnace during heat treatment depends on the object to be heated,
Usually, an inert gas atmosphere is formed using nitrogen gas, argon gas, or the like. Insulation materials include carbon fiber insulation materials such as carbon fiber (CF) insulation materials, which are mainly composed of carbon fibers that can withstand high temperatures, and names such as "alumina fiber" and "ceramic fiber". For example, a heat insulating material made of fibers mainly composed of alumina and silica is used. Generally, for example, the CF insulation material is used at a high temperature of 1,700 to 1,800 ° C., although the alumina / silica-based insulation material becomes higher due to an increase in the ratio of alumina.

(発明が解決しようとする問題点) 一般には断熱材は消耗品であるため、高価なCF断熱材
等の炭素質断熱材よりもアルミナ/シリカ系断熱材を使
って経済的負担を少なくする方法がとられているが、1,
500℃以上の熱処理を不活性雰囲気下で行なう高温処理
炉では、通常、CF断熱材等の炭素質断熱材が多用されて
いる。これは、不活性雰囲気下で炭素が3,000℃位まで
安定であるためである。しかしながら、炭素質断熱材は
高価であり、かつ、熱処理回数に応じて徐々に消耗など
が起こり、断熱性能が低下するため、一定期間後に取り
かえる必要があり、経済的負担が大きいことが一般に知
られている。
(Problems to be Solved by the Invention) In general, since the heat insulating material is a consumable, a method of reducing the economic burden by using an alumina / silica heat insulating material rather than a carbonaceous heat insulating material such as an expensive CF heat insulating material. Is taken, but 1,
In a high-temperature processing furnace in which a heat treatment of 500 ° C. or more is performed in an inert atmosphere, a carbonaceous heat insulating material such as a CF heat insulating material is often used. This is because carbon is stable up to about 3,000 ° C. in an inert atmosphere. However, it is generally known that carbonaceous heat insulating materials are expensive, and they gradually wear out in accordance with the number of heat treatments, thereby deteriorating the heat insulating performance. Have been.

そこで本発明者等は、被加熱物に面する高温側に炭素
質断熱材、この炭素質断熱材の外側のより低温部に1,60
0〜1,700℃の耐熱温度をもつより安価なアルミナ/シリ
カ系断熱材を配置して炭素質断熱材の使用量(断熱材の
厚み)を減らし断熱材を経済的に安くすることを試み
た。しかしながら、炭素質断熱材の外側をアルミナ/シ
リカ系断熱材で覆って、被加熱物を2,000℃以上に高周
波加熱した際、二つの断熱材の接触面に炭素とアルミナ
もしくはシリカが反応して生成したと考えられる綿状の
物質が生成し、熱処理回数に応じて増えるため、断熱材
としての使用上、耐久性の点で問題があることがわかっ
た。この現象は炭素質断熱材の外側のアルミナ/シリカ
系断熱材に面した側の温度をアルミナ/シリカ系断熱材
の耐熱温度より低い1,400℃としても、また、炭素質断
熱材とアルミナ/シリカ系断熱材の間に間隔を置いても
見られ、事実上断熱材としての使用は難しいことがわか
った。
Therefore, the present inventors set the carbonaceous heat insulating material on the high temperature side facing the object to be heated, and 1,60 on the lower temperature part outside the carbonaceous heat insulator.
By arranging a cheaper alumina / silica heat insulator having a heat resistance temperature of 0 to 1,700 ° C, we attempted to reduce the amount of carbonaceous heat insulator (thickness of the heat insulator) and make the heat insulator economical. However, when the outside of the carbon-based heat insulator is covered with alumina / silica-based heat insulator and the object to be heated is heated at a high frequency of 2,000 ° C or higher, carbon and alumina or silica react on the contact surface between the two heat insulators. It is found that a flocculent substance is considered to have been generated and increases in accordance with the number of heat treatments, so that there is a problem in terms of durability when used as a heat insulating material. This phenomenon occurs when the temperature of the outside of the carbonaceous heat insulator facing the alumina / silica heat insulator is set to 1,400 ° C, which is lower than the heat resistance temperature of the alumina / silica heat insulator. It was found even when there was a gap between the insulations, which proved to be difficult to use as insulation.

(問題を解決するための手段) 本発明者らは検討を繰返した結果、炭素質断熱材とア
ルミナ/シリカ系断熱材を組合わせて使用する場合には
その高温炉で使用する最高加熱温度において炭素質断熱
材のアルミナ/シリカ系断熱材に面する側の温度を1,30
0℃以下とすれば、その接触の有無にかかわらずこの現
象が起きないことを見出し本発明にしたった。
(Means for Solving the Problem) As a result of repeated studies, the present inventors have found that when a carbonaceous heat insulating material and an alumina / silica heat insulating material are used in combination, the maximum heating temperature used in the high-temperature furnace is as follows. The temperature on the side of the carbonaceous insulation facing the alumina / silica insulation is 1,30
The present inventors have found that this phenomenon does not occur at a temperature of 0 ° C. or lower regardless of the presence or absence of the contact, and have made the present invention.

すなわち本発明は、不活性雰囲気で使う高温炉に使用
する断熱材として被加熱物に面する高温側に炭素質断熱
材、その外側にアルミナ/シリカ系断熱材を組合わせて
使用するに際して、炭素質断熱機材に面するアルミナ/
シリカ系断熱材部の最高温度を1,000℃以上1,300℃以下
となるように組み合わせて使用することを特徴とする断
熱方法にある。
That is, the present invention uses a carbon-based heat insulating material on the high-temperature side facing an object to be heated and an alumina / silica-based heat insulating material on the outside thereof as a heat insulating material used in a high-temperature furnace used in an inert atmosphere. Alumina facing high quality thermal insulation equipment /
The heat insulating method is characterized in that the silica-based heat insulating material is used in combination so that the maximum temperature of the heat insulating material is 1,000 ° C. or more and 1,300 ° C. or less.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明における高温炉としては、炉内が不活性雰囲気
である前述の各種高温炉が挙げられる。
Examples of the high-temperature furnace in the present invention include the above-described various high-temperature furnaces in which the inside of the furnace is an inert atmosphere.

被加熱物に面する高温側に用いられる炭素質断熱材と
しては、CF断熱材のほか、泡状の気孔を有するフオーム
状炭素質断熱材等の非繊維状の炭素質断熱材が挙げら
れ、黒鉛質のものであってもよい。
As the carbonaceous heat insulator used on the high temperature side facing the object to be heated, in addition to the CF heat insulator, a non-fibrous carbonaceous heat insulator such as a foam carbonaceous heat insulator having foamy pores is included. It may be graphite.

一方、アルミナ/シリカ系断熱材としては、アルミナ
とシリカを種々の比率で含むものが用いられ、たとえば
“アルミナファイバー”“セラミックファイバー”など
の名称で呼ばれているアルミナとシリカを主成分とする
繊維等よりなる断熱材が好適に使用される。
On the other hand, as the alumina / silica-based heat insulating material, a material containing alumina and silica in various ratios is used. For example, alumina and silica, which are called by names such as "alumina fiber" and "ceramic fiber", are mainly used. A heat insulator made of fiber or the like is preferably used.

これらの炭素質断熱材およびアルミナ/シリカ系断熱
材の形態は制限されず、たとえば、フエルト状、ペーパ
ー状、ボード状などが挙げられる。
The form of the carbonaceous heat insulating material and the alumina / silica heat insulating material is not limited, and examples thereof include a felt shape, a paper shape, and a board shape.

本発明方法においては、上記断熱材を炭素質断熱材に
面するアルミナ/シリカ系断熱材部の最高加熱温度を1,
000℃以上1,300℃以下となるように組み合わせて使用す
る。
In the method of the present invention, the maximum heating temperature of the alumina / silica-based heat insulating material facing the carbonaceous heat insulating material is set to 1,
Use in combination so that the temperature is between 000 ° C and 1,300 ° C.

上記温度が1,300℃を超えると耐久性が不良となり、
一方1,000℃未満であるとコスト的にアルミナ/シリカ
系断熱材を用いる意味を実質的に失なうことになる。
If the above temperature exceeds 1,300 ° C, the durability becomes poor,
On the other hand, if the temperature is lower than 1,000 ° C., the cost of using the alumina / silica-based heat insulating material is substantially lost.

上記温度の設定は、断熱材を使用する高温炉の大き
さ、最高使用温度等により炭素質断熱材の厚みを調整す
ることにより行なうことができる。
The setting of the temperature can be performed by adjusting the thickness of the carbonaceous heat insulating material according to the size of the high temperature furnace using the heat insulating material, the maximum operating temperature, and the like.

(実施例) 以下、実施例により本発明を更に具体的に説明する
が、本発明はこれらの実施例に限定されるものではな
い。なお、実験に用いたアルミナファイバーボードは、
単独で実験条件の温度に保持した場合でも、バインダー
の消失などにより重量減があるので、以下の実施例にお
ける重量減は、単独で保持した場合の重量減を差引いて
表示した。
(Examples) Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The alumina fiber board used in the experiment was
Even when the temperature was kept alone under the experimental conditions, the weight was reduced due to the disappearance of the binder and the like. Therefore, the weight loss in the following examples is shown by subtracting the weight loss when the temperature was kept alone.

実施例−1 AL2O3含有率75%、SiO2含有率25%、常用使用温度1,5
00℃、最高使用温度1,600℃、嵩密度0.18g/cm3の結晶質
のAl2O3を主体とするアルミナ/シリカ系断熱ボード
(“アルミナファイバーボード”)を嵩密度0.16g/cm3
のCF成形断熱材上部に設置し、Arガス雰囲気下、1,300
℃又は1,400℃にてそれぞれ4時間加熱保持し冷却し
た。又、上記の各断熱材を1,600℃にて1時間加熱保持
し冷却した。冷却後の前記各断熱材の重量変化結果を表
−1に示す。1,400℃及び1,600℃で加熱保持したもの
は、冷却後取り出したCF断熱材は周辺が白くコーティン
グされており、Al2O3を主体とする断熱ボードのCF断熱
材接触面側を観察したところ、ファイバーの脆化が観察
された。この結果は両者を接触させても、約10mmの間隔
を置いても同様であった。
Example -1 AL 2 O 3 content of 75% SiO 2 content of 25%, normal use temperature 1,5
Alumina / silica insulation board (“alumina fiber board”) mainly composed of crystalline Al 2 O 3 with a maximum operating temperature of 1,600 ° C. and a bulk density of 0.18 g / cm 3 at a bulk density of 0.16 g / cm 3
Installed on top of CF-molded heat insulating material, under Ar gas atmosphere, 1,300
Heating and holding were performed at 4 ° C. or 1,400 ° C. for 4 hours, respectively, followed by cooling. Further, each of the above-mentioned heat insulating materials was heated and held at 1600 ° C. for 1 hour and cooled. Table 1 shows the weight change results of the respective heat insulating materials after cooling. After heating and holding at 1,400 ° C and 1,600 ° C, the periphery of the CF insulation taken out after cooling was coated white, and when observing the CF insulation material contact surface side of the insulation board mainly composed of Al 2 O 3 , Fiber embrittlement was observed. This result was the same even when the two were brought into contact with each other or at an interval of about 10 mm.

実施例−2 Al2O3含有率87%、SiO2含有率13%、常用使用温度1,7
00℃、最高使用温度1,800℃、嵩密度0.70g/cm3の結晶質
のAl2O3を主体とするアルミナ/シリカ系断熱ボード
(“アルミナファイバーボード)を嵩密度0.16g/cm3のC
F成形断熱材上部に設置しArガス雰囲気下1,000℃、1,30
0℃又は1,400℃の各温度にて、それぞれ4時間加熱保持
したのち冷却した。冷却後の前記各断熱材の重量変化結
果を表−2に示す。尚、1,400℃にて4時間加熱保持し
たものは冷却後取り出したCF断熱材は実施例−1と同様
な現象が見られた。
Example -2 Al 2 O 3 content of 87% SiO 2 content of 13%, normal use temperature 1,7
Alumina / silica heat insulation board (“alumina fiber board”) mainly composed of crystalline Al 2 O 3 with a maximum operating temperature of 1,800 ° C. and a bulk density of 0.70 g / cm 3 at a bulk density of 0.16 g / cm 3
Installed on top of F-shaped insulation material, 1,000 ° C, 1,30 ° C under Ar gas atmosphere
After heating and holding at each temperature of 0 ° C. or 1,400 ° C. for 4 hours, cooling was performed. Table 2 shows the results of weight change of each of the heat insulating materials after cooling. In the case where the material was heated and held at 1,400 ° C. for 4 hours, the CF heat insulating material taken out after cooling exhibited the same phenomenon as in Example-1.

この結果は両者を接触しても約10mm離して熱処理して
も殆んど同様であった。
This result was almost the same even when the two were in contact with each other and were heat-treated at a distance of about 10 mm.

(発明の効果) 本発明方法は、不活性雰囲気下で被加熱物を1,500℃
以上、好ましくは2,000℃以上に加熱する高温炉に使う
断熱材としてカーボンファイバー断熱材等の炭素質断熱
材とアルミナ/シリカ系断熱材を組みあわせた有利な断
熱方法を提供しようとするものである。本方法によれ
ば、炭素質断熱材のみの断熱性能により断熱するよりも
安価なアルミナ/シリカ系断熱材を組合わせているため
に経済的に安くなる。また、断熱材の交換に際し、より
高温側にある炭素質断熱材のみを交換すれば良く高温炉
の運転経費を安くできるので有利である。
(Effect of the Invention) In the method of the present invention, an object to be heated is heated to 1,500 ° C. in an inert atmosphere.
As described above, it is an object of the present invention to provide an advantageous heat insulating method in which a carbonaceous heat insulating material such as a carbon fiber heat insulating material and an alumina / silica heat insulating material are combined as a heat insulating material used for a high-temperature furnace heated to preferably 2,000 ° C. or higher. . According to this method, an alumina / silica-based heat insulating material, which is less expensive than the heat insulating performance of only the carbonaceous heat insulating material, is used, so that the cost is economically reduced. Further, when the heat insulating material is replaced, only the carbonaceous heat insulating material on the higher temperature side needs to be replaced, which is advantageous because the operating cost of the high temperature furnace can be reduced.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非酸化性雰囲気下で高温炉の断熱材とし
て、被加熱物に面する高温側の炭素質断熱材とその外側
のアルミナ/シリカ系断熱材を組合わせて使用する際、
炭素質断熱材に面するアルミナ/シリカ系断熱材部の最
高加熱温度が1,000℃以上1,300℃以下となるように組み
合わせて使用することを特徴とする断熱方法。
When a combination of a high-temperature side carbonaceous heat insulating material facing an object to be heated and an alumina / silica heat insulating material outside the same is used as a heat insulating material for a high-temperature furnace in a non-oxidizing atmosphere.
A heat insulating method characterized in that the alumina / silica-based heat insulating material facing the carbonaceous heat insulating material is used in combination so that the maximum heating temperature is 1,000 ° C to 1,300 ° C.
JP26877088A 1988-10-25 1988-10-25 Insulation method Expired - Lifetime JP2734013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26877088A JP2734013B2 (en) 1988-10-25 1988-10-25 Insulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26877088A JP2734013B2 (en) 1988-10-25 1988-10-25 Insulation method

Publications (2)

Publication Number Publication Date
JPH02115689A JPH02115689A (en) 1990-04-27
JP2734013B2 true JP2734013B2 (en) 1998-03-30

Family

ID=17463062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26877088A Expired - Lifetime JP2734013B2 (en) 1988-10-25 1988-10-25 Insulation method

Country Status (1)

Country Link
JP (1) JP2734013B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926445B2 (en) * 2004-10-21 2012-05-09 新日鐵化学株式会社 Oxidation-resistant furnace for graphite material and oxidation-resistant method for graphite material
JP4782537B2 (en) * 2004-10-21 2011-09-28 新日鐵化学株式会社 Carbon material firing furnace and carbon material firing method

Also Published As

Publication number Publication date
JPH02115689A (en) 1990-04-27

Similar Documents

Publication Publication Date Title
Shimoo et al. Thermal stability of low‐oxygen silicon carbide fiber (Hi‐Nicalon) subjected to selected oxidation treatment
JP2734013B2 (en) Insulation method
NO884194L (en) HOEYREN INTERNAL LINING FOR AN ELECTRO LOW SHOE OVEN.
JP2000351670A (en) Graphite material, graphite material for forming sic film and part for device for pulling silicon single crystal
CN112142499B (en) Preparation of SiO on the surface of carbon/carbon composite material 2 Method for preparing microporous anti-oxidation coating with-SiC mosaic structure
JP4394345B2 (en) Non-oxide ceramic sintering furnace and non-oxide ceramic sintered body manufacturing method
JP2687458B2 (en) Insulation material for heating furnace
JP3259646B2 (en) Continuous siliconizing equipment for steel strip
JPS609566B2 (en) skid button
KR100213720B1 (en) High-temperture adiabatic material and manufactruing method thereof
JPS6116410B2 (en)
JPH0794347B2 (en) Insulation
JP2743250B2 (en) Radiant tube type heating device
Chien et al. Thermal conductivity of fireclay and high-alumina refractory brick
KR100331462B1 (en) MgO-C Refractory Brick Having High Resistance Against Heating Stress
JPH0345553A (en) Carbon-containing refractory
JPH03188222A (en) Hearth roller for heat treatment furnace
JPH0354179A (en) Coating of alumina sheet with silicon carbide
KR970008715B1 (en) Process for the preparation of coating
SU684788A1 (en) Electric resistance heater for furnaces
JPH0226867A (en) Production of graphite electrode material
JPH0151444B2 (en)
JP2687214B2 (en) Carbon containing refractories
JPH111376A (en) Jig material for producing glass vessel
KAWAMURA et al. Silicon carbide coating on alumina film using polycarbosilane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090109

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090109

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term