KR970008715B1 - Process for the preparation of coating - Google Patents

Process for the preparation of coating Download PDF

Info

Publication number
KR970008715B1
KR970008715B1 KR1019940038254A KR19940038254A KR970008715B1 KR 970008715 B1 KR970008715 B1 KR 970008715B1 KR 1019940038254 A KR1019940038254 A KR 1019940038254A KR 19940038254 A KR19940038254 A KR 19940038254A KR 970008715 B1 KR970008715 B1 KR 970008715B1
Authority
KR
South Korea
Prior art keywords
powder
coating
carbon material
oxidation
chromium
Prior art date
Application number
KR1019940038254A
Other languages
Korean (ko)
Other versions
KR960022356A (en
Inventor
이현
한기현
Original Assignee
김만제
포항종합제철주식회사
신창식
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만제, 포항종합제철주식회사, 신창식, 재단법인산업과학기술연구소 filed Critical 김만제
Priority to KR1019940038254A priority Critical patent/KR970008715B1/en
Publication of KR960022356A publication Critical patent/KR960022356A/en
Application granted granted Critical
Publication of KR970008715B1 publication Critical patent/KR970008715B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5033Chromium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

In the coating process, carbon material or carbon composite material was implanted in a first coating powder mixture comprising 30- 50 wt.% of halogenated chromium powder and 50- 70 wt.% of inactive antisintering powder, and heat-treated in a non-oxidative atmosphere to give a first antioxidizing coating. The coated carbon material was implanted in the second coating powder containing metal nickel powder, halogenated nickel or its composite powder and inactive antisintering powder, and heat-treated at 850- 1,200 deg.C for 1- 5 hours in a nonoxidative atmosphere to give the second antioxidizing coating.

Description

탄소재료의 산화방지를 위한 이중 피복방법Double coating method to prevent oxidation of carbon material

제 1 도는 본 발명에 의한 방법의 실시에 사용될 수 있는 탄소재료의 피복장치를 나타내는 개략도.1 is a schematic view showing a coating apparatus for a carbon material which can be used in the implementation of the method according to the present invention.

제 2 도는 산화시간에 따른 탄소재료의 산화소실량을 나타내는 그래프2 is a graph showing the amount of loss of oxides of carbon material according to oxidation time

제 3 도 및 제 4 도는 이중피복후 탄소재료의 산화에 의한 중량변화를 나타내는 그래프.3 and 4 are graphs showing weight change by oxidation of carbon material after double coating.

제 5 도는 본 발명의 니켈계 및 알루미늄계로 2차 피막처리한 탄소재료의 산화에 의한 중량변화를 나타내는 그래프.5 is a graph showing the weight change by oxidation of the carbon material subjected to the secondary coating treatment of nickel-based and aluminum-based of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 발열체2 : 반응관1: heating element 2: reaction tube

3 : 판소재료시편4 : 도가니3: plate material specimen 4: crucible

5 : 지지대6 : 불활성가스원5: support base 6: inert gas source

7 : 피복용혼합분말7: mixed powder for coating

본 발명은 고속항공기, 경주자동차 등의 브레이크 재료 및 복잡한 전극과 발열체 등에 사용되는 탄소재료 또는 탄소복합재료(이하, "탄소재료"라 한다)의 산화방지를 위한 피복방법에 관한 것으로서, 보다 상세하게는 탄소재료의 표면에 1차로 크롬계 피막을 형성하고, 이 크롬계 피막위에 2차로 니켈계 피막을 형성함으로써 산화를 방지하는 이중피복에 의한 탄소재료의 산화방지를 위한 피복방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating method for preventing oxidation of a carbon material or a carbon composite material (hereinafter referred to as a "carbon material") used in brake materials such as high-speed aircraft, racing cars, and complicated electrodes and heating elements. The present invention relates to a coating method for preventing oxidation of a carbon material by double coating which prevents oxidation by first forming a chromium-based film on the surface of the carbon material and forming a nickel-based film secondly on the chromium-based film.

탄소재료는 경량이며 비강도가 높고, 열충격과 부식에 강하며 열과 전기의 양도체이다. 따라서 형상의 복잡한 전극과 발열체로 사용되고 있으며, 또한 고속항공기, 경주용차 등의 브레이크 재료 및 우수항공용의 고온재료 등으로 사용되고 있으나 공기중에서는 500℃이상에서 산화가 급속하게 진행되는 치명적인 결함이 있다.Carbon materials are lightweight, high in specific strength, resistant to thermal shock and corrosion, and are good conductors of heat and electricity. Therefore, it is used as a complex electrode of the shape and a heating element, and also used as a brake material of high-speed aircraft, racing cars and high-temperature materials for excellent aviation, etc., but there is a fatal defect that oxidation proceeds rapidly at 500 ° C or higher in the air.

이 결함을 보완하기 위해서 산화방지 피막의 피복방법이 여러가지로 검토되고 있다. 탄소재료의 산화방지를 위한 피복방법으로는 탄화규소(SiC), 질화규소(Si2N4)등의 화학증착법(CVD)에 의한 코팅과 마그네시아(MgO), 알루미나(Al2O3) 및 산화크롬(Cr2O3)등의 플라즈마 용사가 행해지고 있다.(Jaurna of Material Science, Vol 24(1989), P.3511-3520)In order to compensate for this defect, various coating methods for the antioxidant coating have been studied. Coating methods to prevent oxidation of carbon materials include coating by chemical vapor deposition (CVD) such as silicon carbide (SiC), silicon nitride (Si 2 N 4 ), magnesia (MgO), alumina (Al 2 O 3 ), and chromium oxide Plasma spraying, such as (Cr 2 O 3 ), is performed. (Jaurna of Material Science, Vol 24 (1989), P.3511-3520)

그러나, 상기 화학증착법(CVD)에 의한 피복방법에는 처리온도가 1300℃ 이상의 고온을 요하고 피코팅체의 전표면을 피착하기 위해서는 여러번 반복코팅해야 하는 단점이 있다.However, the coating method by Chemical Vapor Deposition (CVD) has a disadvantage that a treatment temperature requires a high temperature of 1300 ° C. or more and repeated coating several times in order to deposit the entire surface of the coated object.

따라서, 탄화규소 또는 알루미나 등의 피복층이 두껍게 되지 않으면 안정한 사노하방지막을 형성하기가 어려우며, 또한 재료의 크기 및 형상에 제한을 받는 등의 문제점이 있게 된다.Therefore, if the coating layer of silicon carbide or alumina is not thick, it is difficult to form a stable anti-anode film, and there is a problem of being limited in size and shape of the material.

한편, 플라즈마 용사에 의한 산화방지 피복법에서도 재료와의 접착이 불량하여 박리가 일어나기 쉬우므로 피복층을 두껍게 하지 않으면 안되는 문제점이 있게 된다.On the other hand, in the anti-oxidation coating method by plasma spraying, since the adhesion to the material is poor and peeling easily occurs, there is a problem that the coating layer must be thickened.

본 발명자는 상기한 문제점을 개선하기 위하여 탄소재료를 할로겐화 크롬분말과 불활성 소결방지제 분말의 혼합분말 또는 산화크롬분말과 할로겐화크롬화합물분말의 혼합분말 중에서 열처리하여 탄소재료의 산화를 방지하는 방법을 제안하여 특허출원한 바 있다(대한민국 특허출원제 91-25123호).The present invention proposes a method of preventing the oxidation of the carbon material by heat-treating the carbon material in a mixed powder of chromium halide powder and inert sintering inhibitor powder or mixed powder of chromium oxide powder and chromium halide compound powder in order to improve the above problems. Patent application has been filed (Korean Patent Application No. 91-25123).

기출원된 방법에 따라 금속크롬층만을 피복시킬 경우에는 공기중에서 산화되는 경우 코팅층의 표면은 산화크롬이 생성되게 되고 이 산화크롬층은 공기를 통과시키지 않고 산화방지피막으로서 기능을 하게 된다.In the case of coating only the metal chromium layer according to the previously applied method, when the oxide is oxidized in air, the surface of the coating layer is formed with chromium oxide, and the chromium oxide layer functions as an anti-oxidation coating without passing air.

그러나, 산화크롬은 고온(1000℃ 이상)에서 장시간 사용하면 삼산화크롬(Cr2O3)의 기체로 되어서 극미량이지만 증발하게 되므로, 장시간 산화방지에는 안정성이 떨어지는 문제점이 있다. 또한 탄소재료의 표면에 1차로 기출원 방법으로 크롬계를 피복하고 이 크롬계 위에 2차로 알루미늄계를 피복하여 산화를 방지하는 이중피복에 의한 탄소재료 산화방지법을 제안하여 특허출원한 바 있다(대한민국 특허출원 제92-14096).However, chromium oxide becomes a gas of chromium trioxide (Cr 2 O 3 ) when it is used for a long time at a high temperature (1000 ° C. or more) for a very small amount but evaporates, and thus there is a problem in that stability for oxidation prevention is long. In addition, a patent application has been proposed for the carbon material oxidation prevention method by double coating which prevents oxidation by coating chromium based on the surface of the carbon material as the primary application method and covering aluminum based on the chromium second. Patent Application No. 92-14096.

상기 출원된 방법은 1차 크롬계만을 피복한 경우에 비하여 산화방지효과가 월등히 우수하나 2차 피복층이 고온(1000℃ 이상)에서 장시간 산화될 경우에는 알루미늄의 경우 초기 융점이 낮아서 표면두께가 불균질하게 형성되고 산화층이 불균해지고 표면에 미세기공이 형성되어 알루미늄층내의 크롬층이 고온대기와 접촉하게 되어 크롬층이 삼산화크롬(O3)의 기상으로 미량이지만 증발되어 안정성이 떨어지는 문제가 있다.The applied method is superior to the case of coating only the primary chromium-based, but the antioxidant effect is excellent, but when the secondary coating layer is oxidized for a long time at high temperature (1000 ℃ or more), the initial melting point of aluminum is low, the surface thickness is heterogeneous It is formed in such a way that the oxide layer is uneven and micropores are formed on the surface so that the chromium layer in the aluminum layer is in contact with the high temperature atmosphere, so that the chromium layer is traced in the gaseous phase of chromium trioxide (O 3 ), but the stability is lowered.

이에, 본 발명의 목적은 상기한 문제점을 해결하기 위한 보다 개선된 탄소재료의 고온산화를 효과적으로 방지할 수 있는 탄소재료의 산화방지를 위한 이중피복방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a double coating method for the oxidation of the carbon material that can effectively prevent the high temperature oxidation of the improved carbon material to solve the above problems.

본 발명에 일견지에 의하면, 탄소재료 또는 탄소복합재료의 산화방지를 위한 피복방법에 있어서, 중량%로, 할로겐화 크롬분말 : 30-50% 및 불활성 소결방지제 분말 50-70%로 조성되는 1차 피복혼합분말중에 탄소재료 또는 탄소복합재료를 묻고 비산화성 분위기하에서 통상의 방법으로 열처리하여 1차 내산화성 피막을 형성한 후, 금속니켈분말 및 할로겐화 니켈의 단독 또는 복합분말과 불활성소결방지제 분말로 조성되는 2차 피복혼합분말중에 상기와 같이 1차 피복된 탄소재료를 묻고 비산화성 분위기하에서 850-1200℃의 온도로 1-5시간동안 열처리하여 2차 내산화성피막을 형성함을 특징으로 하는 탄소재료의 산화방지를 위한 피복방법이 제공된다.According to one aspect of the present invention, in the coating method for preventing oxidation of a carbon material or a carbon composite material, the first composition is composed of chromium halide powder: 30-50% by weight and 50-70% inert sintering inhibitor powder by weight%. A carbonaceous material or carbon composite material was embedded in the coating mixture powder, and heat-treated in a non-oxidizing atmosphere in a conventional manner to form a primary oxidation resistant film, and then composed of metal nickel powder, nickel halide powder alone or a composite powder, and an inert sintering powder. A carbon material characterized by burying the first coated carbon material as described above in the secondary coating mixture powder and heat-treating at a temperature of 850-1200 ° C. for 1-5 hours in a non-oxidizing atmosphere to form a secondary oxidation resistant film. The coating method for the oxidation prevention of the present invention is provided.

본 발명의 다른 견지에 의하면, 탄소재료 또는 탄소복합재료의 산화방지를 위한 피복방법에 있어서, 중량%로, 산화크론분말 : 85-95% 및 할로겐화합물분말 : 5-15%로 조성되는 1차 피복혼합분말중에 탄소재료를 묻고 비산화성 분위기하에서 통상의 방법으로 열처리하여 1차 내산화성피막을 형성한 후, 니켈분말 및 할로겐화 니켈분말의 단독 또는 복합분말과 불활성소결 방지제 분말로 조성되는 2차 피복 혼합분말중에 상기와 같이 1차 피복된 탄소재료를 묻고 비산화성 분위기하에서 850-1200℃의 온도로 1-5시간동안 열처리하여 2차 내산화성 피막을 형성함을 특징으로 하는 탄소재료의 산화방지를 위한 피복방법이 제공된다. 이하, 본 발명에 대하여 상세히 설명한다.According to another aspect of the present invention, in the coating method for preventing oxidation of a carbon material or a carbon composite material, the first composition is composed of weight percent, chromium oxide powder: 85-95%, and halogen compound powder: 5-15%. After coating carbon powder in coating mixture powder and heat-treating in a non-oxidizing atmosphere in the usual way to form primary oxidation resistant film, secondary coating composed of nickel powder and nickel halide powder alone or composite powder and inert sintering inhibitor powder To prevent oxidation of the carbon material characterized in that the buried carbon material in the mixed powder as described above and heat-treated for 1-5 hours at a temperature of 850-1200 ℃ in a non-oxidizing atmosphere to form a secondary oxidation resistant film A coating method is provided. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 탄소재료표면에 탄소와 결합성이 강한 크롬피막층을 형성하고, 그 위에 니켈피막층을 형성시킴으로써, 고온에서도 내산화성이 우수하고 안정한 이중 내산화피막을 형성하여 탄소재료의 고온산화를 효과적으로 방지하고자 하는 것이다.The present invention forms a chromium film layer having a strong bond with carbon on the surface of the carbon material and a nickel film layer thereon, thereby forming a double oxidation resistant film having excellent oxidation resistance and stability even at high temperatures, thereby effectively preventing high temperature oxidation of the carbon material. I would like to.

본 발명의 일견지에 있어서, 상기 1차 코팅은 할로겐화 크롬과 불활성 소결방지제 분말의 혼합분말로 조성된 1차 피복혼합물에 피복하고자 하는 탄소재료를 묻고 통상의 방법으로 열처리하는데, 이때 열처리는 아르곤가스와 같은 비산화성 가스분위기 하에서 850-1050℃로 열처리하는 것이며 이와 같이 열처리함으로써 염화크롬 또는 불화크롬이 액화 또는 기화되어 탄소재질의 표면에 석출되어 코팅된다.In one aspect of the present invention, the primary coating is a carbon material to be coated on the primary coating mixture composed of a mixed powder of chromium halide and inert antisintering agent powder and heat treated in a conventional manner, wherein the heat treatment is argon gas Heat treatment at 850-1050 ℃ under a non-oxidizing gas atmosphere such as chromium chloride or chromium fluoride is liquefied or vaporized by the heat treatment in this way is deposited on the surface of the carbon material is coated.

상기 할로겐화 크롬분말로는 CrCl2및 CrCl3와 같은 염화크롬분말 또는 CrF2및 CrF3등의 불화크롬분말을 단독으로 또는 혼합하여 사용할 수 있으며, 상기 불활성 소결방지용 분말로는 Al2O3, SiO2및 MgO 분말을 단독으로 또는 혼합하여 사용할 수 있다.As the chromium halide powder, chromium chloride powders such as CrCl 2 and CrCl 3 or chromium fluoride powders such as CrF 2 and CrF 3 may be used alone or in combination. The powder for preventing inert sintering may be Al 2 O 3 , SiO 2 and MgO powders may be used alone or in combination.

또한, 상기한 할로겐화 크롬과 불활성 소결방지제의 혼합비에 있어서, 할로겐화 크롬분말의 혼합양이 50중량% 이상이 되면 일정온도에서 할로겐화 크롬이 액화 도는 기화하여 활성화된 크롬양이 많아져서 확산속도가 빠르게 되는 반면에 금속 크롬이 탄소재료 표면에 석출하는 정도가 심해져서 불균일한 표면층을 형성하게 되고, 그 혼합량이 30중량% 이하인 경우에는 할로겐화 크롬의 활성화된 크롬양이 적어져서 확산되는 속도가 느려지고 탄소재료 피복시에 장시간을 소요하는 문제점이 있으므로 할로겐화 크롬분말과 불활성 소결방지제의 혼합량은 각각 30-50중량% 및 50-70중량%로 한정하는 것이 바람직하다. 또한, 본 발명의 다른 견지에 있어서, 산화크롬분말과 할로게화 화합물분말로 조정된 1차 피복혼합물에 피복하고자 하는 탄산재료를 묻고 상기한 방법과 동일한 방법으로 가열처리함으로써 탄소재료표면에 크롬이 석출되어 코팅된다.In addition, in the mixing ratio of the chromium halide and the inert sintering inhibitor, when the mixing amount of the chromium halide powder is 50% by weight or more, the chromium halide is liquefied or vaporized at a predetermined temperature, thereby increasing the amount of activated chromium and increasing the diffusion rate. On the other hand, metal chromium precipitates on the surface of the carbon material so much that it forms a non-uniform surface layer, and when the mixing amount is 30% by weight or less, the amount of activated chromium in the chromium halide decreases and the diffusion rate is slowed and the carbon material is coated. Since there is a problem that takes a long time at the time of mixing the amount of the chromium halide powder and the inert sintering inhibitor is preferably limited to 30-50% by weight and 50-70% by weight, respectively. Further, in another aspect of the present invention, chromium is deposited on the surface of a carbon material by burying a carbonic acid material to be coated in a primary coating mixture adjusted with chromium oxide powder and a halogenated compound powder and heat-treating the same method as described above. And coated.

상기한 바와 같이 1차 코팅함으로써 균일하고 치밀한 중간층인 탄화크롬층과 피막층인 금속크롬층이 형성된다.As described above, the primary coating forms a uniform and dense chromium carbide layer as an intermediate layer and a metal chromium layer as a coating layer.

상기 산화크롬분말로는 Cr2O3분말이 사용되며, 할로겐화합물 분말로는 NaCl, NH4Cl 및 NH4F 분말을 단독으로 또는 혼합으로 사용할 수 있다.Cr 2 O 3 powder is used as the chromium oxide powder, NaCl, NH 4 Cl and NH 4 F powder may be used alone or in combination as the halogen compound powder.

한편, 상기한 산화크롬 분말과 할로겐 화합물 분말의 혼합비에 있어서, 할로겐 화합물의 양이 15중량%이상인 경우에는 산화크롬과 할로겐 화합물의 반응속도가 빨라져서 활성화된 크롬의 양이 많아지게 되므로 탄소재료의 표면에 석출하는 크롬이 많아져서 불균일한 표면층을 형성하며, 5중량% 이하인 경우에는 산화크롬과 할로겐 화합물의 반응속도가 떨어져서 활성화된 크롬양이 적어져 확산속도가 느려지고 탄소재료 표면 피복시 장시간이 소요되는 문제점이 있기 때문에, 산화크롬분말과 할로겐 화합물 분말의 혼합량은 각각 85-95중량% 및 5-15중량%로 제한하는 것이 바람직하다.On the other hand, in the mixing ratio of the chromium oxide powder and the halogen compound powder, when the amount of the halogen compound is 15% by weight or more, the reaction rate of the chromium oxide and the halogen compound is increased so that the amount of activated chromium increases, so that the surface of the carbon material is Chromium precipitates to form a non-uniform surface layer, and if it is less than 5% by weight, the reaction rate of chromium oxide and halogen compound decreases, so the amount of activated chromium decreases, so that the diffusion rate is slowed and it takes a long time to coat the carbon material surface. Since there is a problem, the amount of the chromium oxide powder and the halogen compound powder is preferably limited to 85-95% by weight and 5-15% by weight, respectively.

2차코팅은 금속니켈분말과 할로겐화니켈의 단독 또는 혼합분말과 불활성 소결방지제 분말의 혼합분말로 조성된 2차 피복혼합물에 상기한 바와 같이 1차 피복된 탄소재료를 묻고 질소 또는 아르곤가스와 같은 비산화성 분위기하에서 850-1200℃의 온도로 열처리하는 것이다.The secondary coating is buried in a secondary coating mixture composed of a metal nickel powder and a nickel halide alone or a mixed powder and an inert sintering agent powder, and the primary coating of carbon material as described above and scattered such as nitrogen or argon gas. Heat treatment is performed at a temperature of 850-1200 ° C. under a chemical atmosphere.

2차 코팅시 열처리온도가 850℃이하인 경우에는 반응속도로 느려지고 투입한 니켈이 그대로 크롬층에 부착하여 피막이 균일하게 형성되지 않고, 1200℃이상인 경우에는 1차 코팅시에 생성된 금속크롬층의 막이 코팅용 반응기내의 할로겐원소와 재반응하므로 표면결함이 발생원인이 되므로 니켈 코팅처리인 2차 코팅시 850-1200℃로 열처리하는 것이 바람직하다.When the heat treatment temperature during the secondary coating is 850 ℃ or less, the reaction rate is slowed down and the added nickel adheres to the chromium layer as it is, so that the film is not uniformly formed. When the temperature is above 1200 ℃, the film of the metal chromium layer formed during the primary coating is It is preferable to heat-treat at 850-1200 ° C. for the secondary coating, which is a nickel coating, because the surface defects are caused by the reaction with the halogen element in the coating reactor.

2차 코팅시 사용되는 할로겐화 니켈로는 NiCl2를 그리고 소결방지용 분말로는 Al2O3, SiO2및 MgO 분말이 사용될 수 있다. 또한, 상기 2차 피복혼합물에 할로겐화합물 분말을 추가로 첨가하여 2차 피복혼합물을 제조할 수 있으며, 이때 할로겐화합물로는 NaCl, NH4Cl 및 NH4F 분말이 사용될 수 있다.Nickel halides used in the secondary coating may be NiCl 2 and Al 2 O 3 , SiO 2 and MgO powders may be used as powders for sintering prevention. In addition, a secondary coating mixture may be prepared by further adding a halogen compound powder to the secondary coating mixture, wherein the halogen compound may be NaCl, NH 4 Cl, and NH 4 F powder.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

제 1 도에 나타난 바와 같이, 발열체(1)로서 가열되는 반응관(2)의 내부에 하기 <표 1>과 같은 물성치를 갖는 탄소복합재료시편(3) 및 하기 <표 2>와 같은 피복용 혼합분말(7)을 넣은 도가니(4)를 지지대(5)에 고정하고, 반응관(2) 하단에서 불활성 가스원(6)으로 아르곤가스를 20㎖/min으로 공급받고, 반응관(2) 내부를 충분히 비산화성분위기 상태로 하고 반응관(2) 상부에서 가스를 방출하는 것에 의해 반응관(2)의 내부압력을 일정하게 유지하였다.As shown in FIG. 1, the carbon composite material specimen 3 having the physical properties as shown in Table 1 and the coating as shown in Table 2 in the reaction tube 2 heated as the heating element 1 is shown in FIG. The crucible 4 containing the mixed powder 7 is fixed to the support 5, and argon gas is supplied to the inert gas source 6 from the lower end of the reaction tube 2 at 20 ml / min. The internal pressure of the reaction tube 2 was kept constant by making the inside sufficiently non-oxidative atmosphere and releasing gas from the upper part of the reaction tube 2.

상기 탄소복합재료시편(3)은 PAN(폴리아클리로니트릴)계 탄소섬유와 피치계 탄소메트릭스로 구성된 복합재료로서, 그 크기는 5×5×10㎜이고, 800번 연마지 위에서 표면을 연마하고, 아세톤욕 중에서 초음파세정 후 건조한 것이다. 상기 도가니(4)는 내경 : 15㎜, 외경 : 25㎜인 흑연질 도가니이다.The carbon composite material specimen 3 is a composite material composed of PAN (polyacrylonitrile) -based carbon fibers and pitch-based carbon matrices, the size of which is 5 × 5 × 10 mm, and the surface is polished on abrasive paper No. 800. In acetone bath, it is dried after ultrasonic cleaning. The crucible 4 is a graphite crucible having an inner diameter of 15 mm and an outer diameter of 25 mm.

아르곤 공급개시 30분후에 10℃/min 속도로 승온항 하기 <표 2>의 열처리조건으로 열처리한 후, 피복량을 측정하고 그 측정결과를 하기 <표 3>에 나타내었으며, 또한 열천평을 사용하여 내산화성 시험을 행하고 그 결과를 미피복탄소재료 시편의 결과와 함께 제 2 도에 나타내었는데, 이 내산화성 시험은 미리 900℃로 가열된 열천평 내에 시편을 넣고 건조공기를 600cc/min으로 공급하고 산화시간(분)에 따른 중량감소를 측정하여 나타낸 것이다.After 30 minutes from the start of argon supply, the temperature increased at 10 ° C./min. After the heat treatment under the heat treatment conditions of <Table 2>, the coating amount was measured and the measurement results are shown in the following <Table 3>. The oxidation resistance test was carried out and the results are shown in FIG. 2 together with the results of the uncoated carbon material specimen. The oxidation resistance test was carried out by placing the specimen in a thermosquan previously heated to 900 ° C. and supplying dry air at 600 cc / min. And it is shown by measuring the weight loss according to the oxidation time (minutes).

하기 <표 2>의 염화크롬은 99%의 순도 및 325메쉬 이하의 입도를 갖는 분말이고, 알루미나는 1000℃에서 하소한 99.9%의 순도 및 325 메쉬 이하의 입도를 갖는 분말이다.Chromium chloride in Table 2 below is a powder having a purity of 99% and a particle size of 325 mesh or less, and alumina is a powder having a purity of 99.9% and a particle size of 325 mesh or less calcined at 1000 ° C.

[표 1]TABLE 1

[표 2]TABLE 2

[표 3]TABLE 3

상기와 같이 1차 코팅된 시편중 비교예(1)에 따라 1차 피복된 피복시편 및 하기 <표 4>와 같이 조성되는 2차 피복혼합분말을 제 1 도에 제시된 피복처리장치의 흑연도가니에 넣는다.Among the first coated specimens as described above, the coated specimen coated according to Comparative Example (1) and the secondary coating mixture powder prepared as shown in <Table 4> are applied to the graphite crucible of the coating apparatus shown in FIG. Put it in.

하기 <표 4>의 코팅혼합분말로 사용한 염화니켈(NiCl2)은 각각 순도 99%, 325메쉬 이하의 분말이고, 알루미나 분말은 1000℃에서 하소한 순도 99.9%, 325메쉬 통과분이다. 금속니켈 분말은 순도 99.9%로서 325메쉬 통과분이고, 염화암모늄과 염화나트륨 분말로는 순도 98%인 100메쉬 통과분을 사용하였다.Nickel chloride (NiCl 2 ) used as the coating mixture powder of Table 4 below is a powder having a purity of 99% and 325 mesh or less, respectively, and the alumina powder has a purity of 99.9% and 325 mesh passages calcined at 1000 ° C. Metal nickel powder was 99.9% pure and 325 mesh was passed. As ammonium chloride and sodium chloride powder, 100 mesh passed was used, having 98% purity.

1차 코팅에서와 같이, 반응관 내부에 도가니를 넣고 아르곤분위기로 한 후에 하기 <표 4>의 조건으로 2차 피복처리한 후 실온까지 자연냉각한 다음 시편을 끄집어 내어 산화실험을 행하고, 그 결과를 제 3 도에 나타내었다.As in the primary coating, the crucible was placed inside the reaction tube and placed in an argon atmosphere, followed by secondary coating treatment under the conditions of <Table 4>, followed by naturally cooling to room temperature, and then taking out the specimen to perform an oxidation experiment. Is shown in FIG.

상기 산화실험을 먼저 백금선으로 시편을 현추시킬 수 있는 망을 만들고 이 망속에 2차 코팅된 시편을 넣은 후 전기로 속에서 현추시키고 이 상태에서 소정의 온도인 1300℃까지 승온시켜 사화시킴으로써 중량변화를 측정한 것이다.The oxidation experiment is first made of a mesh that can suspend the specimen with platinum wire, put the secondary coated specimen in the mesh, and then suspended in an electric furnace, and in this state, the temperature is raised to a temperature of 1300 ° C. to extinguish the weight change. It is measured.

[표 4]TABLE 4

제 3 도에 나타난 바와 같이, 본 발명에 따라 이중피복한 발명재(1-3)의 경우에는 1300℃에서 9시간 산화시켜도 코팅중의 산화에 의한 0.07% 이하의 증가량만이 있을 뿐 산화에 의한 소실이 없음에 반하여, 1차 코팅처리만 행한 비교예(1)의 경우에는 산화에 의한 중량감소가 있음을 알 수 있다.As shown in FIG. 3, in the case of the double-coated invention material (1-3) according to the present invention, there is only an increase of 0.07% or less due to oxidation in the coating even after oxidizing at 1300 ° C for 9 hours. On the other hand, in the case of the comparative example (1) which performed only the primary coating process on the contrary, there is no weight loss by oxidation.

[실시예 2]Example 2

제 1 도에 나타난 피복처리장치를 사용하여 하기 <표 5>와 같은 물성을 갖는 탄소재료를 하기 <표 6>과 혼합비를 혼합된 1차 피복혼합분말에 묻고 하기 <표 6>의 피복처리조건으로 피복처리한 다음, 피복량을 측정하고, 그 측정결과를 하기 <표 7>에 나타내었다.Using the coating treatment device shown in FIG. 1, a carbon material having physical properties as shown in Table 5 was buried in the primary coating mixture powder mixed with the following Table 6, and the coating treatment conditions shown in Table 6 below. After coating, the coating amount was measured, and the measurement results are shown in Table 7 below.

상기 탄소재료는 동방성인 흑연재료이며, 크기 5×5×10㎜로 절단연마 한 후에 아세톤 세정을 행하였고, 하기 <표 6>의 피복혼합분말에 사용된 산화크롬(Cr2O3) 분말 및 염화나트륨 분말은 순도 99%, 입도 325메쉬 이하인 것이다.The carbon material is an isotropic graphite material, and acetone was washed after cutting and grinding to a size of 5 × 5 × 10 mm, and the chromium oxide (Cr 2 O 3 ) powder and the powder used in the coating mixture powder of Table 6 below. Sodium chloride powder is 99% pure and has a particle size of 325 mesh or less.

또한, 상기와 같은 1차 피복처리된 시편에 대하여 열천평을 사용하여 내산화실험을 행하고, 그 결과를 제 2 도에 나타내었는데, 이 실험은 미리 900℃로 가열된 열천평내에 이들 시편을 넣고 건조공기를 600cc/min으로 공급하고 산화시간(분)에 따른 중량감소를 측정한 것이다.In addition, an oxidation test was conducted on the primary coated specimens using ten thousand square meters, and the results are shown in FIG. 2. In this experiment, the specimens were placed in a ten thousand square sheets previously heated to 900 ° C. Supplying dry air at 600cc / min and measuring the weight loss according to the oxidation time (minutes).

[표 5]TABLE 5

[표6]Table 6

[표 7]TABLE 7

상기와 같이 1차 피복된 시편중 비교예(4)에 따라 1차 피복된 시편 및 하기 <표 8>과 같이 조성된 2차 피복혼합분말을 제 1 도에 제시된 피복처리장치의 흑연도가니에 넣는다.The primary coated specimen according to Comparative Example (4) among the primary coated specimens as described above and the secondary coating mixture powder prepared as shown in Table 8 are placed in the graphite crucible of the coating apparatus shown in FIG. .

하기 <표 8>의 코팅혼합분말로 사용한 NiCl2분말은 각각 순도 99%, 325메쉬 이하의 분말이고 Al2O3분말은 100℃에서 하소한 순도 99%, 325메쉬 통과분이고, 금속 니켈분말은 순도 99.9%로서, 325메쉬 통과분이고, NH4Cl 및 NaCl 분말은 순도 98%, 100메쉬 통과분을 사용하였다.The NiCl 2 powder used as the coating mixture powder of Table 8 is 99% pure and 325 mesh or less, respectively, and the Al 2 O 3 powder is 99% pure and 325 mesh passed at 100 ° C., and the metal nickel powder is As a purity of 99.9%, 325 meshes were passed, and NH 4 Cl and NaCl powders were 98% pure and 100 meshes passed.

1차 코팅에서와 같이 반응관 내부에 도가니를 넣고 아르곤분위기로 한 후에 하기 <표 4>의 조건으로 2차 피복처리한 후 실온까지 자연냉각한 다음 시편을 끄집어 내어 산화실험을 행하고, 그 결과를 제 4 도에 나타내었다.After putting the crucible inside the reaction tube as in the primary coating and argon atmosphere, after secondary coating treatment under the conditions of the following <Table 4>, naturally cooling to room temperature, taking out the specimen and performing an oxidation experiment. 4 is shown.

산화실험은 상기 실시예 1에서와 동일하게 실시하여 중량변화를 측정한 것이다.Oxidation experiment was carried out in the same manner as in Example 1 to measure the weight change.

[표 8]TABLE 8

제 4 도에 나타난 바와 같이, 본 발명에 따라 이중피복처리된 본 발명재(4-6)의 경우에는 1300℃에서 9시간 산화시켜도 코팅층의 산하에 의한 0.08% 이하의 증가량만이 있을 뿐 산화에 의한 손실이 없음에 반하여, 1차 코팅처리만 행한 비교예(4)의 경우에는 산화에 의한 중량감소가 있음을 알 수 있다.As shown in FIG. 4, in the case of the present invention (4-6) which is double-coated according to the present invention, even if it is oxidized at 1300 ° C. for 9 hours, there is only an increase of 0.08% or less due to the acidity of the coating layer. On the other hand, in the case of Comparative Example (4) in which only the primary coating treatment was performed, there was no weight loss due to oxidation.

제 3 도 및 제 4 도에 나타난 바와 같이, 본 발명에 따라 이중피복처리된 탄소재료가 고온의 산화분위기에 놓이는 경우, 탄소재료 표면의 니켈이 산화되어 산화피막인 산화니켈이 형성되므로 이 산화니켈피막이 산소투과를 방지하는 효과가 있으며, 또한 탄소재료와의 사이에서 극히 얇은 탄화크롬이 형성되고, 그 위에 크롬이 석출한다고 하여도 탄소재료와 크롬의 접착성이 대단히 좋고 또 산화에 의해서 크롬표면층이 변화게 된다.As shown in FIGS. 3 and 4, when the double-coated carbon material according to the present invention is placed in a high temperature oxidation atmosphere, nickel on the surface of the carbon material is oxidized to form nickel oxide, which is an oxide film. The film has an effect of preventing oxygen permeation, and extremely thin chromium carbide is formed between the carbon material, and even if chromium is deposited thereon, the adhesion between the carbon material and chromium is very good, and the chromium surface layer is formed by oxidation. Will change.

[실시예 3]Example 3

본 실시예에서는 실시예 1에서와 같이 제조된 1차 피복처리시편을 이중피복하는 경우 피복재로 본 발명의 니켈계를 사용하는 경우와 알루미늄계(대한민국 특허출원제 92-14096)를 사용하는 경우를 비교하기 위한 실험으로 이중피복 방법은 실시예 2에서와 같은 방법으로 행하였고 본 실시예의 각각의 화학조성에 대한 조건은 하기 <표 9>와 같으며 피복처리조건은 1000℃에서 5시간동안 제 1 도의 실험장치를 이용하였으며, 각각 알루미늄계와 본 발명의 니켈계로 이중피복된 시편을 제조하였다.In this embodiment, when double coating the primary coating treated specimen prepared as in Example 1, the case of using the nickel-based and aluminum-based (Korean Patent Application No. 92-14096) as the coating material As a test for comparison, the double coating method was performed in the same manner as in Example 2, and the conditions for the respective chemical compositions of the present examples are shown in Table 9 below, and the coating treatment conditions were 1 hour at 1000 ° C. for 5 hours. The experimental apparatus of FIG. Was used, and double-coated specimens were prepared based on aluminum and nickel, respectively.

또한 이 제조된 피복처리시편을 실온까지 자연냉각하여 시편을 끄집어 내어 상기 실시예 1과 같은 방법으로 산화실험을 행하여 중량변화를 측정하고 그 결과를 제 5 도에 나타내었다.In addition, the prepared coated specimen was naturally cooled to room temperature, the specimen was taken out, an oxidation experiment was performed in the same manner as in Example 1, and the weight change was measured. The results are shown in FIG.

제 5 도에 나타낸 비교예와 본 발명예의 비교 그래프에서 알 수 있듯이 본 발명의 경우 산화에 대한 중량 변화가 안정적임을 알 수 있다. 또한 산화소실은 거의 나타나지 않음을 알 수 있다. 반면 비교예의 경우에는 산화시험에서 12시간 이후에 산화소실이 발생되는 것을 보여주며 이것은 알루미늄층의 산화와 내부크롬층의 산화가 완료되고 산화크롬(Cr2O3)의 기화로 극미량이 증발되어 산화소실이 일어남을 알 수 있다. 즉, 비교예의 경우 고온에서 탄소층이 직접 산화되면 급속한 산화소실을 나타내는데 반하여 본 발명의 경우는 매우 안정한 것으로 나타났다.As can be seen from the comparative graph of FIG. 5 and the comparative example of the present invention, it can be seen that the weight change of oxidation is stable in the present invention. It can also be seen that the loss of oxide is almost absent. On the other hand, in the case of the comparative example, the oxidation test shows that the loss of oxide occurs after 12 hours, which is completed by the oxidation of the aluminum layer and the oxidation of the internal chromium layer and the evaporation of a very small amount by the vaporization of chromium oxide (Cr 2 O 3 ). It can be seen that the loss occurs. That is, in the case of the comparative example, when the carbon layer is directly oxidized at a high temperature, rapid oxidation loss is shown, whereas in the case of the present invention, it is found to be very stable.

[표 9]TABLE 9

본 발명에 따라 이중피막층으로 코팅한다 하더라도 실제로는 산화니켈-니켈-금속크롬-탄화크롬층의 4층으로 피막이 형성되고 고온에서 니켈층의 결함이 발생하여도 금속크롬층이 산화되어 산화크롬층을 형성하여 산화를 방지하게 되는 이중의 효과를 갖게 된다. 즉, 본 발명의 방법으로 탄소재료를 이중 피막처리함으로써 고온에서 내산화성이 우수한 피막을 형성할 수 있는 것이다.According to the present invention, even though the coating is carried out with a double coating layer, the coating film is actually formed into four layers of the nickel oxide-nickel-metal chromium-chromium carbide layer and the chromium oxide layer is oxidized by oxidizing the metal chromium layer even when a defect of the nickel layer occurs at a high temperature. It has a dual effect of forming to prevent oxidation. In other words, by coating the carbon material with the double coating treatment by the method of the present invention, a coating having excellent oxidation resistance at high temperature can be formed.

Claims (4)

탄소재료 또는 탄소복합재료의 산화방지를 위한 피복방법에 있어서, 중량%로, 할로겐화 크롬분말 : 30-50% 및 불활성 소결방지제 분말 : 50-70%로 조성되는 1차 피복혼합분말중에 탄소재료 또는 탄소복합재료를 묻고 비산화성 분위기하에서 통상의 방법으로 열처리하여 1차 내산화성 피막을 형성한 후, 금속니켈분말 및 할로겐화 니켈의 단독 또는 복합분말과 불활성 소결방지제 분말로 조성되는 2차 피복혼합분말중에서 상기와 같이 1차 피복된 탄소재료를 묻고 비산화성 분위기하에서 850-1200℃의 온도로 1-5시간동안 열처리하여 2차 내산화피막을 형성함을 특징으로 하는 탄소재료의 산화방지를 위한 이중피복방법.In the coating method for preventing oxidation of a carbon material or a carbon composite material, the carbon material or the first coating mixture powder, which is composed of a weight%, chromium halide powder: 30-50%, and inert sintering agent powder: 50-70%. After buried a carbon composite material and heat-treated in a non-oxidizing atmosphere in a conventional manner, a primary oxidation resistant film was formed, and then in a secondary coating mixture powder composed of a metal nickel powder, nickel halide alone or a composite powder, and an inert sintering inhibitor powder. Double coating for preventing oxidation of the carbon material, which is buried as above and the primary coated carbon material is heat-treated at a temperature of 850-1200 ° C. for 1-5 hours in a non-oxidizing atmosphere to form a secondary oxidation resistant film. Way. 1항에 있어서, 상기 2차 피복혼합분말에 할로겐화합물 분말이 추가로 첨가됨을 특징으로 하는 탄소재료의 산화방지를 위한 이중피복방법.The double coating method for preventing oxidation of a carbon material according to claim 1, wherein a halogen compound powder is further added to said secondary coating mixture powder. 탄소재료 또는 탄소복합재료의 산화방지를 위한 피복방법에 있어서, 중량%로, 산화크롬분말 : 85-95% 및 할로겐화합물분말 : 5-15%로 조성되는 1차 피복혼합분말중에 탄소재료 또는 탄소복합재료를 묻고 비산하성 분위기하에서 통상의 방법으로 열처리하여 1차 내산화성피막을 형성한 후, 니켈 분말및 할로겐화 니켈분말의 단독 또는 복합분말과 불활성소결방지제 분말로 조성되는 2차 피복혼합분말중에 상기와 같이 1차 피복된 탄소재료를 묻고 비산화성 분위기하에서 850-1200℃의 온도로 1-5시간동안 열처리하여 2차 내산화성 피막을 형성함을 특징으로 하는 탄소재료의 산화방지를 위한 이중피복방법.In the coating method for preventing oxidation of a carbon material or a carbon composite material, the carbon material or carbon in the primary coating mixture powder, which is composed of weight%, chromium oxide powder: 85-95%, and halogen compound powder: 5-15%. After burying the composite material and heat-treating in a non-acid-free atmosphere in a conventional manner to form a primary oxidation resistant film, the secondary coating mixture powder composed of nickel powder and nickel halide powder alone or composite powder and inert sintering inhibitor powder A double coating method for preventing oxidation of a carbon material, wherein the first coated carbon material is buried and heat treated at a temperature of 850-1200 ° C. for 1-5 hours in a non-oxidizing atmosphere to form a secondary oxidation resistant film. . 2항에 있어서, 상기 2차 피복혼합분말에 할로겐화 화합물 분말이 추가로 첨가됨을 특징으로 하는 탄소재료의 산화방지를 위한 이중 피복방법.The double coating method for preventing oxidation of a carbon material according to claim 2, wherein a halogenated compound powder is further added to the secondary coating mixture powder.
KR1019940038254A 1994-12-28 1994-12-28 Process for the preparation of coating KR970008715B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940038254A KR970008715B1 (en) 1994-12-28 1994-12-28 Process for the preparation of coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940038254A KR970008715B1 (en) 1994-12-28 1994-12-28 Process for the preparation of coating

Publications (2)

Publication Number Publication Date
KR960022356A KR960022356A (en) 1996-07-18
KR970008715B1 true KR970008715B1 (en) 1997-05-28

Family

ID=19404515

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940038254A KR970008715B1 (en) 1994-12-28 1994-12-28 Process for the preparation of coating

Country Status (1)

Country Link
KR (1) KR970008715B1 (en)

Also Published As

Publication number Publication date
KR960022356A (en) 1996-07-18

Similar Documents

Publication Publication Date Title
Lee et al. Oxidation behavior of muilite‐coated sic and sic/sic composites under thermal cycling between room temperature and 1200°‐1400° C
WO2019109753A1 (en) Anti-oxidation coating for tungsten-rhenium thermocouple with high thermal shock resistance and application thereof
Wang et al. Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites
JPH07157384A (en) Heat and oxidation resistant high strength member and production thereof
JP3793157B2 (en) MoSi2-Si3N4 composite coating layer and method for producing the same
US3459583A (en) Body of industrial carbon with an oxidation inhibiting coating,and method of producing such bodies
KR20110109697A (en) A method for coating oxidation protective layer for carbon/carbon composite, a carbon heater, and cooker
Taniguchi et al. High-temperature oxidation resistance of tial improved by ibed Si3N4 coating
Jiang et al. A dense structure Si-SiC coating for oxidation and ablation protection of graphite fabricated by impregnation-pyrolysis and gaseous silicon infiltration
JPH1045473A (en) Graphite material coated with thermally decomposed carbon excellent in oxidation resistance
KR970008715B1 (en) Process for the preparation of coating
JP3081765B2 (en) Carbon member and method of manufacturing the same
KR940005405B1 (en) Method of preventing an oxidation of carbon materials by double coating
US3393084A (en) Coating carbon substrates with refractory metal carbides
KR940011250B1 (en) Coating method for preventing oxidation of carbon composites
JPH04333659A (en) Silicon carbide coating method
JP3129383B2 (en) Oxide-coated silicon carbide material and its manufacturing method
JPH0499243A (en) Coated reinforcing material for use in heat resisting composite material and composite material manufactured therefrom
JPH0143714B2 (en)
KR101856145B1 (en) Process for SiC coating on graphite foam containing silicon
JPH03146470A (en) Silicon carbide-based material
JPH05310487A (en) Production of sic-coated graphite material
JP2685151B2 (en) Coating structural material
JP3220730B2 (en) Graphite wafer holding jig for atmospheric pressure CVD equipment
Smialek Processing of Fused Silicide Coatings for Carbon‐Based Materials

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20030902

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee