JPH03100146A - Production of high capacitance-aluminum disk - Google Patents

Production of high capacitance-aluminum disk

Info

Publication number
JPH03100146A
JPH03100146A JP1237487A JP23748789A JPH03100146A JP H03100146 A JPH03100146 A JP H03100146A JP 1237487 A JP1237487 A JP 1237487A JP 23748789 A JP23748789 A JP 23748789A JP H03100146 A JPH03100146 A JP H03100146A
Authority
JP
Japan
Prior art keywords
plating
alloy
ingot
aluminum
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1237487A
Other languages
Japanese (ja)
Inventor
Masao Kageyama
影山 政夫
Kozo Hoshino
晃三 星野
Sueo Fujisaki
藤崎 寿恵男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1237487A priority Critical patent/JPH03100146A/en
Publication of JPH03100146A publication Critical patent/JPH03100146A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the surface preparation characteristic of a high capacitance-Al disk base and to remove defects after plating, such as pits, by heating and holding a semicontinuously cast ingot of an Al-Mg alloy in which specific amounts of Cu and Zn are added at a specific temp. and then carrying out rolling. CONSTITUTION:A semicontinuously cast ingot of an Al alloy having a composi tion consisting of, by weight, <=0.05% Si, <=0.05% Fe, 0.05-0.4% Cu, 3.5-4.5% Mg, 0.05-0.4% Zn, and the balance essentially Al is heated at 500-560 deg.C for >=2hr and is then held, without cooling, at 530-560 deg.C for >=4hr, by which Mg2Si precipitating in the ingot is allowed to enter into solid solution again. Then, hot rolling and cold rolling is applied to the above to the prescribed sheet thickness. By this method, defects after plating can be reduced and the disk base can be made high-capacitance.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はコンピューター用磁気記録媒体として高記憶容
量に用いられるアルミニウムディスク基盤の製造方法に
関するものである。 (従来の技術) コンピューター用磁気記録媒体として用いられているア
ルミニウム磁気ディスク基盤の製造方法は、記憶媒体の
種類により、大別して2種類に分けられる。1つは、鏡
面仕上げしたアルミニウム基盤上に磁性膜を塗布するも
の(塗布型メディア)であり、他は、アルミニウム基盤
上にN1−Pメツキ等の下地処理を施し、その上に磁性
膜をメツキやスパッターにより付するもの(薄膜型メデ
ィア)である。 従来は塗布型メディアが主流であり、そのディスク基盤
にはAl−Mg系合金(例えば、5086)が使われて
きている。 一方、高記憶容量化するためには、磁性膜を極力薄くす
ることが必要であり、そのために近年。 薄膜型メディアが主流になりつつある。 薄膜型メディア用のアルミニウム基盤用材料としては、
Al−Mg合金にCu、Zn等を添加した合金が開発さ
れて実用化されている。 (発明が解決しようとする課題) ところで、薄膜型メディアの製法は大別して以下の3種
類に分けられる。 ■メツキーメツキ型:メッキ(Ni−P)→ポリッシュ
→メツキ(Go−Ni−P) ■メツキースパッター型:メッキ(Ni−P)→ポリッ
シュ−スパッター(γ−Fa、O,、C。 −Ni) ■アルマイトースパッター型:アルマイト→ポリッシュ
→スパッター(γ−Fe、O,、Go−Ni) これらのうち、メツキ−メツキ型、メツキ−スパッター
型の場合には、メツキに先立って脱脂、ジンケート処理
(アルミニウムの表面に亜鉛置換皮膜層を均一に形成さ
せる処理)等のエツチングが施されるが、その後のメツ
キ工程においては、ジンケート処理性がよく、メツキの
付着性及び平滑性が優れることが要求される。併わせで
前処理工程においてピット等の不均一部を形成しないこ
とが必要とされる。 しかしながら、従来のA Q −Mg −Cu −Zn
系合金を薄膜型メディア用に、更に詳しくはN1−Pメ
ツキ等の下地処理を施して使用する場合、本処理の前に
施される化学処理時において微小なピット(穴)が形成
され、メツキ後も修復されずに残り、メディア製品とな
ってもピットが残るため、磁気特性、エラー発生等の障
害を引き起こすという問題があった。 本発明は、かNる従来技術の欠点を解消し、薄膜型メデ
ィア用としての高容量アルミニウムディスク基盤の下地
処理性、特にジンケート処理性を向上し、ピット等のメ
ツキ後の欠陥をなくすことができる方法を提供すること
を目的とするものである。 (課題を解決するための手段) 前記目的を達成するため1本発明者は、ジンケート処理
性の劣化、ピット欠陥の発生の原因を究明すると共にそ
の対策について鋭意研究を重ねた。 その結果、(1)ジンケート処理の均一性はアルミニウ
ム合金中の析出物、特にZn、Cuを均一に分散させる
ことにより得られること、(2)アルミニウム合金中に
はへΩ−Fe系及びMg−8L系の金属間化合物が無数
存在しており、エツチング工程でのピット形成の核とな
るが、これを防止するために、Fe、Si等の不純物元
素を規制すると共に鋳塊に対する熱処理条件を制御する
ことにより、ピットの元となる金属間化合物の形成を制
御できることが判明し、ここに本発明をなしたものであ
る。 すなわち、本発明に係る高容量アルミニウムディスク基
盤の製造方法は、Si≦0.05%、Fe50.05%
、Cu:0.05〜0.4%、Mg:3.5〜4.5%
及びZn:0.05〜0.4%を含有し、残部が実質的
にAlよりなるアルミニウム合金の半連続鋳塊を500
〜530℃の温度で2時間以上加熱した後、冷却せずに
引続き530〜560℃の温度で4時間以上保持し、然
る後、圧延により所定の板厚にすることを特徴とするも
のである。 以下に本発明を更に詳細に説明する。 (作用) まず、本発明における化学成分の限定理由について説明
する。 Si: Siはアルミ地金及び溶解炉耐火物等から不可避的に混
入するものであり、本合金の主成分であるMgと結び付
いてMg−8i系の金属間化合物(主にMg、Si)を
形成するので、これを防ぐために、Si量は0.05%
以下に規制する。 Fe: FeもSiと同様、アルミ地金及び溶解炉本体、治具等
から不可避的に混入するものであり、Alと結び付いて
A Q −Fe系の金属間化合物(主にFeAfls)
を形成するので、これを防ぐために、Fe量は0.05
%以下に規制する。 Cu: CuはAl中に均一に固溶すると共に途中の熱処理によ
り均一に析出し、ジンケート処理を均一化する効果があ
る。しかし、0.05%未満ではその効果がなく、また
0、4%を超えると結晶粒界に集中し、ジンケート処理
の際の粒界エツチングが強くなり、表面粗さを阻害する
ので、Cu量は0.05〜0.4%の範囲とする。 zn: ZnもCuと同様、Al中に均一に固溶すると共に途中
の熱処理により均一に析出し、ジンケート処理を均一化
する効果がある。しかし、0.05%未満ではその効果
がなく、また0、4%を超えると結晶粒界に集中析出し
、ジンケート処理の際の粒界エツチングが強くなるので
、Zn量は0.05〜0.4%の範囲とする。 Mg: Mgは固溶強化により本合金の強度を確保する元素であ
る。しかし、3.5%未満では所望の強度が得られず、
また4、5%を超えると圧延加工時の加工性を阻害する
と共に、不純物のSiと結び付いてMg−8i系金属間
化合物を形成するので好ましくない。したがって、Mg
量は3.5〜4゜5%の範囲とする。 次に本発明の製造プロセス及び条件について説明する。 上記化学成分を有するアルミニウム合金は、常法により
溶解し、半連続鋳造により鋳塊とする。 得られた鋳塊は内部組織が不均一であり、不純物及び合
金元素が偏析している。したがって、まず。 これを均一に分散させるための熱処理が必要である。そ
の場合、加熱温度が500℃未満ではその効果は少なく
、また530℃を超えると共晶融解を起こし、バーニン
グ等の欠陥を引き起こすので好ましくないので、加熱温
度は500〜530”Cの範囲とする。また、加熱時間
については、2時間未満ではその効果が得られないので
、前記温度範囲で2時間以上加熱する必要がある。 前記熱処理後、冷却することなく引き続き、530〜5
60℃に保持する熱処理を施す必要がある。これは、鋳
塊中に析出してくるMg、SLを再固溶させるための熱
処理である。しかし、530℃未満の温度では、再固溶
を起こさず、更に成長し、また560”Cを超えると、
鋳塊は局部的に再溶解(バーニング)を起こすので好ま
しくない。また、保持時間は、4時間未満ではその効果
が得られないので、4時間以上とする。 かNる熱処理を施した鋳塊は、熱間圧延及び/又は冷間
圧延を施され、所定の板厚にする。当然ながら、熱間圧
延のみで所定の板厚まで減厚することも可能である。 なお、圧延後は、従来と同様にしてアルミニウム基盤に
することは云うまでもない。例えば、打抜き後、鏡面仕
上げされ、下地処理(メツキ)、ポリッシュ、本処理(
メツキ又はスパッター)に供される。 次に本発明の実施例を示す。 (実施例) 第1表に示す化学成分を有するアルミニウム合金の半連
続鋳塊について、第2表に示す条件で、熱処理及び圧延
を施した。 得られた圧延板を130Qlllφに打ち抜いた後。 350℃で2時間焼鈍を施し、以下の各種試験に供した
。それらの結果を第3表に示す。 (1)金属間化合物分布 ダイヤモンドバイトにより鏡面切削した後、走査型電子
顕微鏡i察によってA Q −Fe系、Mg−8i系金
属間化合物の分布状況(サイズと個数)を調べた。 (2)メツキ性 鏡面切削した後、脱脂→アルカリエツチング(5%Na
OH130秒)→酸洗(HNO,:HF:H。 0=3:1:2)→ジンケート処理(NaOH,ZnO
、FeCQ3・6H1O,KNaC4H,0,4H20
他)→酸洗(HNO,)→N1−Pメツキ→研磨を施し
。 研磨時のピット及び面の荒れ具合について調査した。 第3表より明らかなように、本発明例Nα3〜Nl14
、Na 9はいずれも、金属間化合物が少なく、しかも
メツキビットも少なく、メツキ面荒れが認められない。 一方、比較例Ncil〜Nn2は金属間化合物が多く、
メツキビットも無数認められる。 比較例魔5は金属間化合物は少なく、メツキビットも少
ないものの、メツキ面荒れが生じている。 比較例Nl16は金属間化合物のうちMg−8i系が多
く、メツキビットも多い。 比較例N117〜Nα8は圧延中に微小割れが発生し。 メツキビットが増加し、メツキ面荒れを来たしている。 比較例NQ10は、1回目の熱処理後冷却し、第2回目
の熱処理温度まで再加熱した例であるが、Mg−5i系
金属間化合物が多く、メツキビット数も多い。 なお、第1図は以上の結果をグラフに示したものであり
、本発明例はすべての面で優れた性能を有することが一
目瞭然である。
(Industrial Application Field) The present invention relates to a method of manufacturing an aluminum disk substrate used as a magnetic recording medium for computers with a high storage capacity. (Prior Art) Methods for manufacturing aluminum magnetic disk substrates used as magnetic recording media for computers can be roughly divided into two types depending on the type of storage medium. One type is one in which a magnetic film is coated on a mirror-finished aluminum substrate (coating type media), and the other is in which a base treatment such as N1-P plating is applied to the aluminum substrate, and then a magnetic film is plated on top of that. It is applied by sputtering or sputtering (thin film type media). Conventionally, coated media have been the mainstream, and Al-Mg alloys (eg, 5086) have been used for the disk substrate. On the other hand, in order to achieve high storage capacity, it is necessary to make the magnetic film as thin as possible, and for this reason, recent efforts have been made to make the magnetic film as thin as possible. Thin film media is becoming mainstream. Aluminum substrate materials for thin film media include:
An alloy in which Cu, Zn, etc. are added to an Al-Mg alloy has been developed and put into practical use. (Problems to be Solved by the Invention) By the way, methods for manufacturing thin film media can be roughly divided into the following three types. ■Metsuki-metsuki type: Plating (Ni-P) → Polish → Metzki (Go-Ni-P) ■Metsuki sputter type: Plating (Ni-P) → Polish-Sputter (γ-Fa, O,, C. -Ni) ■Alumite sputter type: Alumite → Polish → Sputter (γ-Fe, O, Go-Ni) Among these, in the case of the Metsuki-Metsuki type and the Metsuki-Sputter type, prior to plating, degreasing and zincate treatment ( Etching (processing to uniformly form a zinc-substituted film layer on the surface of aluminum) is performed, but in the subsequent plating process, good zincate treatment properties and excellent plating adhesion and smoothness are required. Ru. In addition, it is necessary to avoid forming non-uniform portions such as pits in the pretreatment process. However, the conventional A Q -Mg -Cu -Zn
When using a base alloy for thin-film media, more specifically, when using a base treatment such as N1-P plating, minute pits (holes) are formed during the chemical treatment performed before the main treatment, and the plating Since the pits remain unrepaired even after the process is completed, and the pits remain even when the media is made into a product, there is a problem in that it causes problems such as magnetic properties and errors. The present invention eliminates the drawbacks of the conventional techniques, improves the surface treatment properties, especially the zincate treatment properties, of high-capacity aluminum disks for thin-film media, and eliminates defects such as pits after plating. The purpose is to provide a method that can be used. (Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention investigated the causes of the deterioration of zincate processability and the occurrence of pit defects, and conducted extensive research on countermeasures. As a result, (1) the uniformity of the zincate treatment is obtained by uniformly dispersing precipitates in the aluminum alloy, especially Zn and Cu, and (2) the aluminum alloy contains HeΩ-Fe and Mg- Numerous 8L-based intermetallic compounds exist and become the core of pit formation during the etching process. In order to prevent this, impurity elements such as Fe and Si are regulated and heat treatment conditions for the ingot are controlled. It has been found that the formation of intermetallic compounds, which are the source of pits, can be controlled by doing so, and the present invention has been made here. That is, the method for manufacturing a high-capacity aluminum disk substrate according to the present invention includes Si≦0.05% and Fe50.05%.
, Cu: 0.05-0.4%, Mg: 3.5-4.5%
and Zn: 0.05 to 0.4%, and the balance is substantially Al.
It is characterized by being heated at a temperature of ~530°C for 2 hours or more, then held at a temperature of 530~560°C for 4 hours or more without cooling, and then rolled to a predetermined thickness. be. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical components in the present invention will be explained. Si: Si is unavoidably mixed in from aluminum ingots and melting furnace refractories, etc., and combines with Mg, the main component of this alloy, to form Mg-8i-based intermetallic compounds (mainly Mg and Si). To prevent this, the amount of Si is set to 0.05%.
The following regulations apply. Fe: Like Si, Fe is unavoidably mixed in from the aluminum base metal, the melting furnace body, jigs, etc., and combines with Al to form AQ-Fe-based intermetallic compounds (mainly FeAfls).
To prevent this, the amount of Fe is 0.05.
% or less. Cu: Cu is uniformly dissolved in Al and precipitated uniformly during heat treatment, and has the effect of making the zincate treatment uniform. However, if it is less than 0.05%, it has no effect, and if it exceeds 0.4%, it will concentrate at grain boundaries, strengthen grain boundary etching during zincate treatment, and impair surface roughness. is in the range of 0.05 to 0.4%. Zn: Like Cu, Zn is also uniformly dissolved in Al and precipitated uniformly during heat treatment, which has the effect of making the zincate treatment uniform. However, if it is less than 0.05%, it has no effect, and if it exceeds 0.4%, it will precipitate concentrated at the grain boundaries, and the grain boundary etching during zincate treatment will become stronger, so the amount of Zn should be 0.05 to 0. .4% range. Mg: Mg is an element that ensures the strength of this alloy through solid solution strengthening. However, if it is less than 3.5%, the desired strength cannot be obtained;
Moreover, if it exceeds 4.5%, it is not preferable because it inhibits workability during rolling and combines with impurity Si to form an Mg-8i intermetallic compound. Therefore, Mg
The amount should be in the range of 3.5-4.5%. Next, the manufacturing process and conditions of the present invention will be explained. The aluminum alloy having the above chemical components is melted by a conventional method and made into an ingot by semi-continuous casting. The obtained ingot has a non-uniform internal structure, and impurities and alloying elements are segregated. Therefore, first. Heat treatment is required to uniformly disperse this. In this case, if the heating temperature is less than 500°C, the effect will be small, and if it exceeds 530°C, it will cause eutectic melting and cause defects such as burning, which is not preferable, so the heating temperature should be in the range of 500 to 530"C. In addition, regarding the heating time, since the effect cannot be obtained if the heating time is less than 2 hours, it is necessary to heat in the above temperature range for 2 hours or more.
It is necessary to perform heat treatment to maintain the temperature at 60°C. This is a heat treatment for re-dissolving Mg and SL precipitated in the ingot. However, at temperatures below 530°C, solid solution does not occur and further growth occurs, and at temperatures above 560"C,
The ingot is not preferable because it causes local re-melting (burning). Further, the holding time is set to 4 hours or more, since the effect cannot be obtained if the holding time is less than 4 hours. The ingot subjected to the above heat treatment is subjected to hot rolling and/or cold rolling to obtain a predetermined thickness. Naturally, it is also possible to reduce the thickness to a predetermined thickness by just hot rolling. It goes without saying that after rolling, an aluminum base is formed in the same manner as before. For example, after punching, it is mirror finished, the base treatment (metsuki), polishing, and main treatment (
used for plating or sputtering). Next, examples of the present invention will be shown. (Example) A semi-continuous ingot of an aluminum alloy having the chemical components shown in Table 1 was heat treated and rolled under the conditions shown in Table 2. After punching the obtained rolled plate into 130Qlllφ. It was annealed at 350°C for 2 hours and subjected to the following various tests. The results are shown in Table 3. (1) Distribution of intermetallic compounds After mirror cutting with a diamond cutting tool, the distribution (size and number) of AQ-Fe and Mg-8i intermetallic compounds was examined using a scanning electron microscope. (2) Plating After mirror cutting, degreasing → alkali etching (5% Na
OH 130 seconds) → Pickling (HNO, :HF:H. 0=3:1:2) → Zincate treatment (NaOH, ZnO
, FeCQ3・6H1O, KNaC4H,0,4H20
etc.) → Pickling (HNO, ) → N1-P plating → Polishing. The pits and surface roughness during polishing were investigated. As is clear from Table 3, examples of the present invention Nα3 to Nl14
, Na 9 have less intermetallic compounds, less plating bits, and no roughness of the plating surface is observed. On the other hand, Comparative Examples Ncil to Nn2 contain many intermetallic compounds,
A large number of metsuki bits are also recognized. Comparative Example 5 has less intermetallic compounds and less plating bits, but the plating surface is rough. Comparative Example No. 116 contains a large amount of Mg-8i based intermetallic compounds and also contains a large amount of metsukivit. In Comparative Examples N117 to Nα8, microcracks occurred during rolling. The number of bits has increased and the surface has become rough. Comparative example NQ10 is an example in which the sample was cooled after the first heat treatment and reheated to the temperature of the second heat treatment, but there were many Mg-5i-based intermetallic compounds and a large number of metki bits. Incidentally, FIG. 1 shows the above results in a graph, and it is clear at a glance that the example of the present invention has excellent performance in all aspects.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、メツキ後の欠陥
を減少できるので、ディスク基盤の高容量化が図れるよ
うになる。またメツキ後の研磨代を少なくすることがで
きるので、コストダウンも図ることができる。
(Effects of the Invention) As described in detail above, according to the present invention, defects after plating can be reduced, so that the capacity of the disk substrate can be increased. Furthermore, since the polishing allowance after plating can be reduced, costs can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種合金及び製法と、金属間化合物分布、メツ
キピット及びメツキ面荒れとの関係を示す図である。
FIG. 1 is a diagram showing the relationship between various alloys and manufacturing methods, intermetallic compound distribution, plating pits, and plating surface roughness.

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、Si≦0.05%、Fe≦0
.05%、Cu:0.05〜0.4%、Mg:3.5〜
4.5%及びZn:0.05〜0.4%を含有し、残部
が実質的にAlよりなるアルミニウム合金の半連続鋳塊
を500〜530℃の温度で2時間以上加熱した後、冷
却せずに引続き530〜560℃の温度で4時間以上保
持し、然る後、圧延により所定の板厚にすることを特徴
とする高容量アルミニウムディスク基盤の製造方法。
In weight% (the same applies hereinafter), Si≦0.05%, Fe≦0
.. 05%, Cu: 0.05~0.4%, Mg: 3.5~
A semi-continuous ingot of an aluminum alloy containing Zn: 4.5% and Zn: 0.05 to 0.4%, with the remainder substantially consisting of Al, is heated at a temperature of 500 to 530°C for 2 hours or more, and then cooled. 1. A method for producing a high-capacity aluminum disk substrate, comprising: holding the substrate at a temperature of 530 to 560° C. for 4 hours or more without heating, and then rolling it to a predetermined thickness.
JP1237487A 1989-09-13 1989-09-13 Production of high capacitance-aluminum disk Pending JPH03100146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237487A JPH03100146A (en) 1989-09-13 1989-09-13 Production of high capacitance-aluminum disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237487A JPH03100146A (en) 1989-09-13 1989-09-13 Production of high capacitance-aluminum disk

Publications (1)

Publication Number Publication Date
JPH03100146A true JPH03100146A (en) 1991-04-25

Family

ID=17016053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237487A Pending JPH03100146A (en) 1989-09-13 1989-09-13 Production of high capacitance-aluminum disk

Country Status (1)

Country Link
JP (1) JPH03100146A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495912A (en) * 1978-01-13 1979-07-28 Nippon Telegr & Teleph Corp <Ntt> Aluminum substrate for magnetic disc and manufacture thereof
JPS6254053A (en) * 1985-09-02 1987-03-09 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disk excellent in plating suitability and contact strength of plating layer and minimal plating defects
JPS6396254A (en) * 1986-10-14 1988-04-27 Sumitomo Light Metal Ind Ltd Production of al alloy substrate for coated magnetic disk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495912A (en) * 1978-01-13 1979-07-28 Nippon Telegr & Teleph Corp <Ntt> Aluminum substrate for magnetic disc and manufacture thereof
JPS6254053A (en) * 1985-09-02 1987-03-09 Sumitomo Light Metal Ind Ltd Aluminum alloy for magnetic disk excellent in plating suitability and contact strength of plating layer and minimal plating defects
JPS6396254A (en) * 1986-10-14 1988-04-27 Sumitomo Light Metal Ind Ltd Production of al alloy substrate for coated magnetic disk

Similar Documents

Publication Publication Date Title
JP5199714B2 (en) Method for manufacturing aluminum alloy substrate for magnetic disk
WO2015146812A1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk, and aluminum alloy substrate for magnetic disk
KR900007975B1 (en) Aluminium alloy substrate for disk having superior suitability to plating
US5244516A (en) Aluminum alloy plate for discs with improved platability and process for producing the same
JP3710009B2 (en) Aluminum alloy plate for magnetic disk substrate and manufacturing method thereof
JPH02205651A (en) Aluminum alloy for magnetic disk base
JPH02111839A (en) Aluminum alloy sheet for disk having superior plating suitability and its production
JPH03100146A (en) Production of high capacitance-aluminum disk
JP2565741B2 (en) Aluminum alloy plate for disk excellent in grindability and plating property with a grindstone and method for producing the same
JPS63319143A (en) Plymetal of aluminum alloy for base of magnetic disk
JPS6327420B2 (en)
JPH01225739A (en) Aluminum alloy for magnetic disk substrate
JPS5989748A (en) Aluminum substrate for magnetic disk
JPH02159340A (en) Aluminum alloy sheet for disk having excellent plating characteristics
JPH04341535A (en) Aluminum alloy substrate for high density coating type magnetic disk
JPH07331397A (en) Production of aluminum alloy sheet for magnetic disk substrate
JPH07195150A (en) Method for casting aluminum alloy for hdd
JP2002275568A (en) Aluminum alloy for magnetic disk and substrate for magnetic disk
JPS62230947A (en) Aluminum alloy for magnetic disk
JPH0499143A (en) Aluminum alloy for magnetic disk base plate having good ni-p plating property
JPS63319142A (en) Aluminum alloy plymetal for magnetic disk base
JPH0752030A (en) Anodic oxidation surface treated base and polishing method therefor
JPS627829A (en) Aluminum alloy for magnetic disk substrate
JPS6396254A (en) Production of al alloy substrate for coated magnetic disk
JPH02305936A (en) Aluminum alloy sheet for disk having excellent platability