JPH02999B2 - - Google Patents

Info

Publication number
JPH02999B2
JPH02999B2 JP57027162A JP2716282A JPH02999B2 JP H02999 B2 JPH02999 B2 JP H02999B2 JP 57027162 A JP57027162 A JP 57027162A JP 2716282 A JP2716282 A JP 2716282A JP H02999 B2 JPH02999 B2 JP H02999B2
Authority
JP
Japan
Prior art keywords
heat
methane fermentation
heat treatment
solid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57027162A
Other languages
Japanese (ja)
Other versions
JPS58143894A (en
Inventor
Koichi Kiryama
Yoshitaka Matsuo
Kaneaki Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57027162A priority Critical patent/JPS58143894A/en
Publication of JPS58143894A publication Critical patent/JPS58143894A/en
Publication of JPH02999B2 publication Critical patent/JPH02999B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 本発明は、下水、廃水等の処理汚泥又は都市ご
み、その他産業廃棄物類の有機性廃棄物を処理す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating organic waste such as treated sludge such as sewage and wastewater, municipal waste, and other industrial waste.

従来下水、し尿処理施設などの有機性汚泥を処
理する方法として、最も一般的に広く採用されて
いる代表的処理方法としては、有機性汚泥に有価
資源である高分子凝集剤と塩化第2鉄、石灰など
の脱水助剤とを多量に添加し、機械脱水機によつ
て脱水し、脱水ケーキとして、乾燥、焼却すると
いうプロセスであるため乾燥・焼却に重油などの
補助燃料を多量に消費し、しかも焼却排ガス又は
熱風によつて水分70〜80%程度の高水分脱水ケー
キを乾燥したのち、焼却するため、耐え難い悪臭
が多量に発生し、これの悪臭防止対策として発生
した悪臭ガスを直火燃焼脱臭、触媒燃焼脱臭、湿
式薬液洗浄、吸着などの各種の脱臭工程で脱臭す
るという手段によつているため、プロセスが複雑
となり、維持管理維持経費上非常に問題があつ
た。
Conventional methods for treating organic sludge from sewage and human waste treatment facilities, and the most commonly used representative treatment method, include polymer flocculants and ferric chloride, which are valuable resources for organic sludge. The process involves adding a large amount of dehydration aids such as lime, dehydration using a mechanical dehydrator, drying and incineration as a dehydrated cake, so a large amount of auxiliary fuel such as heavy oil is consumed for drying and incineration. Moreover, since the high-moisture dehydrated cake with a water content of about 70 to 80% is dried using incineration exhaust gas or hot air and then incinerated, a large amount of unbearable odor is generated.To prevent this odor, the odor gas generated is directly ignited. Since deodorization is done through various deodorizing processes such as combustion deodorization, catalytic combustion deodorization, wet chemical cleaning, and adsorption, the process is complicated and there are serious problems in terms of maintenance and maintenance costs.

とくに、近年石油を取り巻く環境の悪化に伴な
つて省資源、省エネルギ、更には石油以外の形で
のエネルギ生産が強く要求されるようになつてき
ており中でも廃棄物や有用植物からのエネルギ回
収を行なおうとする姿勢は最も強く、代表的なも
のでは下・廃水処理汚泥や都市ゴミをメタン発酵
してメタンガスや電気という形で回収する技術が
提案されている。しかし、これらのメタン発酵技
術にあつてはまだ幾つかの問題点が存在し、これ
らを解決することによつて更に技術的進歩が望ま
れる。例えばこの従来技術では十分経済的に成り
立つに足るだけのメタンガス発生量が得られない
かあるいはメタン発酵後の残留物の処理処分に、
却つて多額の費用を要する欠点があつた。
In particular, as the environment surrounding oil has deteriorated in recent years, there has been a strong demand for resource conservation, energy conservation, and even energy production in forms other than oil. The most aggressive approach is to carry out methane fermentation of sewage/wastewater treatment sludge and municipal waste, and a technology has been proposed that recovers it in the form of methane gas and electricity. However, there are still some problems with these methane fermentation techniques, and further technical progress is desired by solving these problems. For example, with this conventional technology, it is not possible to generate enough methane gas to make it economically viable, or it is difficult to process and dispose of the residue after methane fermentation.
On the contrary, it had the disadvantage of requiring a large amount of money.

本発明はこれら従来の有機性廃棄物の処理プロ
セスの不合理な数多くの問題点を解決し、生物分
解性を大巾に向上し悪臭ガス発生を防止しつつ、
極めて省エネルギ的に、効率よく処理することが
可能で安価なエネルギ生産と事後処理の簡便化と
ができる有機物の処理方法を提供することを目的
としたものである。
The present invention solves a number of unreasonable problems in the conventional organic waste treatment process, greatly improves biodegradability, prevents the generation of foul-smelling gas, and
The object of the present invention is to provide a method for treating organic matter that can be extremely energy-saving, efficiently treated, produces inexpensive energy, and simplifies post-treatment.

本発明は、有機性廃棄物を酸発酵処理せしめ、
さらにPH5以下において加熱温度175℃以上で10
分以内の熱処理を施したのち、メタン発酵処理す
ることを特徴とする有機性廃棄物の処理方法であ
る。
The present invention subjects organic waste to acid fermentation treatment,
In addition, when the heating temperature is 175℃ or higher at pH 5 or lower, 10
This is a method for treating organic waste, which is characterized by carrying out a heat treatment for less than a minute, followed by a methane fermentation treatment.

すなわち有機性廃棄物をメタン発酵するにあた
り、機能的に酸発酵工程とメタン生成工程とに分
離し、両工程の間に熱処理工程を経て処理するよ
うにし、この熱処理をPH5以下で行なうことが重
要な特徴の一つとする。
In other words, when methane fermenting organic waste, it is important to functionally separate the acid fermentation process and the methane production process, and to perform a heat treatment process between both processes, and to perform this heat treatment at a pH of 5 or less. This is one of the characteristics.

この場合、単にメタンガス発生量の増大のみな
らずメタン発酵後の残留物の固液分離の改善と臭
気や熱処理脱離液の処理並びに熱処理工程で得ら
れる廃熱の有効利用、コンポスト化処理などの点
で大巾な改善がなし得るものである。しかも発生
するエネルギを、少なくとも機械動力、加熱部へ
の熱源、汚泥の加温又は水分減少、高度の乾燥、
有機性汚泥発生源の水処理工程その他の動力、各
種ポンプなで任意の熱、動力、電気エネルギ消費
工程に供給利用する工程を含んでいる。
In this case, it is important not only to increase the amount of methane gas generated, but also to improve the solid-liquid separation of the residue after methane fermentation, treat odor and heat treatment desorbed liquid, effectively utilize waste heat obtained in the heat treatment process, and compost. Significant improvements can be made in this respect. Moreover, the generated energy can be at least mechanically powered, a heat source for the heating section, sludge heating or moisture reduction, high-level drying,
It includes the process of water treatment of organic sludge generation sources and other power, and the process of supplying and utilizing various heat, power, and electrical energy consuming processes using various pumps.

なお前記熱処理工程においてPH5以下という低
いPH領域で熱処理を行なうと熱処理を行なわない
場合はもちろん、PH5以上という状態で熱処理す
る場合に比べ有機物の変性、例えば加水分解を受
けて低分子化したり、非溶解状の物質が溶解性に
転じたりして易生物分解性となるという割合が高
く、通常のメタン発酵工程では分解されないよう
な物質も生物分解が可能となる。そして、この有
機物の変性については本願発明方法の場合、熱処
理に先だつて酸発酵を行なつているので酸発酵工
程において容易に生物分解される有機物は分解さ
れており、酸発酵工程で分解されない有機物のみ
を熱処理工程で易生物分解性物質に変性すること
に集中されるため熱処理工程の効率化が図られる
し、更にPH5以下であるため、有機性廃棄物の流
動性が増し、この点でも熱処理の効率化が図られ
る。即ち、本発明のように酸発酵処理を行えば、
おのずとこの段階でPH5付近、望ましくはPH4.5
となり、酸発酵処理を行う前に比べて粘性も低下
するほか、酸発酵処理過程でPH5付近、あるいは
PH5以下となるため加熱処理段階でPH5以下に調
整するために添加する酸の量を大幅に節約するこ
とができる。また、この特徴は酸発酵工程の後、
固液分離を成し、固液分離による濃縮部のみを熱
処理工程に通し、分離液部を熱処理工程を経ない
でメタン発酵工程に導いても同様に得られる利点
である。
In addition, in the heat treatment step, if heat treatment is performed in a low pH range of PH5 or less, organic matter may be denatured, for example, hydrolyzed and reduced to a There is a high percentage of dissolved substances that become soluble and become easily biodegradable, and even substances that cannot be decomposed in the normal methane fermentation process can be biodegraded. Regarding the denaturation of organic substances, in the case of the method of the present invention, acid fermentation is performed prior to heat treatment, so organic substances that are easily biodegradable in the acid fermentation process are decomposed, and organic substances that are not decomposed in the acid fermentation process are The efficiency of the heat treatment process is improved because the heat treatment process concentrates on converting organic waste into easily biodegradable substances. Furthermore, since the pH is below 5, the fluidity of organic waste increases, and heat treatment is effective in this respect as well. efficiency will be improved. That is, if acid fermentation treatment is performed as in the present invention,
Naturally, at this stage, the pH is around 5, preferably PH4.5.
The viscosity decreases compared to before the acid fermentation process, and during the acid fermentation process, the pH increases to around 5 or
Since the pH is 5 or less, the amount of acid added to adjust the PH to 5 or less in the heat treatment stage can be significantly reduced. In addition, this characteristic is that after the acid fermentation process,
The same advantage can be obtained even if solid-liquid separation is performed, only the concentrated part resulting from the solid-liquid separation is passed through the heat treatment process, and the separated liquid part is led to the methane fermentation process without passing through the heat treatment process.

このように生物分解可能な有機物が非常に多く
生成され、またこれが低いPH領域であるので、効
率よくメタン発酵を受けるためメタン発酵工程か
らのメタンガス発生量も通常のメタン発酵工程か
ら発生する量よりも大変多くなり、その分だけ回
収できるエネルギ量を増すことができるのであ
る。一般にメタン発酵槽内のPHは7.0〜8.0である
のに対し、PH5以下の領域の易生物分解性有機物
がメタン発酵槽に入ることはメタン発酵を非常に
推進するのに役立つものである。
In this way, a very large amount of biodegradable organic matter is produced, and since this is in a low pH range, the amount of methane gas generated from the methane fermentation process is greater than the amount generated from a normal methane fermentation process in order to undergo methane fermentation efficiently. This also increases the amount of energy that can be recovered. Generally, the pH in a methane fermenter is 7.0 to 8.0, whereas the introduction of easily biodegradable organic matter in the PH range of 5 or lower into the methane fermenter is extremely helpful in promoting methane fermentation.

また、本発明ではメタン発酵残留物の固液分離
については発酵残留物はスラリ状であることがそ
のほとんどであり、これを処理処分するのに固液
分離することが含まれる。しかし、この発酵残留
物の固液分離は大変困難で、この固液分離操作に
はメタン発酵工程で回収されるエネルギ以上のエ
ネルギを費さないようにするため有機性廃棄物の
一種である下・廃水処理汚泥を熱処理し、固液分
離性が著しく改善されると共に、この熱処理によ
る固液分離性の改善は熱処理後、メタン発酵にも
損われない。即ちPH5以下という酸性条件下で熱
処理をし、PH値を中性付近に戻したりという手段
を講じることなくメタン発酵を行なうので有機性
廃棄物をPH調整を行なわないで単に熱処理してメ
タン発酵する技術よりも進んだ固液分離性を示す
し、これによりメタン発酵残留物の固液分離が従
来技術に比べて更に改善され、固液分離操作に要
するエネルギも大巾に少なくなる。
Furthermore, in the present invention, most of the fermentation residues are in the form of slurry, and solid-liquid separation of the methane fermentation residues is included in the treatment and disposal of the fermentation residues. However, solid-liquid separation of this fermentation residue is very difficult, and in order to avoid expending more energy than that recovered in the methane fermentation process, it is necessary to - By heat-treating wastewater treatment sludge, the solid-liquid separability is significantly improved, and the improvement in solid-liquid separability due to this heat treatment is not impaired by methane fermentation after the heat treatment. In other words, heat treatment is performed under acidic conditions with a pH of 5 or lower, and methane fermentation is carried out without taking measures to return the pH value to around neutrality, so organic waste is simply heat treated and methane fermented without adjusting the pH. It exhibits solid-liquid separation performance that is more advanced than the technology, which further improves the solid-liquid separation of methane fermentation residues compared to the prior art, and significantly reduces the energy required for the solid-liquid separation operation.

さらにまた有機性廃棄物を熱処理すると熱処理
装置およびこれと熱交換器を介して熱の有効利用
を図る際の配管系統にスケールが付着し、熱処理
ひいては熱交換機能の低下をもたらす傾向がある
が、これを防ぐために前記熱処理を行なう前にPH
5以下となるように調整処理が有効であり、特に
有機性廃棄物をPH5以下に調整するには酸を多く
必要とするのに対し、本発明では熱処理工程の前
に酸発酵を行なつているため、酸発酵を行なわな
い廃棄物に比べPH値が低く酸消費量が小さいので
PH5以下に調整するに必要な酸の量が少なくて足
る。この場合廃棄物によつては酸発酵工程で既に
PH5以下を達成することが多く、酸を必要としな
い場合も十分可能性のあることで酸量なしで処理
できる場合もある。酸発酵工程でPH5以下に達し
ない場合、PH調整に用いる酸は有機酸が望ましい
が、鉱酸を用いるならば塩酸が最も好ましい。こ
のようにPH5以下で熱処理を行なうため流動性を
増すばかりか熱処理装置本体、熱交換器、および
これらを介する配管内部へのスケールの付着の問
題が解決され、熱処理、そして熱交換が効率よく
行なわれる。この熱処理工程から発する廃熱の有
効利用も例えば酸発酵工程とメタン発酵工程の加
熱に使うことができる。そしてこれにより酸発酵
工程においては中温域、高温域いずれに加温して
もよいが高温域が可能であり、また望ましい。高
温域での酸発酵では酸発酵速度の向上と、これに
伴ない酸発酵槽の容積の減少化、および酸発酵後
の廃棄物の減量化を図ることができるし、これら
熱処理装置の小型化、加熱に要する熱量の低減は
酸発酵工程後、固液分離を行ない、濃縮部のみ熱
処理を施す方法を採ることによつて効果が一段と
大きくなる。
Furthermore, when organic waste is heat-treated, scale tends to adhere to the heat treatment equipment and the piping system used to utilize heat effectively through the heat exchanger and the heat treatment equipment, resulting in a decline in the heat treatment and heat exchange function. To prevent this, the pH is
It is effective to adjust the pH of organic waste to 5 or less, and in particular, a large amount of acid is required to adjust the pH of organic waste to 5 or less. However, in the present invention, acid fermentation is performed before the heat treatment process. Because of this, the pH value is lower than waste that does not undergo acid fermentation, and the amount of acid consumed is small.
Only a small amount of acid is needed to adjust the pH to 5 or less. In this case, depending on the waste, it may have already been processed through the acid fermentation process.
A pH of 5 or less is often achieved, and there are cases where acid is not required and it is possible that the process can be carried out without the use of acid. If the pH does not reach 5 or less in the acid fermentation process, the acid used for pH adjustment is preferably an organic acid, but if a mineral acid is used, hydrochloric acid is most preferred. In this way, heat treatment is performed at a pH of 5 or below, which not only increases fluidity but also solves the problem of scale adhesion to the heat treatment equipment body, heat exchanger, and the inside of the piping via these, allowing heat treatment and heat exchange to be carried out efficiently. It will be done. The waste heat generated from this heat treatment process can also be effectively used, for example, to heat the acid fermentation process and the methane fermentation process. As a result, in the acid fermentation step, heating may be performed in either a medium temperature range or a high temperature range, but a high temperature range is possible and desirable. Acid fermentation in a high temperature range can improve the acid fermentation speed, reduce the volume of the acid fermenter, and reduce the amount of waste after acid fermentation, and can also reduce the size of these heat treatment equipment. The effect of reducing the amount of heat required for heating is further increased by performing solid-liquid separation after the acid fermentation step and applying heat treatment only to the concentration section.

また本発明方法において前記熱処理における加
熱温度を175℃以上としたのは175℃以下に比べて
脱水過速度が大巾に向上し、脱水性が向上し、
またメタン発酵での有機物分解率が大巾に増大す
るからである。
In addition, in the method of the present invention, the heating temperature in the heat treatment is set to 175°C or higher, as compared to 175°C or lower, the dehydration overrate is greatly improved, and the dehydration property is improved.
This is also because the rate of organic matter decomposition during methane fermentation increases significantly.

また、175℃以上での加熱処理で、消化の阻害
が見られなかつたばかりか、175℃付近を境とし
てメタン発酵液の固液分離性能が著しく改善さ
れ、単にメタンガス発生量の増大のみならずメタ
ン発酵後の残留物の固液分離の改善、臭気や熱処
理脱離液の処理等の点で大幅な改善をなしうる。
なお加熱処理の加熱時間の影響も大きく175℃で
30分間以上の加熱処理を行うと後続のメタン発酵
工程で消化阻害が見られるばかりか、固液分離性
能も悪化するし、VSの分解率の劣化、それに伴
うガス発生量の低下、脱水ケーキ含水率が高くな
るため加熱温度が175℃以上の場合、加熱時間は
10分以内にとどめるべきである。
In addition, heat treatment at temperatures above 175°C not only showed no inhibition of digestion, but also markedly improved the solid-liquid separation performance of the methane fermentation liquid at around 175°C. Significant improvements can be made in terms of improved solid-liquid separation of the residue after fermentation, and treatment of odors and heat-treated liquid.
Furthermore, the heating time of the heat treatment has a large effect on the temperature at 175℃.
If heat treatment is performed for more than 30 minutes, not only will digestion be inhibited in the subsequent methane fermentation process, but the solid-liquid separation performance will also deteriorate, the decomposition rate of VS will deteriorate, the amount of gas generated will decrease, and the dehydrated cake will contain water. If the heating temperature is 175℃ or higher, the heating time will be
It should be kept within 10 minutes.

このように本発明にあつては有機性廃棄物を酸
発酵した後PHが5以下において、175℃以上で熱
処理した後メタン発酵することにより生物分解性
が増加し、それに伴つてメタンガス発生量が増大
するのみならず、メタン発酵残留物の固液分離性
が改善される。そしてPH5以下での熱処理である
ため該廃棄物の流動性が増し熱処理が効率よく行
なわれ、熱処理時間も短縮され、また熱処理装置
本体、熱交換器、およびこれらを介する配管内部
へのスケールの付着の問題が解決され、熱交換も
効率よく行なわれるし、更に酸発酵を経た後のPH
調整であり、熱処理であるためPH調整のための薬
品量が少なくてすみ、酸発酵により廃棄物量が減
少するので熱処理装置も小さくすることができる
のである。
In this way, in the present invention, biodegradability is increased by acid fermenting organic waste, heat-treating it at 175°C or higher and then methane fermentation at a pH of 5 or less, and thereby reducing the amount of methane gas generated. Not only is the solid-liquid separation of the methane fermentation residue improved. Since the heat treatment is carried out at a pH of 5 or less, the fluidity of the waste increases, the heat treatment is performed efficiently, the heat treatment time is shortened, and there is no possibility of scale build-up on the heat treatment equipment body, heat exchanger, or the inside of the piping that passes through them. The problem is solved, heat exchange is performed efficiently, and the pH after acid fermentation is
Since it is an adjustment and a heat treatment, the amount of chemicals required for pH adjustment is small, and the amount of waste is reduced by acid fermentation, so the heat treatment equipment can be made smaller.

ところで、有機性廃棄物の熱処理を行なうとか
なりの悪臭を発することが多く、特に下水処理汚
泥の熱処理において顕著なものであつたが、熱処
理後メタン発酵を行なうことにより悪臭成分がか
なり除去され二次公害の危険性も無くなるほか、
熱処理脱離液の色度成分が非常に濃く、生物処理
のみの手段では色度成分の除去が大変困難であつ
たがメタン発酵残留物の固液分離に際し、少なく
とも塩化第二鉄を凝集助剤として用いる固液分離
方法を採用すれば色度成分をかなり除去すること
ができた。
Incidentally, heat treatment of organic waste often produces a considerable odor, which is particularly noticeable in the heat treatment of sewage treatment sludge, but by performing methane fermentation after heat treatment, a considerable amount of the odor components can be removed. In addition to eliminating the risk of secondary pollution,
The chromatic component of the heat treatment desorbed liquid is very dark, and it is very difficult to remove the chromatic component using only biological treatment.However, at least ferric chloride is used as a flocculation aid during solid-liquid separation of the methane fermentation residue. By employing the solid-liquid separation method used as a method, it was possible to remove a considerable amount of chromatic components.

ここでは塩化第二鉄の添加量は添加後のPHが少
なくとも5.5以下となるようにし、その量はメタ
ン発酵残留物の固形物あたり10〜30%とするのが
よい。この塩化第二鉄のみで固液分離が困難な場
合は、消石灰や水酸化マグネシウムなどのカルシ
ウム、マグネシウム系アルカリを更に凝集助剤と
して添加すればよい。このようにメタン発酵残留
物に少なくとも塩化第二鉄を凝集助剤として添加
して固液分離するとき固液分離と同時に熱処理過
程で発生する着色成分をも除去できる利益もあ
る。
Here, the amount of ferric chloride added is such that the pH after addition is at least 5.5 or less, and the amount is preferably 10 to 30% based on the solid content of the methane fermentation residue. If solid-liquid separation is difficult with only this ferric chloride, calcium or magnesium-based alkali such as slaked lime or magnesium hydroxide may be further added as a coagulation aid. In this way, when solid-liquid separation is performed by adding at least ferric chloride as a flocculation aid to the methane fermentation residue, there is also the advantage that coloring components generated during the heat treatment process can be removed at the same time as the solid-liquid separation.

本発明を実施態様にしたがつて図面を参照して
説明すると、有機性廃棄物1を酸発酵槽2に投入
し、熱処理装置4と熱交換6によつて高温あるい
は中温域に加温されている酸発酵槽2において酸
発酵を成すに足るだけの滞留時間滞留させ、終始
もしくは適宜撹拌を与える。酸発酵を終えた有機
性廃棄物をあるいは固液分離装置7で分離した濃
縮物を、そのPHが5以下であればそのまま、そう
でなければPH5以下となるように有機酸3または
塩酸を添加し処理温度175℃以下の熱処理装置4
に投入して熱処理する。所定時間の熱処理を受け
た廃棄物を熱処理装置4と熱交換されるメタン発
酵槽5に投入し、メタン発酵するに足る滞留時間
滞留させ終始または適宜撹拌を行なう。このメタ
ン発酵槽5を出た処理物13に少なくとも塩化第
二鉄を凝集助剤9として添加した後固液分離装置
10で固液分離し、脱離液11は水処理系に返流
処理する。なお前記酸発酵を終えた後固液分離を
行なつた場合この分離液8はメタン発酵槽5に流
入させて処理するのが好ましい。
To explain an embodiment of the present invention with reference to the drawings, organic waste 1 is put into an acid fermenter 2 and heated to a high temperature or medium temperature range by a heat treatment device 4 and a heat exchanger 6. The material is allowed to remain in the acid fermenter 2 for a residence time sufficient to carry out acid fermentation, and is stirred throughout or as appropriate. Organic waste after acid fermentation or concentrate separated by solid-liquid separator 7 is left as is if its pH is 5 or less, otherwise organic acid 3 or hydrochloric acid is added to it to make the pH 5 or less. Heat treatment equipment 4 with a treatment temperature of 175℃ or less
heat-treated. The waste that has been heat-treated for a predetermined period of time is put into a methane fermentation tank 5 that exchanges heat with the heat treatment device 4, and is allowed to remain there for a residence time sufficient for methane fermentation, and is stirred throughout or as needed. At least ferric chloride is added as a flocculation aid 9 to the treated material 13 coming out of the methane fermentation tank 5, and then solid-liquid separation is performed in a solid-liquid separator 10, and the desorbed liquid 11 is returned to the water treatment system. . Note that when solid-liquid separation is performed after the acid fermentation is completed, it is preferable that the separated liquid 8 is flowed into the methane fermentation tank 5 for treatment.

以上のように本発明では、有機性廃棄物の生物
分解性が増加し、メタンガス発生量が増大するの
みならずメタン発酵残留物の固液分離性が改善さ
れ、熱処理および熱交換に関わる種々の長所を持
つ他、従来、熱処理の大きな問題点とされてきた
悪臭成分や脱離液の色度成分についても解決を与
えるもので、有機性廃棄物からの総合的なエネル
ギ回収が可能である利益がある。
As described above, the present invention not only increases the biodegradability of organic waste and increases the amount of methane gas generated, but also improves the solid-liquid separation of methane fermentation residue, and improves various aspects related to heat treatment and heat exchange. In addition to its advantages, it also solves the problems of malodor components and color components of the desorbed liquid, which have traditionally been considered major problems in heat treatment, and has the benefit of being able to comprehensively recover energy from organic waste. There is.

次に本発明の実施例を従来法と比較して示す、 実施例 1 全固形物濃度(以下TSと記す)3.5%、揮発性
固形物濃度(以下VSと記す)2.8%、強熱減量
(以下VS/TSと記す)78.4%、PH5.6の下水汚泥
を3/日で52±1℃に制御され連続して撹拌さ
れている酸発酵槽に1日滞留させると、PH5.0、
TS:3.0%、VS:2.2%、VS/TS:74.5%の酸
発酵汚泥が得られた。これを容量5のオートク
レーブに入れ、175℃で10分間熱処理するとPH
5.1、TS:3.0%、VS:2.2%、VS/TS:73.2%
の熱処理汚泥が得られ、これの臭気濃度:
1040000、脱離液の色度:580であつた。この熱処
理汚泥を35±1℃に維持され、連続して撹拌され
ているメタン発酵槽に15日滞留させる(メタン発
酵槽の容量45)とVSの61%が分解して、ガス
が1日あたり56.9発生し、PH7.6、TS:1.7%、
VS:0.85%、VS/TS:51.5%のメタン発酵汚泥
が得られた。これに塩化第二鉄をTSあたり20%、
消石灰を50%添加し、ろ過圧:4Kg/cm2、ろ過時
間;30分、圧搾圧力:9Kg/cm2、圧搾時間:20分
の条件で加圧脱水を行なつたところ含水率65.4%
の脱水ケーキが得られた。脱水脱離液は色度22、
脱水ケーキの臭気濃度:380であつた。
Next, an example of the present invention will be shown in comparison with a conventional method. When 78.4% (hereinafter referred to as VS/TS) sewage sludge with a pH of 5.6 is allowed to stay for one day in an acid fermenter that is controlled at 52±1°C and continuously stirred for three days, the pH of the sludge is 78.4%, pH5.0,
Acid-fermented sludge with TS: 3.0%, VS: 2.2%, and VS/TS: 74.5% was obtained. When this was placed in an autoclave with a capacity of 5 and heat treated at 175℃ for 10 minutes, the pH
5.1, TS: 3.0%, VS: 2.2%, VS/TS: 73.2%
A heat-treated sludge with an odor concentration of:
1,040,000, and the chromaticity of the desorbed liquid was 580. When this heat-treated sludge is kept in a methane fermentation tank maintained at 35±1℃ and continuously stirred for 15 days (the capacity of the methane fermentation tank is 45), 61% of the VS is decomposed and the gas is released per day. 56.9 occurred, PH7.6, TS: 1.7%,
Methane fermentation sludge with VS: 0.85% and VS/TS: 51.5% was obtained. Add ferric chloride to this at 20% per TS,
Water content was 65.4% when 50% slaked lime was added, filtration pressure: 4Kg/cm 2 , filtration time: 30 minutes, compression pressure: 9Kg/cm 2 , and compression time: 20 minutes.
A dehydrated cake was obtained. The dehydration solution has a chromaticity of 22,
Odor concentration of dehydrated cake: 380.

実施例 2 酸発酵過程までは実施例1と同じである酸発酵
汚泥を1360Gで10分間無薬注で遠心濃縮すると、
TS:5.1%、VS:3.8%、VS/TS:74.5%の濃
縮汚泥が1.7、TS:約2300mg/、VS:約
1700mg/の分離液が1.3得られた。この濃縮
汚泥を容量5のオートクレーブに入れ、175℃
で10分間熱処理するとPH5.2、TS:5.1%、VS:
3.8%、VS/TS:74.3%の熱処理汚泥が得られ、
この臭気濃度:1230000、脱離液の色度:730であ
つた。この熱処理汚泥と先の遠心分離液とを35±
1℃に維持され、連続して撹拌されているメタン
発酵槽に15日滞留させる(メタン発酵槽の容量45
)とVSの95%が分解してガスが1日あたり
57.0発生し、PH7.7、TS:1.7%、VS:0.9%、
VS/TS:53.6%のメタン発酵汚泥が得られた。
これに塩化第二鉄をTSあたり15%、消石灰を50
%添加し、ろ過圧:4Kg/cm2、ろ過時間:30分、
圧搾圧力:9Kg/cm2、圧搾時間:20分という条件
で加圧脱水を行なつたところ含水率63.8%の脱水
ケーキが得られた。脱水脱離液は色度:25、脱水
ケーキの臭気濃度:350であつた。
Example 2 The acid fermentation sludge, which was the same as in Example 1 up to the acid fermentation process, was centrifugally concentrated at 1360G for 10 minutes without chemical injection.
TS: 5.1%, VS: 3.8%, VS/TS: 74.5% thickened sludge is 1.7, TS: approx. 2300mg/, VS: approx.
1.3 of 1700 mg/separate solution was obtained. This thickened sludge was put into an autoclave with a capacity of 5 and heated to 175°C.
When heat treated for 10 minutes at PH5.2, TS: 5.1%, VS:
3.8%, VS/TS: 74.3% heat treated sludge was obtained,
The odor concentration was 1,230,000, and the chromaticity of the desorbed liquid was 730. This heat-treated sludge and the centrifuged liquid were mixed for 35±
Remain in a methane fermenter maintained at 1℃ and continuously stirred for 15 days (methane fermenter capacity 45
) and 95% of VS decomposes and gas is released per day.
57.0 occurred, PH7.7, TS: 1.7%, VS: 0.9%,
VS/TS: 53.6% methane fermentation sludge was obtained.
Add 15% ferric chloride per TS and 50% slaked lime to this.
% added, filtration pressure: 4Kg/cm 2 , filtration time: 30 minutes,
When pressurized dehydration was performed under the conditions of pressing pressure: 9 Kg/cm 2 and pressing time: 20 minutes, a dehydrated cake with a moisture content of 63.8% was obtained. The color of the dehydrated solution was 25, and the odor concentration of the dehydrated cake was 350.

比較例 実施例1,2と同じ下水汚泥を容量5のオー
トクレーブに入れ、175℃で30分間熱処理すると
PH5.8、TS:3.5%、VS:2.8%、VS/TS:78.2
%の熱処理汚泥を得た。この熱処理汚泥の臭気濃
度は930000、脱離液の色度は520で、これを35±
1℃に維持され、連続して撹拌されているメタン
発酵槽に15日滞留させる(メタン発酵槽の容量45
)とVSの51%が分解してガスが1日あたり
53.2発生し、PH7.6、TS:2.1%、VS:1.4%、
VS/TS:64.2%のメタン発酵汚泥が得られた。
これを1日静置すると沈降濃縮して、濃縮汚泥の
占める容量は23%となり、TS:7.4%、VS:4.8
%の濃縮汚泥が得られる。このときの沈降分離水
は色度:550、臭気濃度:760であつた。得られた
濃縮汚泥に、TSあたり塩化第二鉄を20%、消石
灰を50%添加し、ろ過圧:4Kg/cm2、ろ過時間:
30分、圧搾圧力:9Kg/cm2、圧搾時間:20分とい
う条件で加圧脱水を行なつたところ含水率67.1%
の脱水ケーキが得られた。この脱水脱離液は色
度:17、臭気濃度:330であつた。
Comparative example: When the same sewage sludge as in Examples 1 and 2 is placed in an autoclave with a capacity of 5 and heat-treated at 175°C for 30 minutes,
PH5.8, TS: 3.5%, VS: 2.8%, VS/TS: 78.2
% heat treated sludge was obtained. The odor concentration of this heat-treated sludge is 930,000, and the chromaticity of the desorbed liquid is 520, which is 35±
Remain in a methane fermenter maintained at 1℃ and continuously stirred for 15 days (methane fermenter capacity 45
) and 51% of VS decomposes to produce gas per day.
53.2 occurred, PH7.6, TS: 2.1%, VS: 1.4%,
VS/TS: 64.2% methane fermentation sludge was obtained.
If this is left to stand for one day, it will settle and concentrate, and the volume occupied by the thickened sludge will be 23%, TS: 7.4%, VS: 4.8
% thickened sludge is obtained. The precipitated and separated water at this time had a chromaticity of 550 and an odor concentration of 760. To the obtained thickened sludge, 20% ferric chloride and 50% slaked lime were added per TS, filtration pressure: 4Kg/cm 2 , filtration time:
When pressurized dehydration was performed for 30 minutes, compression pressure: 9Kg/cm 2 , and compression time: 20 minutes, the water content was 67.1%.
A dehydrated cake was obtained. This dehydrated solution had a chromaticity of 17 and an odor concentration of 330.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の一実施態様のフローシート
である。 1……有機性廃棄物、2……酸発酵槽、3……
塩酸または有機酸、4……熱処理装置、5……メ
タン発酵槽、6……熱交換、7……固液分離部、
9……凝集助剤、10……固液分離装置、11…
…固液分離による脱離液、12……発生ガス。
The drawing is a flow sheet of one embodiment of the method of the present invention. 1...Organic waste, 2...Acid fermenter, 3...
Hydrochloric acid or organic acid, 4... Heat treatment device, 5... Methane fermentation tank, 6... Heat exchange, 7... Solid-liquid separation section,
9... Coagulation aid, 10... Solid-liquid separator, 11...
...Liquid removed by solid-liquid separation, 12...Generated gas.

Claims (1)

【特許請求の範囲】 1 有機性廃棄物を酸発酵処理せしめ、さらにPH
5以下において加熱温度175℃以上で10分以内の
熱処理を施したのち、メタン発酵処理することを
特徴とする有機性廃棄物の処理方法。 2 前記酸発酵工程が、酸発酵後に固液分離する
ものであつて、濃縮物のみ熱処理し、分離液は熱
処理せずにそれぞれ前記メタン発酵工程に導入処
理するものである特許請求の範囲第1項記載の処
理方法。 3 前記メタン発酵工程が、メタン発酵後にメタ
ン発酵残留物の固液分離工程を含んでいるもので
ある特許請求の範囲第1項または第2項記載の処
理方法。 4 前記メタン発酵工程が、メタン発酵後に固液
分離処理するものであつて、この固液分離処理に
少なくとも塩化第二鉄を凝集助剤として添加処理
されるものである特許請求の範囲第3項記載の処
理方法。
[Claims] 1. Organic waste is subjected to acid fermentation treatment, and further PH
A method for treating organic waste, which comprises subjecting the waste to heat treatment at a heating temperature of 175°C or higher for less than 10 minutes at a temperature of 5°C or lower, followed by methane fermentation treatment. 2. Claim 1, wherein the acid fermentation step involves solid-liquid separation after acid fermentation, in which only the concentrate is heat-treated, and the separated liquids are introduced into the methane fermentation step without being heat-treated. Treatment method described in section. 3. The treatment method according to claim 1 or 2, wherein the methane fermentation step includes a solid-liquid separation step of methane fermentation residue after methane fermentation. 4. Claim 3, wherein the methane fermentation step is a solid-liquid separation treatment after methane fermentation, and at least ferric chloride is added as a coagulation aid to this solid-liquid separation treatment. Processing method described.
JP57027162A 1982-02-22 1982-02-22 Treatment of organic waste matter Granted JPS58143894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57027162A JPS58143894A (en) 1982-02-22 1982-02-22 Treatment of organic waste matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57027162A JPS58143894A (en) 1982-02-22 1982-02-22 Treatment of organic waste matter

Publications (2)

Publication Number Publication Date
JPS58143894A JPS58143894A (en) 1983-08-26
JPH02999B2 true JPH02999B2 (en) 1990-01-10

Family

ID=12213355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57027162A Granted JPS58143894A (en) 1982-02-22 1982-02-22 Treatment of organic waste matter

Country Status (1)

Country Link
JP (1) JPS58143894A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2729624B2 (en) * 1988-03-03 1998-03-18 建設省土木研究所長 Organic sludge treatment method
JP4886798B2 (en) * 2009-02-04 2012-02-29 日本下水道事業団 Anaerobic treatment method combined with heat solubilization drying
CN106698748A (en) * 2016-12-26 2017-05-24 骆昌盛 Preparation, device and treatment method for treating CTP developing effluent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525963A (en) * 1975-07-04 1977-01-18 Hitachi Ltd Method of destroying abominability of organic waste liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525963A (en) * 1975-07-04 1977-01-18 Hitachi Ltd Method of destroying abominability of organic waste liquid

Also Published As

Publication number Publication date
JPS58143894A (en) 1983-08-26

Similar Documents

Publication Publication Date Title
RU2338699C2 (en) Manufacturing method of digested sludge
JP3754979B2 (en) Sludge reduction method and apparatus
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
JPH07503178A (en) Exhaust treatment method
JP6649769B2 (en) Organic matter processing system and organic matter processing method
JP3893654B2 (en) Organic wastewater treatment method
JP4292610B2 (en) Organic wastewater treatment equipment
CN108675587B (en) Method for deep dehydration of sludge through hydrothermal catalytic oxidation
CN114349303A (en) Efficient sludge dewatering treatment process based on low-temperature hydrothermal treatment
JPS58131200A (en) Treatment of sludge
JPH02999B2 (en)
JP2001179288A (en) Method and apparatus for anaerobically treating starch- containing liquid
JPH0125640B2 (en)
JPH0135720B2 (en)
JPS6349560B2 (en)
JPS59397A (en) Treatment of effluent from heat-treated sludge
JP3672175B2 (en) Organic wastewater treatment method and treatment apparatus
JP4010733B2 (en) Organic wastewater treatment method and apparatus
JPS63214389A (en) Treatment of organic sewage
JPS59123600A (en) Treatment of organic hydrous material
JP2003039100A (en) Solid-liquid separation method for solid-liquid mixture and apparatus therefor
JP4714350B2 (en) Organic wastewater treatment method
JPS58177200A (en) Treatment of organic sludge
JP2003211190A (en) Method for recovering phosphorus from sludge
JPH0114832B2 (en)