JPS6349560B2 - - Google Patents

Info

Publication number
JPS6349560B2
JPS6349560B2 JP56098824A JP9882481A JPS6349560B2 JP S6349560 B2 JPS6349560 B2 JP S6349560B2 JP 56098824 A JP56098824 A JP 56098824A JP 9882481 A JP9882481 A JP 9882481A JP S6349560 B2 JPS6349560 B2 JP S6349560B2
Authority
JP
Japan
Prior art keywords
sludge
treatment
anaerobic digestion
digestion
wet oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56098824A
Other languages
Japanese (ja)
Other versions
JPS58300A (en
Inventor
Toshio Iwase
Kazuo Sugaya
Hidehiro Tango
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP56098824A priority Critical patent/JPS58300A/en
Publication of JPS58300A publication Critical patent/JPS58300A/en
Publication of JPS6349560B2 publication Critical patent/JPS6349560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「技術分野」 本発明は、下水系汚泥、し尿系汚泥等の有機汚
泥の処理方法に係り、特に高酸化処理された湿式
酸化分離液を嫌気消化法で処理することにより汚
泥処理機能を有効に作用させる有機汚泥の処理方
法に関するものである。 「従来技術とその問題点」 一般に、下水処理設備等から排出される有機汚
泥の処理は、嫌気性消化処理、湿式酸化処理、焼
却処理等により行なわれている。しかしながら、
これらの処理方法には次のような種々の問題があ
る。 (1) 嫌気性消化処理においては、嫌気性消化槽を
加温するのに多大のエネルギーを要し、発生す
る消化ガスを消化槽の加温に利用すると消化ガ
スの有効利用が難しくなる。更に、消化汚泥の
焼却に多大のエネルギーを要する。 (2) 焼却処理においては、多大のエネルギーを要
すると共に、焼却時に重金属等の飛散により大
気汚染を生じる。 (3) 湿式酸化処理後に生ずる処理液は未だ多くの
有機物を含むので、直接放流することは難し
く、更にこれを処理する施設への汚濁物質負荷
が大きくなる。 ところで、従来上記の問題の一部を解決し得る
汚泥処理方法が、特公昭46−1511号において提案
されている。 第1図に、この汚泥の処理方法の工程を示す。
この処理方法は、まず、下水処理工程1から排出
される有機汚泥を、第1濃縮槽2にて濃縮し、次
いで嫌気性消化槽3に導入して消化処理する。次
いで、消化汚泥を沈降槽4に導入して沈降分離
し、これによる分離液は下水処理工程1に返送さ
れ、一方沈降汚泥は湿式酸化処理装置5に送られ
る。次に湿式酸化処理装置5にて処理された湿式
酸化物は、酸化分離液Lと灰査Aとに固液分離さ
れ、前記酸化分離液Lの少くとも一部が前記嫌気
性消化槽3に返送され、また排出された灰査A
は、更に水分を除去された後に廃棄される。 ところでこのような汚泥処理工程では、従来湿
式酸化処理におけるCODcr消費率(酸化度)を
高くすると(高酸化処理すると)、生成する酸化
分離液が消化槽生物に対して養分の乏しいものと
なり、また酸化分離液中に阻害物質が含まれるこ
ととなる。このような酸化分離液を嫌気性消化槽
3に返送すると当該槽3内での消化処理が阻害さ
れて、有機汚泥の処理効率が低下する。このた
め、上記の汚泥処理方法は、湿式酸化処理温度を
150〜175℃にして酸化度を55%以下に抑える低酸
化処理を行い、これにより生成する酸化分離液の
少なくとも一部を嫌気性消化槽3に返送すること
を特徴としている。 このように、この方法にあつては、湿式酸化処
理装置5で低酸化処理しか行えないため湿式酸化
処理によつて生ずる灰査中の熱しやく減量を我国
における廃棄物の投棄許容基準である15%以下と
することは困難であり、投棄する為には、更に何
等かの処理を施す必要が生ずるという問題があつ
た。 また、この方法では、低酸化処理を行うため酸
化処理工程で有機汚泥の自燃が生じない。このた
め、酸化処理工程にたえず熱を供給する必要があ
り、汚泥処理に多大のエネルギを要する欠点があ
つた。 本発明は上記事情に鑑み、前述した各問題を解
決すると同時に、前記従来方法の欠点を改善しこ
れにより、灰査中の熱しやく減量を廃棄物の投棄
許容基準である15%以下とし、かつ、消費エネル
ギーが少なく、しかも生じる酸化分離液を高度に
浄化できる効率的な汚泥処理方法を提供すること
を目的としている。 「問題点を解決するための手段」 本発明の処理方法にあつては、湿式酸化処理工
程で高酸化処理を行い、ここから発生する酸化分
離液をSS濃度2.0%以上の有機汚泥と0.8:1以下
の範囲で混合して嫌気性消化処理工程に導き、こ
の嫌気性消化処理工程のCODcr負荷を2.0〜5.7
Kg/m3日の範囲に維持して運転することによつて、
上記問題点の解決を図つた。 「実施例」 以下、図面に示す実施例に沿つて本発明を詳細
に説明する。第2図は、本発明を下水汚泥に対し
て実施する工程を示す図である。この図中、符号
10は下水処理工程を示す。この下水処理工程1
0に導入された生下水は、最初沈殿槽、曝気槽、
最終沈殿槽等からなる通常の処理手段により順次
処理され、汚泥と処理水とに分離される。そして
処理水は放流され、汚泥は、汚泥濃縮工程11に
送られる。この汚泥濃縮工程11では、汚泥濃度
を上げ、汚泥絶対量を減らすために、加圧浮上
法、遠心分離法等の濃縮手段により、S・S濃度
2%未満の汚泥を2〜6%程度好ましくは2〜4
%程度に濃縮する。尚、生し尿等の様にS・S濃
度が初めから2〜6%程度あるものは、汚泥濃縮
は行なわない。又、最初沈殿池汚泥等の様なS・
S濃度が6%をこえるものは汚泥濃縮を行なわず
直接次の嫌気性消化処理工程12に導入しても良
い。ただし経済的には希釈を行ないS・S濃度を
2〜6%にするのが好ましい。さらにここでの有
機汚泥は、有機物を多少なりとも含んでいれば嫌
気性消化処理は可能であるが、処理効率、経済性
等を考慮すると、有機物含有率(懸濁物質中の懸
濁物の強熱減量の割合)は60%以上のものが好ま
しい。この様に調整された有機汚泥は次いで嫌気
性消化処理工程12に導入される。嫌気性消化処
理工程12では、消化温度30〜37℃、消化日数15
〜30日の条件で消化処理されて、有機物は40〜60
%減少する。この嫌気性消化工程12において生成
する消化ガスは捕捉されて後述するガスホルダー
に送られ、また消化汚泥は、消化汚泥濃縮工程1
3に送出される。消化汚泥濃縮工程13は、遠心
分離機や加圧浮上、場合によつては重力分離等の
濃縮手段からなる。ここに導入された消化汚泥
は、適宜濃度に調整されて、懸濁物質濃度3〜4
%の消化汚泥と分離液とに分離される。この分離
液は、有機汚泥を湿式酸化処理する時に排出され
る分離液に比べて有機物質濃度が低いものである
ので、これは前記下水処理工程10へ返送されて
処理されるか、又は別途処理を行う。 一方、濃縮された消化汚泥は湿式酸化処理工程
14に送られ、ここで、200〜280℃、55〜100Kg/
cm2の条件下で酸化度60〜85%の高酸化処理が施さ
れる。そして湿式酸化処理後の酸化混合液は、固
液分離槽で、酸化分離液と酸化スラリーに分離さ
れる。この酸化スラリーは脱水機(フイルタープ
レス)で含水率約45%の灰渣として脱水される。 このように高酸化処理を施すことによつて得ら
れた灰査は、熱しやく減量が15%以下のものとな
つている。 この灰渣中の熱しやく減量は、JIS−
K0102.14.5に記載されているようにまず、100℃
で約1時間以上の条件で乾燥して水分を蒸発さ
せ、全固型物量を算出し、更に600℃、30分〜40
分で焼却して求めるものである。 灰渣中の熱しやく減量/灰渣中の全固型物量×100 上記、湿式酸化処理工程14に導入される消化
汚泥は、前段階で嫌気性消化処理を施されている
ので、固型物量が約2/3程度に減少され、また有
機物含有率が40〜60%に低減されたものである。
このため、湿式酸化処理工程14の規模を小さ
く、また処理条件も低くすることができる。この
様な湿式酸化処理工程14にて生成された湿式酸
化物は、上記のごとく灰査A′と酸化分離液L′と
に分離され、灰査A′は排出される。 一方、酸化分離液L′はその全量が前記嫌気性消
化処理工程12へ返送され、ここで前記有機汚泥
と混合されて処理される。この際に、酸化分離液
L′の生成量は、前述した消化汚泥濃縮工程13に
おける消化汚泥濃度を調整することによつて調整
される。そして、嫌気性消化処理工程12に導入
される酸化分離液L′の液量は有機汚泥との容量混
合比で0.8:1以下、好ましくは0.4:1〜0.8:1
の範囲とされる。酸化分離液と有機汚泥の溶量混
合比が0.8:1を越えると、後述する実験例1か
らも明らかなように、嫌気性消化処理工程12の
消化処理効率の大巾な低下を招く。また、容量混
合比を0.4:1未満にすると湿式酸化処理工程1
4から流出する酸化分離液を全量返送できなくな
る不都合が生じる。 また、これと同時に、嫌気性消化処理工程12
に対するCODcr(重クロム酸カリウムによる酸素
消費量)負荷は2〜5.7Kg/m3・日となるように調
整する。このCODcr負荷が5.7Kg/m3・日を越える
と、後述する実験例2から明らかなように、消化
処理工程12の処理効率の大巾な低下を招く。ま
たCODcr負荷が2Kg/m3未満になると、消化処理
工程の槽の容量を増さねばならず、不経済とな
る。 さらに、この嫌気性消化処理工程12に導入す
る有機汚泥は、上述したようにSS濃度が2.0%以
上のものでなければならない。SS濃度が2.0%未
満になると、消化槽の養分が不充分となり、消化
処理効率の大巾な低下を招く。 これらの3つの運転条件は、嫌気性消化処理工
程12における処理効率、及び本発明の処理系全
体のエネルギー的な効率を高めるという見地から
選択されたもので、湿式酸化処理工程14におけ
る高酸化処理と組合せた場合、これらの条件を満
足したときにのみ一般的な運転条件によつて嫌気
性消化槽を運転することが可能となる。 本発明の処理方法では湿式酸化処理工程で高酸
化処理が行われるので、そこから得られる酸化分
離液の温度は65〜70℃となる。そして、この実施
例の方法ではこれを嫌気性消化処理工程12へ全
量返送するので、当該消化処理工程12の処理温
度を、通常の30日消化においては、他の熱源なし
に年間を通じて常時30℃以上に維持することがで
きる。 次に、前記嫌気性消化処理工程12において生
成された消化ガスから、エネルギーを回収する一
方法を説明する。消化ガスは、まずガスホルダ1
5に一時貯留される。このガスホルダ15に貯留
された消化ガスの一部は、前記湿式酸化処理工程
14の排ガス脱臭燃焼処理、及び始動用ボイラの
燃料として使用され、残りはすべてガスエンジン
16に送られ、この動力燃料として使用される。
ガスエンジン16は、発電機を備えており、これ
により消化ガスから電力を回収するものである。
ガスエンジン16から排出される高温の排ガスE
は、排ガスボイラ17に導入され、これに同時に
導入される水Wと熱交換して水Wを加温する。加
温された温水HWは、前記嫌気性消化処理工程1
2に送られ、この工程12において酸化液を嫌気
性消化槽に返送しても所定の温度(一般的には37
℃程度)にならない時の加熱源として用いられ
る。このようにして、消化ガスを有効利用するこ
とにより、本発明による汚泥の処理方法は、重油
等の補助燃料を全く必要とせず、汚泥処理に要す
る消費エネルギーの大幅な低減を図り得るもので
ある。 「作用」 以上説明したように、本発明の汚泥の処理方法
は、湿式酸化処理工程で高酸化処理を行い、ここ
から発生する酸化分離液をSS濃度2.0%以上の有
機汚泥と0.8:1以下の範囲で混合して嫌気性消
化処理工程に導き、この嫌気性消化処理工程の
CODcr負荷を2.0〜5.7Kg/m3日の範囲に維持して
運転する方法なので次のような利点を有する。 (1) 嫌気性消化処理と組み合わせたうえで、湿式
酸化処理における酸化度を60%以上にする高酸
化処理を行うことが可能となり、これによつて
処理後の灰査中の熱しやく減量を、投棄許容基
準である15%以下に減少することができるので
灰査の処理が容易となる。 (2) 湿式酸化処理により生成する酸化分離液(65
〜70℃)のもつ熱的エネルギーを嫌気性消化処
理工程の加温用エネルギーとして利用できる。
しかも、湿式酸化処理自体が高酸化処理で行な
われるため自燃し、その結果外部から加熱する
必要がないので、この処理方法は、重油等の補
助燃料を必要としない省資源、省エネルギープ
ロセスを可能とすることも出来る。 (3) 従来、廃水処理工程に返送される等の方法で
処理されていた酸化分離液を嫌気性消化処理工
程で有機汚泥と共に処理することにより、酸化
液中の有機物濃度を低減できると共に発生消化
ガス量の増加が図れる。 以上の観点から本発明による汚泥の処理方法
は、より効果的で、かつ省エネルギー型の汚泥処
理を実現するものである。 〔実験例〕 次に、実験例を示し、本発明を更に具体的に説
明する。 30の嫌気性消化槽を用い、下水処理設備から
の有機汚泥を嫌気性消化し、これを遠心分離機を
用いて汚泥濃度を調整し、次いでこれを振盪式回
分型オートクレーブを用いて湿式酸化処理し、湿
式酸化処理後の酸化分離液を嫌気性消化槽に返送
して処理した。この結果得られた消化効率、消化
ガス発生量、消化脱離液の性状、及び湿式酸化処
理性向等について、一般的な処理法である有機汚
泥のみを嫌気性消化処理した場合、及び有機汚泥
を直接に湿式酸化処理した場合、および酸化分離
液のみを嫌気性消化処理した場合を比較しながら
述べる。実験例の処理条件と、有機汚泥及び得ら
れた酸化分離液の性状は、次に示すとおりであ
る。 Γ処理条件 嫌気性消化温度 35℃ 消化日数 15日 濃縮消化汚泥濃度 約3.5% 湿式酸化処理温度 210℃ 湿式酸化処理圧力 70Kg/cm2 Γ有機汚泥及び酸化分離液の性状
"Technical Field" The present invention relates to a method for treating organic sludge such as sewage sludge and human waste sludge, and in particular, the sludge treatment function is effectively achieved by treating wet oxidation separated liquid that has undergone highly oxidation treatment using an anaerobic digestion method. This invention relates to a method for treating organic sludge. "Prior Art and its Problems" Generally, organic sludge discharged from sewage treatment facilities is treated by anaerobic digestion, wet oxidation, incineration, and the like. however,
These processing methods have various problems as follows. (1) In anaerobic digestion, a large amount of energy is required to heat the anaerobic digestion tank, and if the generated digestion gas is used to heat the digestion tank, it becomes difficult to use the digestion gas effectively. Furthermore, incineration of digested sludge requires a large amount of energy. (2) Incineration requires a large amount of energy and also causes air pollution due to the scattering of heavy metals during incineration. (3) Since the treatment liquid produced after wet oxidation treatment still contains a large amount of organic matter, it is difficult to discharge it directly, and furthermore, the load of pollutants on the facilities that process it becomes large. By the way, a sludge treatment method capable of solving some of the above-mentioned problems has been proposed in Japanese Patent Publication No. 1511/1983. FIG. 1 shows the steps of this sludge treatment method.
In this treatment method, organic sludge discharged from a sewage treatment process 1 is first concentrated in a first concentration tank 2, and then introduced into an anaerobic digestion tank 3 for digestion treatment. Next, the digested sludge is introduced into the settling tank 4 for sedimentation and separation, and the resulting separated liquid is returned to the sewage treatment process 1, while the settled sludge is sent to the wet oxidation treatment device 5. Next, the wet oxide treated in the wet oxidation treatment device 5 is solid-liquid separated into an oxidation separation liquid L and an ash tester A, and at least a part of the oxidation separation liquid L is sent to the anaerobic digestion tank 3. Ash test A that was returned and discharged
is further dehydrated and then discarded. By the way, in such a sludge treatment process, if the CODcr consumption rate (oxidation degree) in conventional wet oxidation treatment is increased (high oxidation treatment), the oxidized separated liquid produced will be poor in nutrients for the digester organisms, and The oxidized separation liquid will contain inhibitory substances. If such an oxidized separated liquid is returned to the anaerobic digestion tank 3, the digestion process within the tank 3 will be inhibited, and the efficiency of treating organic sludge will decrease. For this reason, the above sludge treatment method requires a wet oxidation treatment temperature.
It is characterized by performing a low oxidation treatment at 150 to 175°C to suppress the degree of oxidation to 55% or less, and at least a part of the oxidized separated liquid produced thereby is returned to the anaerobic digestion tank 3. As described above, in this method, only low oxidation treatment can be performed in the wet oxidation treatment device 5, and therefore, the weight loss caused by the wet oxidation treatment due to heat during ash inspection is the acceptable standard for waste dumping in Japan15. % or less, and there was a problem in that it was necessary to perform some kind of further treatment in order to dispose of the waste. In addition, in this method, since low oxidation treatment is performed, self-combustion of organic sludge does not occur in the oxidation treatment step. For this reason, it is necessary to constantly supply heat to the oxidation treatment process, which has the disadvantage that sludge treatment requires a large amount of energy. In view of the above circumstances, the present invention solves the above-mentioned problems and at the same time improves the drawbacks of the conventional methods, thereby reducing the heat loss during ash inspection to 15% or less, which is the acceptable standard for waste dumping, and The purpose of the present invention is to provide an efficient sludge treatment method that consumes less energy and can highly purify the oxidized separated liquid produced. "Means for Solving the Problems" In the treatment method of the present invention, high oxidation treatment is performed in the wet oxidation treatment step, and the oxidized separated liquid generated from this is mixed with organic sludge with an SS concentration of 2.0% or more. 1 or less and lead to the anaerobic digestion process, and the CODcr load of this anaerobic digestion process is 2.0 to 5.7.
By maintaining and operating within the range of Kg/m 3 days,
We attempted to solve the above problems. "Embodiments" The present invention will be described in detail below with reference to embodiments shown in the drawings. FIG. 2 is a diagram showing a process of implementing the present invention on sewage sludge. In this figure, numeral 10 indicates a sewage treatment process. This sewage treatment process 1
The raw sewage introduced into the
The sludge is sequentially treated by conventional treatment means such as a final settling tank and separated into sludge and treated water. The treated water is then discharged, and the sludge is sent to the sludge concentration step 11. In this sludge concentration step 11, in order to increase the sludge concentration and reduce the absolute amount of sludge, sludge with an S/S concentration of less than 2% is preferably reduced to about 2 to 6% by concentration means such as pressure flotation or centrifugation. is 2-4
Concentrate to about %. Note that sludge concentration is not performed for materials such as raw human waste, which have an S.S concentration of about 2 to 6% from the beginning. In addition, S・ such as initial sedimentation tank sludge,
If the S concentration exceeds 6%, the sludge may be directly introduced into the next anaerobic digestion process 12 without being concentrated. However, economically, it is preferable to dilute the S.S. concentration to 2 to 6%. Furthermore, the organic sludge here can be subjected to anaerobic digestion treatment if it contains some amount of organic matter, but when considering treatment efficiency and economic efficiency, the organic matter content (suspended solids in The ratio of loss on ignition) is preferably 60% or more. The organic sludge thus prepared is then introduced into the anaerobic digestion process 12. In anaerobic digestion treatment step 12, the digestion temperature is 30 to 37℃, and the number of days for digestion is 15.
Digested under conditions of ~30 days, organic matter is 40~60
%Decrease. Digestion gas generated in this anaerobic digestion step 12 is captured and sent to a gas holder to be described later, and the digested sludge is collected in the digested sludge concentration step 1.
Sent on 3rd. The digested sludge concentration step 13 consists of concentration means such as a centrifuge, pressurized flotation, and gravity separation in some cases. The digested sludge introduced here is adjusted to an appropriate concentration and has a suspended solids concentration of 3 to 4.
% of digested sludge and separated liquid. This separated liquid has a lower concentration of organic substances than the separated liquid discharged when organic sludge is subjected to wet oxidation treatment, so it is either returned to the sewage treatment process 10 and treated, or it is treated separately. I do. On the other hand, the concentrated digested sludge is sent to the wet oxidation treatment step 14, where it is heated at 200-280℃ and 55-100kg/
High oxidation treatment with an oxidation degree of 60-85% is performed under cm2 conditions. The oxidized mixed liquid after the wet oxidation treatment is separated into an oxidized separated liquid and an oxidized slurry in a solid-liquid separation tank. This oxidized slurry is dehydrated in a dehydrator (filter press) to form ash residue with a moisture content of approximately 45%. The ash obtained by performing high oxidation treatment in this way is easily heated and has a weight loss of 15% or less. The weight loss due to heating in this ash residue is JIS-
First, 100℃ as described in K0102.14.5
Dry for about 1 hour or more to evaporate water, calculate the total solid content, and then dry at 600℃ for 30 minutes to 40 minutes.
It is obtained by incinerating it in minutes. Heat loss in ash residue/total solid content in ash residue x 100 The digested sludge introduced into the wet oxidation treatment step 14 has been subjected to anaerobic digestion treatment in the previous stage, so the solid content is is reduced to about 2/3, and the organic matter content is reduced to 40-60%.
Therefore, the scale of the wet oxidation treatment step 14 can be reduced, and the treatment conditions can also be lowered. The wet oxide produced in such a wet oxidation treatment step 14 is separated into the ash A' and the oxidation separation liquid L' as described above, and the ash A' is discharged. On the other hand, the entire amount of the oxidized separation liquid L' is returned to the anaerobic digestion treatment step 12, where it is mixed with the organic sludge and treated. At this time, oxidation separation liquid
The amount of L' produced is adjusted by adjusting the digested sludge concentration in the digested sludge concentration step 13 described above. The volume of the oxidized separation liquid L' introduced into the anaerobic digestion process 12 is 0.8:1 or less, preferably 0.4:1 to 0.8:1, in a volumetric mixing ratio with the organic sludge.
The range of If the solubility mixing ratio of the oxidized separated liquid and organic sludge exceeds 0.8:1, the digestion efficiency of the anaerobic digestion process 12 will be significantly reduced, as is clear from Experimental Example 1, which will be described later. In addition, if the volume mixing ratio is less than 0.4:1, wet oxidation treatment step 1
A problem arises in that the entire amount of the oxidized separation liquid flowing out from No. 4 cannot be returned. At the same time, anaerobic digestion treatment step 12
Adjust the CODcr (oxygen consumption by potassium dichromate) load to 2 to 5.7 Kg/m 3 day. If this CODcr load exceeds 5.7 Kg/m 3 ·day, as is clear from Experimental Example 2 described later, the processing efficiency of the digestion process 12 will be significantly reduced. Furthermore, when the CODcr load is less than 2 Kg/m 3 , the capacity of the tank for the digestion process must be increased, which becomes uneconomical. Furthermore, the organic sludge introduced into this anaerobic digestion process 12 must have an SS concentration of 2.0% or more, as described above. When the SS concentration is less than 2.0%, the nutrients in the digestion tank become insufficient, leading to a significant decrease in digestion efficiency. These three operating conditions were selected from the viewpoint of improving the treatment efficiency in the anaerobic digestion treatment step 12 and the energy efficiency of the entire treatment system of the present invention. When combined with these conditions, it becomes possible to operate the anaerobic digestion tank under general operating conditions only when these conditions are satisfied. In the treatment method of the present invention, high oxidation treatment is performed in the wet oxidation treatment step, so the temperature of the oxidized separated liquid obtained therefrom is 65 to 70°C. In the method of this example, the entire amount is returned to the anaerobic digestion process 12, so the processing temperature in the digestion process 12 is kept at 30°C throughout the year without any other heat source during normal 30-day digestion. can be maintained above. Next, one method of recovering energy from the digestion gas generated in the anaerobic digestion process 12 will be described. For digestion gas, first use gas holder 1.
5 is temporarily stored. A part of the digestion gas stored in the gas holder 15 is used for the exhaust gas deodorization combustion process in the wet oxidation process 14 and as fuel for the starting boiler, and the rest is all sent to the gas engine 16 and used as the power fuel. used.
The gas engine 16 includes a generator, which recovers electric power from the digestion gas.
High temperature exhaust gas E discharged from the gas engine 16
is introduced into the exhaust gas boiler 17 and heats the water W by exchanging heat with the water W introduced at the same time. The heated hot water HW is used in the anaerobic digestion treatment step 1.
2, and even if the oxidizing liquid is returned to the anaerobic digestion tank in this step 12, it will remain at a predetermined temperature (generally 37
It is used as a heating source when the temperature does not reach ℃. In this way, by effectively utilizing the digestion gas, the sludge treatment method according to the present invention does not require any auxiliary fuel such as heavy oil, and can significantly reduce the energy consumption required for sludge treatment. . "Operation" As explained above, in the sludge treatment method of the present invention, high oxidation treatment is performed in the wet oxidation treatment step, and the oxidized separated liquid generated from this is mixed with organic sludge with an SS concentration of 2.0% or more and 0.8:1 or less. of this anaerobic digestion process.
This method operates while maintaining the CODcr load within the range of 2.0 to 5.7 Kg/m for 3 days, so it has the following advantages. (1) In combination with anaerobic digestion treatment, it is now possible to perform high oxidation treatment that increases the degree of oxidation to 60% or more in wet oxidation treatment, which reduces heat loss during post-treatment ash inspection. , the amount can be reduced to less than 15%, which is the acceptable standard for dumping, making ash inspection easier. (2) Oxidized separation liquid (65
Thermal energy at temperatures up to 70°C can be used as heating energy for the anaerobic digestion process.
Moreover, since the wet oxidation treatment itself is performed with high oxidation treatment, it burns by itself, and as a result, there is no need for external heating, so this treatment method enables a resource-saving and energy-saving process that does not require auxiliary fuel such as heavy oil. You can also do that. (3) By treating the oxidized separated liquid, which was conventionally treated by returning it to the wastewater treatment process, together with organic sludge in the anaerobic digestion process, it is possible to reduce the concentration of organic matter in the oxidized liquid and reduce the amount of generated digestion. The amount of gas can be increased. From the above points of view, the sludge treatment method according to the present invention realizes more effective and energy-saving sludge treatment. [Experimental Example] Next, an experimental example will be shown to further specifically explain the present invention. Organic sludge from sewage treatment equipment is anaerobically digested using 30 anaerobic digestion tanks, the sludge concentration is adjusted using a centrifuge, and then wet oxidized using a shaking batch autoclave. The oxidized separated liquid after wet oxidation treatment was returned to the anaerobic digestion tank for treatment. Regarding the digestion efficiency, the amount of digestion gas generated, the properties of the digestion desorbed liquid, and the propensity for wet oxidation treatment, etc., we compared the results obtained when only organic sludge was subjected to anaerobic digestion, which is a general treatment method, and when organic sludge was subjected to anaerobic digestion, which is a general treatment method. We will compare the case of direct wet oxidation treatment and the case of anaerobic digestion treatment of only the oxidized separated liquid. The treatment conditions of the experimental example and the properties of the organic sludge and the obtained oxidized separated liquid are as shown below. Γ treatment conditions Anaerobic digestion temperature 35℃ Digestion days 15 days Concentrated digested sludge concentration Approximately 3.5% Wet oxidation treatment temperature 210℃ Wet oxidation treatment pressure 70Kg/cm 2 Properties of Γ organic sludge and oxidized separated liquid

【表】 (1) 消化効率及び消化ガス発生量について 前記した実施例の方法に従つて有機汚泥処理
を行ない、これを2ケ月以上継続して処理工程
全体が定常状態になつたときの消化効率、及び
消化ガス発生量等と、酸化分離液と有機汚泥と
の容量混合比(酸化分離液混合比)との関係を
第1表に示す。
[Table] (1) Digestion efficiency and digestion gas generation Digestion efficiency when organic sludge treatment is carried out according to the method of the above-mentioned example, and this is continued for more than two months until the entire treatment process reaches a steady state. Table 1 shows the relationship between the oxidation separation liquid and the organic sludge volume mixing ratio (oxidation separation liquid mixing ratio), the amount of generated digestive gas, etc.

【表】 この表中、(イ)は有機汚泥のみを嫌気性消化処
理した場合に相当する。第1表のVSS除去率
から分かるように、酸化分離液混合比が0.8:
1以下であれば、(イ)の有機汚泥のみを処理した
場合と比較して同等な消化効率が得られてい
る。更に、消化ガス発生量については、(ロ)、(ハ)
の場合のほうが(イ)の場合より優れていることが
分かる。そして、第3図に示すように消化ガス
発生量は0.8:1を境に急激に低下している。
これらの結果から、本発明の方法を用いて(ロ)、
(ハ)の条件である酸化分離液混合比を0.8:1以
下とすることにより、VSS除去率を低下され
ることなく消化ガス発生量を約1割増加させる
ことが可能となる。これは酸化分離液中に残存
する有機物が消化ガスに分解されるためであ
る。 なお、(ニ)の条件、即ち、酸化分離液投入量を
有機汚泥投入量と等しくした場合では、ガス発
生量が(イ)の条件の場合に比較して減少している
こと、及び(ホ)の条件、即ち有機汚泥を消化槽に
投入せずに酸化分離液のみを消化槽に投入した
場合は消化ガスがまつたく発生しなくなると言
う結果より、酸化液と汚泥の混合比を0.8:1
以下に設定することは、本システムを成立させ
るために、重要な因子であることが確認でき
る。 実験例 2 (2) 嫌気性消化槽のCODcr負荷について 嫌気性消化槽の酸化分離液混合比0.8:1の
条件で、消化日数を変化させることにより、
CODcr負荷を変化させたときの消化効率、消
化ガス発生量等を第2表に示す。
[Table] In this table, (a) corresponds to the case where only organic sludge is subjected to anaerobic digestion. As can be seen from the VSS removal rate in Table 1, the oxidation separation liquid mixing ratio is 0.8:
If it is less than 1, the same digestion efficiency is obtained as compared to (a) where only organic sludge is treated. Furthermore, regarding the amount of digestive gas generated, (b) and (c)
It can be seen that case (a) is better than case (a). As shown in Fig. 3, the amount of digestive gas generated rapidly decreases after reaching 0.8:1.
From these results, using the method of the present invention (b),
By setting the oxidation separation liquid mixing ratio to 0.8:1 or less, which is the condition (c), it is possible to increase the amount of digestion gas generated by about 10% without reducing the VSS removal rate. This is because the organic matter remaining in the oxidized separation liquid is decomposed into digestive gas. It should be noted that under condition (d), that is, when the amount of oxidized separation liquid input is equal to the amount of organic sludge input, the amount of gas generated is reduced compared to the case of condition (b), and (H) ), that is, if only the oxidized separated liquid is inputted into the digester without organic sludge, no digestion gas will be generated at all. Based on the result, the mixing ratio of the oxidized liquid and sludge was set to 0.8: 1
It can be confirmed that the following settings are important factors for establishing this system. Experimental example 2 (2) About the CODcr load in the anaerobic digestion tank By changing the number of days of digestion under the conditions of the oxidation separation liquid mixing ratio of 0.8:1 in the anaerobic digestion tank,
Table 2 shows the digestion efficiency, the amount of digestive gas generated, etc. when changing the CODcr load.

【表】 第2表及び第4図より、本発明の方法の嫌気
性消化処理においては、湿式酸化分離液の混合
比0.8:1以下の条件で、CODcr負荷5.7Kg−
CODcr/m3・日以下の運転条件でのみ、従来
法である酸化液混合比0:1の有機汚泥のみの
嫌気性消化処理と同等のV.S.S.除去率を得て、
更に消化ガス発生量を従来法よりも増大出来る
ことが分かる。 実験例 3 (3) 嫌気性消化槽に流入する有機汚泥のSS濃度
について 嫌気性消化槽の酸化分離液混合比0:1およ
び0.8:1の条件で、前記有機汚泥を水で希釈
してSS濃度を変化させることにより、嫌気性
消化槽に流入する有機汚泥のSS濃度を変化さ
せた時の消化効率、消化ガス発生量等を第3表
に示す。
[Table] From Table 2 and Figure 4, in the anaerobic digestion process of the method of the present invention, the CODcr load was 5.7 kg-
Only under operating conditions of CODcr/m 3 days or less, a VSS removal rate equivalent to the conventional anaerobic digestion treatment of organic sludge with an oxidizing liquid mixing ratio of 0:1 can be obtained.
Furthermore, it can be seen that the amount of digestive gas generated can be increased compared to the conventional method. Experimental example 3 (3) Concerning the SS concentration of organic sludge flowing into the anaerobic digestion tank The organic sludge was diluted with water and converted into SS under the conditions of the oxidized separation liquid mixing ratio of 0:1 and 0.8:1 in the anaerobic digestion tank. Table 3 shows the digestion efficiency, the amount of digestion gas generated, etc. when the SS concentration of the organic sludge flowing into the anaerobic digestion tank was changed by changing the concentration.

【表】 第3表および第5図より、本発明の方法の嫌
気性消化処理においては、湿式酸化分離液の混
合比0.8:1以下の条件で、嫌気性消化槽に流
入する有機汚泥のSS濃度2%以上の運転条件
でのみ、従来法である酸化液混合比0:1の有
機汚泥のみの嫌気性消化処理と同等のV.S.S除
去率を得て、更に消化ガス発生量を従来法より
も増大出来ることが分かる。 実験例 4 (4) 湿式酸化処理について 上記実験例において、湿式酸化処理の酸化温
度を210℃、反応圧力を70Kg/cm2に設定し、その
実験期間中に得られた湿式酸化後の酸化スラリ
ーの灰査を分析した結果、熱しやく減量は全て
15%以下であり、平均は13.9%であつた。ま
た、酸化度は61%であつた。ちなみに、従来法
である有機汚泥を直接湿式酸化処理する方法に
よつて酸化温度210℃、反応圧力70Kg/cm2の条件
で処理を行なうと、灰査中の熱しやく減量は28
%となつた。従来方法によつて廃棄物の投棄許
容基準である15%以下にするためには、酸化温
度を250℃にしなければならないので、熱しや
く減量を15%以下にできる本発明の処理方法を
用いることにより、消費エネルギーの節約が可
能であることが分かる。 実験例 5 (5) 消化脱離液の性状 前述したように、本発明は、汚泥処理工程に
おいて湿式酸化分離液を嫌気性消化処理工程に
送ることによつて、酸化分離液中の有機物質濃
度を減少させ、これを処理する設備への負荷を
小さく出来るという特徴を有する。したがつ
て、ここでは、本処理工程から発生する消化脱
離液と、有機汚泥の湿式酸化分離液(温度260
℃、圧力90Kg/cm2での処理による)との性状を
第4表に示した。
[Table] From Table 3 and Figure 5, in the anaerobic digestion treatment of the method of the present invention, the SS of organic sludge flowing into the anaerobic digestion tank is Only under operating conditions with a concentration of 2% or higher, we can obtain a VSS removal rate equivalent to that of the conventional anaerobic digestion treatment of organic sludge with an oxidizing liquid mixing ratio of 0:1, and furthermore, the amount of digestion gas generated is lower than that of the conventional method. It turns out that it can be increased. Experimental example 4 (4) Regarding wet oxidation treatment In the above experimental example, the oxidation temperature of the wet oxidation treatment was set at 210℃ and the reaction pressure was set at 70Kg/cm 2 , and the oxidation slurry after wet oxidation obtained during the experiment period was As a result of analyzing the ash examination of
It was less than 15%, and the average was 13.9%. Further, the degree of oxidation was 61%. By the way, when organic sludge is directly wet oxidized using the conventional method at an oxidation temperature of 210℃ and a reaction pressure of 70Kg/ cm2 , the heat loss during ash inspection is 28%.
%. In order to reduce waste to 15% or less, which is the acceptable standard for waste disposal, using conventional methods, the oxidation temperature must be set to 250°C. Therefore, the treatment method of the present invention, which can be heated quickly and reduce the weight loss to 15% or less, should be used. It can be seen that it is possible to save energy consumption. Experimental Example 5 (5) Properties of Digested and Desorbed Liquid As mentioned above, the present invention reduces the concentration of organic substances in the oxidized separated liquid by sending the wet oxidized separated liquid to the anaerobic digestion process in the sludge treatment process. It has the characteristic that it can reduce the load on the equipment that processes it. Therefore, here, we will discuss the digestion desorption liquid generated from this treatment process and the wet oxidation separation liquid of organic sludge (temperature 260°C).
℃ and a pressure of 90 Kg/cm 2 ) and the properties are shown in Table 4.

【表】 第4表より分かるように、本発明の処理方法
を用いることによつて、酸化分離液中の高濃度
の有機物質を低減出来、これを処理する場合の
処理施設への有機物質負荷の低減が計れること
がわかる。 実験例 6 (6) 消化タンク、発電システムにおけるエネルギ
ー収支 前記実施例における嫌気性消化処理による消
化ガス発生熱量、加温熱量、発電量等を含めた
エネルギー収支について、実施例をもとに生下
水処理量100000ton/日規模の下水処理場にお
ける汚泥処理を仮定して試算すると、第6図に
示すようになる。この場合、消化ガスの発生熱
量を100%としてある。 上記実施例の処理方法によれば、湿式酸化分
離液(約70℃)の全量を嫌気性消化処理工程へ
戻すことにより、該工程への全投入汚泥の温度
を、年間を通じて30℃以上に保つことが可能と
なる。また、湿式酸化分離液を嫌気性消化処理
工程へ戻すだけでは37℃にならない場合にも、
消化温度(37℃)まで加温するに要する熱量と
消化タンクの放散熱量の合計加温熱量は最大
で、消化ガス発生熱量の20%で済む。したがつ
て発電システムを用いた排ガス回収熱量(40
%)で充分な熱量である。 また、余剰熱量の用途としては、湿式酸化処
理工程の始動時補助燃料と排ガス脱臭用燃料が
ある。 以上より、上記実施例では、重油等の補助燃料
を全く必要としないプロセスとする事も可能であ
る。なお、この100000ton/日の場合についての
試算で回収し得る電力量は500kwh/hとなり、
これは、一般の下水処理に要する総電力の約40%
に当る。 なお、本発明の汚泥の処理方法は、上記実施例
に限られるものではない。例えば、湿式酸化処理
工程14の前段では嫌気性消化処理以外の処理が
行われても良い。また、上記実施例では、消化汚
泥濃縮工程の濃縮比を調整して、酸化分離液と有
機汚泥の混合比を所定値に維持することとした
が、この混合比の維持は他の手段によつて行うこ
ともできる。 「発明の効果」 以上、説明したように本発明の汚泥の処理方法
では、湿式酸化処理工程で高酸化処理を行い、こ
こから発生する酸化分離液をSS濃度2.0%以上の
有機汚泥と0.8:1以下の範囲で混合して嫌気性
消化処理工程に導き、この嫌気性消化処理工程の
CODcr負荷を2.0〜5.7Kg/m3日の範囲に維持して
運転するので、次の利点を有する。 従来、廃水処理工程に返送される等の方法で
処理されていた、高酸化処理の湿式酸化分離液
を、嫌気性消化処理工程で処理出来るから、廃
水処理工程の負荷を低減できる。しかも発生消
化ガスの増加が図れる。また湿式酸化処理後の
灰査は、そのまま投棄できる。 湿式酸化処理工程が高酸化で行われるため、
湿式酸化が自燃出来、スタートアツプ以外外部
より加熱エネルギーを加える必要がない。ま
た、湿式酸化処理により生成する酸化分離液
(65〜70℃)のもつ熱的エネルギーを嫌気性消
化処理工程の加温用エネルギーとして利用出
来、更には消化ガスを他の用途に有効利用出
来、きわめて省資源、省エネルギーのプロセス
を可能とすることが出来る。 特に、嫌気性消化処理工程からの消化汚泥を
湿式酸化処理工程で処理し、その酸化分離液を
上記嫌気性消化処理工程に返送するものにおい
ては、酸化分離液の全量を嫌気性消化処理工程
に返送出来て、下水処理設備等から排出される
有機汚泥を省エネルギー型の2次公害のないう
えに汚泥処理液の負荷の少ない効果的な処理が
出来る。
[Table] As can be seen from Table 4, by using the treatment method of the present invention, the high concentration of organic substances in the oxidized separation liquid can be reduced, and when this is treated, the organic substance load on the treatment facility is reduced. It can be seen that the reduction can be measured. Experimental example 6 (6) Energy balance in the digestion tank and power generation system Regarding the energy balance including the amount of heat generated by the anaerobic digestion process in the above example, the amount of heating heat, the amount of power generated, etc. A trial calculation assuming sludge treatment at a sewage treatment plant with a treatment capacity of 100,000 tons/day is shown in Figure 6. In this case, the amount of heat generated by the digestion gas is assumed to be 100%. According to the treatment method in the above example, by returning the entire amount of the wet oxidation separation liquid (approximately 70°C) to the anaerobic digestion process, the temperature of all the sludge input to the process is maintained at 30°C or higher throughout the year. becomes possible. In addition, if the temperature does not reach 37℃ simply by returning the wet oxidation separated liquid to the anaerobic digestion process,
The maximum amount of heat required to heat the gas to the digestion temperature (37°C) and the amount of heat dissipated from the digestion tank is 20% of the amount of heat generated from the digester gas. Therefore, the amount of heat recovered from exhaust gas using the power generation system (40
%) is a sufficient amount of heat. Additionally, the surplus heat can be used as an auxiliary fuel for starting the wet oxidation process and as a fuel for exhaust gas deodorization. From the above, in the above embodiment, it is also possible to create a process that does not require any auxiliary fuel such as heavy oil. In addition, the amount of electricity that can be recovered in the trial calculation for this case of 100,000 tons/day is 500 kwh/h,
This is approximately 40% of the total electricity required for general sewage treatment.
corresponds to Note that the sludge treatment method of the present invention is not limited to the above embodiments. For example, a process other than the anaerobic digestion process may be performed before the wet oxidation process 14. In addition, in the above example, the concentration ratio in the digested sludge concentration step was adjusted to maintain the mixing ratio of the oxidized separated liquid and organic sludge at a predetermined value, but this mixing ratio could be maintained by other means. You can also do it by hanging. "Effects of the Invention" As explained above, in the sludge treatment method of the present invention, high oxidation treatment is performed in the wet oxidation treatment step, and the oxidized separated liquid generated from this is mixed with organic sludge with an SS concentration of 2.0% or more. 1 or less and lead to the anaerobic digestion process.
Since the CODcr load is maintained within the range of 2.0 to 5.7Kg/m for 3 days during operation, it has the following advantages. The highly oxidized wet oxidation separated liquid, which was conventionally treated by returning it to the wastewater treatment process, can be treated in the anaerobic digestion process, so the load on the wastewater treatment process can be reduced. Furthermore, the amount of digestive gas generated can be increased. In addition, the ash after wet oxidation treatment can be thrown away as is. Because the wet oxidation process is performed at high oxidation,
Wet oxidation can self-combust, and there is no need to add heating energy from outside except for startup. In addition, the thermal energy of the oxidized separated liquid (65 to 70°C) produced by wet oxidation treatment can be used as heating energy in the anaerobic digestion treatment process, and furthermore, the digestion gas can be used effectively for other purposes. It is possible to achieve extremely resource-saving and energy-saving processes. In particular, when the digested sludge from the anaerobic digestion process is treated in the wet oxidation process and the oxidized separated liquid is returned to the anaerobic digestion process, the entire amount of the oxidized separated liquid is sent to the anaerobic digestion process. The organic sludge discharged from sewage treatment equipment can be effectively treated in an energy-saving manner without secondary pollution and with less load on the sludge treatment solution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の汚泥処理方法を示す工程図、
第2図は、本発明による汚泥処理方法を示す工程
図、第3図は、実験例1で得られた消化ガス発生
量と混合比の関係を示すグラフ、第4図は実験例
2で得られたV.S.S.除去率とCODcr負荷の関係を
示すグラフ、第5図は実験例3で得られたV.S.S.
除去率とSS濃度の関係を示すグラフ、第6図は、
実施例の汚泥処理方法について試算したエネルギ
ー収支を示すグラフである。 10…下水処理工程、11…汚泥濃縮工程、1
2…嫌気性消化処理工程、13…消化汚泥濃縮工
程、14…湿式酸化処理工程、15…ガスホルダ
ー、16…ガスエンジン、17…排ガスボイラ
ー。
Figure 1 is a process diagram showing a conventional sludge treatment method;
Fig. 2 is a process diagram showing the sludge treatment method according to the present invention, Fig. 3 is a graph showing the relationship between the amount of digestive gas generated and the mixing ratio obtained in Experimental Example 1, and Fig. 4 is a graph showing the relationship between the amount of digestion gas generated and the mixing ratio obtained in Experimental Example 2. A graph showing the relationship between the obtained VSS removal rate and CODcr load, Figure 5 shows the VSS obtained in Experimental Example 3.
The graph showing the relationship between removal rate and SS concentration, Figure 6, is
It is a graph showing the energy balance estimated for the sludge treatment method of the example. 10... Sewage treatment process, 11... Sludge concentration process, 1
2... Anaerobic digestion process, 13... Digested sludge concentration process, 14... Wet oxidation process, 15... Gas holder, 16... Gas engine, 17... Exhaust gas boiler.

Claims (1)

【特許請求の範囲】 1 湿式酸化処理工程と、有機汚泥を消化処理す
る嫌気性消化処理工程とを有すると共に、前記湿
式酸化処理工程から排出される酸化分離液を前記
嫌気性消化処理工程で処理する汚泥処理方法にお
いて、 前記湿式酸化処理工程で灰査中の熱しやく減量
を15%以下とする高酸化処理を行い、前記有機汚
泥のSS(懸濁物質)濃度を2.0%以上とし、前記嫌
気性消化処理工程に導入される酸化分離液量を前
記有機汚泥との容量混合比で0.8:1以下の範囲
に維持し、同時に前記嫌気性消化処理工程におけ
るCODcr(重クロム酸カリウムによる酸素消費
量)負荷を2.0〜5.7Kg/m3日の範囲に維持して運
転することを特徴とする汚泥の処理方法。
[Claims] 1. A wet oxidation treatment step and an anaerobic digestion treatment step for digesting organic sludge, and an oxidized separated liquid discharged from the wet oxidation treatment step is treated in the anaerobic digestion treatment step. In the sludge treatment method, a high oxidation treatment is performed in the wet oxidation treatment step to reduce the heat loss during ash inspection to 15% or less, the SS (suspended solids) concentration of the organic sludge is set to 2.0% or more, and the anaerobic sludge is The amount of oxidized separated liquid introduced into the anaerobic digestion process is maintained at a volume mixing ratio of 0.8:1 or less with the organic sludge, and at the same time CODcr (oxygen consumption by potassium dichromate) in the anaerobic digestion process is ) A sludge treatment method characterized by operating while maintaining the load within the range of 2.0 to 5.7 Kg/m for 3 days.
JP56098824A 1981-06-25 1981-06-25 Treatment of sludge Granted JPS58300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56098824A JPS58300A (en) 1981-06-25 1981-06-25 Treatment of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56098824A JPS58300A (en) 1981-06-25 1981-06-25 Treatment of sludge

Publications (2)

Publication Number Publication Date
JPS58300A JPS58300A (en) 1983-01-05
JPS6349560B2 true JPS6349560B2 (en) 1988-10-05

Family

ID=14230041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56098824A Granted JPS58300A (en) 1981-06-25 1981-06-25 Treatment of sludge

Country Status (1)

Country Link
JP (1) JPS58300A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129520A (en) * 1999-11-09 2001-05-15 Niigata Eng Co Ltd Method for treating organic waste
JP2005052692A (en) * 2003-08-04 2005-03-03 Kangen Yoyu Gijutsu Kenkyusho:Kk Processing system and processing method for using biomass resource effectively
JP2006110509A (en) * 2004-10-18 2006-04-27 Ngk Insulators Ltd Method for treating organic waste
JP2016028800A (en) * 2014-07-25 2016-03-03 国立大学法人豊橋技術科学大学 Method and system for treating organic matter containing waste

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136196A (en) * 1983-01-26 1984-08-04 Takuma Sogo Kenkyusho:Kk Sludge treatment
FR2786763A1 (en) * 1998-12-04 2000-06-09 Omnium Traitement Valorisa Treatment of excess sludge coming from biological purification process includes digestion step and wet oxidation step
JP4600921B2 (en) * 2004-11-17 2010-12-22 荏原エンジニアリングサービス株式会社 Organic waste treatment method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581794A (en) * 1978-12-15 1980-06-20 Toyo Eng Corp Recovery method for methane gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581794A (en) * 1978-12-15 1980-06-20 Toyo Eng Corp Recovery method for methane gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001129520A (en) * 1999-11-09 2001-05-15 Niigata Eng Co Ltd Method for treating organic waste
JP2005052692A (en) * 2003-08-04 2005-03-03 Kangen Yoyu Gijutsu Kenkyusho:Kk Processing system and processing method for using biomass resource effectively
JP2006110509A (en) * 2004-10-18 2006-04-27 Ngk Insulators Ltd Method for treating organic waste
JP4686163B2 (en) * 2004-10-18 2011-05-18 メタウォーター株式会社 Organic waste treatment methods
JP2016028800A (en) * 2014-07-25 2016-03-03 国立大学法人豊橋技術科学大学 Method and system for treating organic matter containing waste

Also Published As

Publication number Publication date
JPS58300A (en) 1983-01-05

Similar Documents

Publication Publication Date Title
JP4724032B2 (en) Organic waste treatment system
CN106746468B (en) Sludge treatment system and treatment process
CN105859105A (en) Sludge treatment and recycling method
CN111282962B (en) Method for co-processing organic solid waste and kitchen waste
KR101847082B1 (en) Recycling apparatus of organic waste and, its recycling method
JP3662528B2 (en) Organic waste treatment method and apparatus
JP2008212860A (en) Waste disposal facility
JPS6349560B2 (en)
JP2020157261A (en) Organic sludge treatment method and treatment apparatus
JP5020490B2 (en) Organic sludge treatment method and organic sludge treatment equipment
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
JP4409928B2 (en) Organic waste treatment methods
JP2006281074A (en) Organic sludge treatment method
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
WO2014086278A1 (en) Heat recycling method and system for energy in eutrophicated water biomass
JP2003117526A (en) Biogasification treating method for organic waste
JP4231739B2 (en) Sludge recycling method
JP3958504B2 (en) Sludge volume reduction treatment system and treatment apparatus
TW202237537A (en) Hydrothermal treatment system
JPS59160597A (en) Process for disposing night soil
JPS6325839B2 (en)
JPS6038099A (en) Treatment of organic waste material
JPS59123600A (en) Treatment of organic hydrous material
JP7330351B1 (en) Operation method of biogas utilization equipment and biogas utilization equipment
JPS58114800A (en) Treatment for sludge