JPH0299841A - Eccentricity measuring apparatus for lens system - Google Patents

Eccentricity measuring apparatus for lens system

Info

Publication number
JPH0299841A
JPH0299841A JP63253231A JP25323188A JPH0299841A JP H0299841 A JPH0299841 A JP H0299841A JP 63253231 A JP63253231 A JP 63253231A JP 25323188 A JP25323188 A JP 25323188A JP H0299841 A JPH0299841 A JP H0299841A
Authority
JP
Japan
Prior art keywords
lens
image
measured
measurement
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63253231A
Other languages
Japanese (ja)
Other versions
JP2621119B2 (en
Inventor
Susumu Ariga
進 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63253231A priority Critical patent/JP2621119B2/en
Priority to KR1019890014342A priority patent/KR920009802B1/en
Publication of JPH0299841A publication Critical patent/JPH0299841A/en
Application granted granted Critical
Publication of JP2621119B2 publication Critical patent/JP2621119B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Abstract

PURPOSE:To enable complete correction of misalignment of a collimator lens for measurement by determining a deflection of a reflection image from a lens system to be measured with respect to a reference axis. CONSTITUTION:A measuring apparatus 1 is made up of a light source 2, a capacitor lens 3, an indicator 4, a semipermeable mirror 5, a collimator lens 6 for measurement, a lens system 7 to be measured, an imaging surface 8, a semipermeable mirror 9 composing an optical system for setting axis, an image rotator 10, a collimator lens 11 and a reflecting mirror 12. In measurement, the light source 2 and the collimator lens 6 for measurement are adjusted to project the indicator 4 on a surface to be measured of the lens system 7 to be measured. Then, coordinates are determined for a reflection image of the indicator 4 on the imaging surface 8 while the image rotator 10 is turned to adjust the light source 2 and the collimator lens 11 so that the reflection image of the indicator 4 is projected on an image 8 formed to determine coordinates of the center of rotation. Then, a deflection is determined from a coordinate difference therebetween. This enables complete correction of misalignment of the collimator lens for measurement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レンズ系の偏心測定装置に係り、特に、被測
定レンズ系がズームレンズのようにエレメント数が多く
、かつ内部に移動部分を有するレンズ系の偏心測定装置
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an apparatus for measuring eccentricity of a lens system, and particularly when the lens system to be measured has a large number of elements, such as a zoom lens, and has a moving part inside. The present invention relates to an eccentricity measuring device for a lens system.

〔従来の技術〕[Conventional technology]

従来、一般的なレンズ系の偏心測定方法としてはオート
コリメーション法が採用されている。このオートコリメ
ーション法は、第4図aにて示すごとく、レンズ系を構
成する各レンズ面S、、Sz、Ss、S4のうち、測定
しようとする面、例えば面SIの見かけの曲率中心、即
ち、被測定面と観察系との間に存在する別の面によって
生ずる被測定面の虚像の曲率中心の位1iAに、オート
コリメーションによって指標11を投影し、面Sによる
等倍の反射像!2をAと同じ位置に生じさせる方式であ
る。このとき、測定の基準軸Bに関して全ての面に偏心
がなければ、この基準軸B上に指標像11の反射像■2
が形成されるが、もし何れかの面に偏心が存在すれば、
基準軸Bと直交し図面の紙面に平行なY方向にΔY、或
いは紙面と直交するZ方向にΔZだけふれた位置に反射
像I2が形成されることになる。このふれ量ΔY及びΔ
Z(以下略してΔとする)は個々の面の偏心量εに比例
するので、各面についてその見かけの曲率中心位置に投
影した指標像■1のこのようなふれ量Δの測定値を得れ
ば、計算によってこの測定基準軸已に対する各面の偏心
量εを求めることができるのである。
Conventionally, an autocollimation method has been adopted as a general method for measuring eccentricity of a lens system. As shown in FIG. 4a, this autocollimation method is based on the apparent center of curvature of the surface to be measured, for example, the surface SI, among the lens surfaces S, Sz, Ss, and S4 constituting the lens system. , the index 11 is projected by autocollimation onto the center of curvature of the virtual image of the surface to be measured created by another surface existing between the surface to be measured and the observation system 1iA, and a reflection image of the same size by the surface S! This is a method in which 2 is generated at the same position as A. At this time, if there is no eccentricity on all surfaces with respect to the measurement reference axis B, the reflected image 2 of the index image 11 will be on this reference axis B.
is formed, but if there is eccentricity on either side,
The reflected image I2 is formed at a position shifted by ΔY in the Y direction perpendicular to the reference axis B and parallel to the paper surface of the drawing, or by ΔZ in the Z direction perpendicular to the paper surface. This amount of deflection ΔY and Δ
Since Z (hereinafter abbreviated as Δ) is proportional to the eccentricity ε of each surface, we can obtain the measured value of the amount of deflection Δ of the index image ■1 projected onto the apparent center of curvature of each surface. Then, the amount of eccentricity ε of each surface with respect to this measurement reference axis length can be determined by calculation.

このオートコリメーション方式には、第4図すにて示す
ごときレンズ回転法や、特公昭51−9620号公報に
開示されているごときイメージローテータを応用したレ
ンズ静止方式(第4図C参照)等がある。
This autocollimation method includes a lens rotation method as shown in FIG. be.

レンズ回転法は、第4図すにて示すように、軸Bに沿っ
て光源S、コンデンサーレンズCにより、指標Iを被測
定レンズ系りの各レンズ面S、、52=3 ・・・、・
・の予め定められた曲率中心位置に順次投影し、この指
標Iを半透鏡H,コリメーターレンズKを介して被測定
レンズ系りの該当レンズ面で反射させて等倍の反射像I
2を形成し、被測定レンズ系りを基準軸Bを中心に回転
させながら、反射像r2を半透鏡I(により側方に反射
し結像面Fに反射像I2を結像させ、接眼レンズEで、
観察し、ふれ量ΔY、ΔZを求める方法である。
As shown in FIG. 4, the lens rotation method uses a light source S and a condenser lens C along an axis B to move an index I to each lens surface S of the lens system to be measured, 52=3...・
The index I is sequentially projected onto the predetermined curvature center position of
2, and while rotating the lens system to be measured around the reference axis B, the reflected image r2 is reflected laterally by the semi-transparent mirror I (to form the reflected image I2 on the imaging plane F, and At E,
This is a method of observing and determining the amounts of deflection ΔY and ΔZ.

又、特公昭5m−9620号公報に開示された技術は、
基準軸Bに沿って、光源S、コンデンサーレンズCによ
り、指標■を被測定レンズ系りの各レンズ面S+ 、S
Z、33・・・・・・の予め定められ曲率中心位置に順
次投影し、この指標■を半透鏡H,コリメークレンズK
を介して被測定レンズ系りの該当レンズ面で反射させ等
倍の反射像I2を形成させ、コリメータレンズにと被測
定レンズ系りの間に、半透鏡H′を斜設するとともに、
基準軸設定用光学系として、光源S′、コンデンサーレ
ンズC′、指標I0.コリメーターレンズに′ イメー
ジローテータRを配設して構成したものである。かかる
構成によれば、光学系の光源S′、コンデンサーレンズ
Cにより、指標1°を結像面Fに、コリメーターレンズ
に′、イメージローテークR5半透鏡■2と指標10の
像1’0を観察し、像■0□の中心から反射像I2との
座標差をとり、ふれ量ΔY、ΔZを求めることができる
ものである。
In addition, the technology disclosed in Japanese Patent Publication No. 5m-9620 is
Along the reference axis B, the index ■ is set to each lens surface S+, S of the lens system to be measured using the light source S and the condenser lens C.
Z, 33, etc. are sequentially projected onto the predetermined center of curvature position, and this index
is reflected on the corresponding lens surface of the lens system to be measured to form a reflected image I2 of equal magnification, and a semi-transparent mirror H' is obliquely installed between the collimator lens and the lens system to be measured,
The reference axis setting optical system includes a light source S', a condenser lens C', and an index I0. It is constructed by disposing an image rotator R on a collimator lens. According to this configuration, the light source S' of the optical system and the condenser lens C set the index 1° on the imaging plane F, the collimator lens ', the image low take R5 semi-transparent mirror 2, and the image 1'0 of the index 10. , and take the coordinate difference between the center of the image 0□ and the reflected image I2 to determine the amounts of deflection ΔY and ΔZ.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来技術においてはそれぞれ次のよ
うな問題点があり、レンズ系の偏心量測定手段としては
満足できるものではなかった。
However, each of the above conventional techniques has the following problems and is not satisfactory as a means for measuring the amount of eccentricity of a lens system.

まず、第4図すにて示すごとき回転法においては、被測
定レンズ系りがズームレンズのように内部に移動部分を
有する場合には、この移動部分のガタによる影響のため
に被測定レンズが横向(カメラレンズにおいては指標位
置)の場合には偏心量を測定できないという欠点を存し
、そのために被測定レンズを縦方向でしか測定できない
という問題点があった。
First, in the rotation method shown in Figure 4, if the lens system to be measured has an internal moving part, such as a zoom lens, the lens to be measured will be affected by the backlash of this moving part. There is a drawback that the amount of eccentricity cannot be measured in the horizontal direction (at the index position in the case of a camera lens), and as a result, the lens to be measured can only be measured in the vertical direction.

又、イメージローテータを応用したレンズ静止方式(第
4図C参照)においては、イメージローテータRによる
基準軸は、測定用コリメーターレンズにのアライメント
ずれの変化分を完全に補正できないという欠点がある。
Furthermore, in the lens stationary system using an image rotator (see FIG. 4C), there is a drawback that the reference axis provided by the image rotator R cannot completely correct changes in alignment deviation of the measurement collimator lens.

何故ならば、測定用コリメーターレンズにの光路往復の
アライメントずれΔに対して、帰り分しか補正しない(
672分)ためである。そのために、測定用コリメータ
ーレンズにの交換、移動、調整に対して基準軸設定用光
学系の調整が必要となり、作業性2作業効率が著しく悪
くなり、しかも測定誤差が生し易くなるという問題点が
あった。
This is because only the return misalignment Δ of the optical path to the measurement collimator lens is corrected (
672 minutes). Therefore, it is necessary to adjust the optical system for setting the reference axis in order to replace, move, and adjust the collimator lens for measurement, which significantly reduces work efficiency and also increases the possibility of measurement errors. There was a point.

本発明は、上記従来技術の問題点に鑑みなされたもので
あって、第4図Cにて示す構成を改良することにより上
記従来の問題点を解決したレンズ系の偏心測定装置を提
供することを目的とする。
The present invention has been made in view of the problems of the prior art, and provides a lens system eccentricity measuring device that solves the problems of the prior art by improving the configuration shown in FIG. 4C. With the goal.

〔課題を解決するための手段] 第1図は、本発明に係るレンズ系の偏心測定装置1の基
本構成(概念図)を示す説明図である。
[Means for Solving the Problems] FIG. 1 is an explanatory diagram showing the basic configuration (conceptual diagram) of a lens system eccentricity measuring device 1 according to the present invention.

図に示すように偏心測定装置1は、光源2.コンデンサ
ーレンズ3.指標4.半透鏡5.測定用コリメーターレ
ンズ6、被測定レンズ系7.結像面8と、軸設定用光学
系を構成する半透鏡9.イメージローテータ10 コリ
メーターレンズ11゜反射鏡12とより構成しである。
As shown in the figure, the eccentricity measuring device 1 includes a light source 2. Condenser lens 3. Indicator 4. Semi-transparent mirror 5. Collimator lens for measurement 6, lens system to be measured 7. An imaging plane 8 and a semi-transparent mirror 9 constituting an optical system for setting the axis. It consists of an image rotator 10, a collimator lens 11, and a reflecting mirror 12.

(作 用〕 上記構成においては、測定に際し、光R2と、測定用コ
リメーターレンズ6を調整して指標4を被測定レンズ系
7の被測定面に投影し、結像面8での指標4の反射像の
座標を求めるとともに、イメージローテーク10を回転
して光源2.コリメーターレンズ11を調整し、結像8
に指標4の反射像を映してその回転中心の座標を求め、
この両者の座標差から「ふれ量(偏心量)」が求められ
る。
(Function) In the above configuration, during measurement, the light R2 and the measuring collimator lens 6 are adjusted to project the index 4 onto the surface to be measured of the lens system 7 to be measured, and the index 4 on the imaging plane 8 is projected. At the same time as determining the coordinates of the reflected image of
Project the reflected image of index 4 on the image and find the coordinates of its center of rotation,
The "amount of deflection (amount of eccentricity)" is determined from the coordinate difference between the two.

〔実施例〕〔Example〕

以下、図面を用いて本発明の1実施例について詳細に説
明する。なお、以下の説明において、第1図にて示した
各構成部に対応する構成部には、その構成の理解を容易
にするために同一符号を付するものとする。
Hereinafter, one embodiment of the present invention will be described in detail using the drawings. In the following description, components corresponding to those shown in FIG. 1 will be given the same reference numerals to facilitate understanding of the configuration.

(第1実施例) 第2図は、本発明に係るレンズ系の偏心測定装置1の第
1実施例を示す構成説明図である。
(First Embodiment) FIG. 2 is a configuration explanatory diagram showing a first embodiment of the lens system eccentricity measuring device 1 according to the present invention.

図において2で示すのは、被測定レンズ系7に指標を投
影するための光源としての半導体レーザで、本実施例に
おいては、測定に際して十分な反射像を得るために赤外
半導体レーザを用いている。
In the figure, 2 indicates a semiconductor laser as a light source for projecting an index onto the lens system 7 to be measured.In this embodiment, an infrared semiconductor laser is used to obtain a sufficient reflected image during measurement. There is.

3で示すのは半導体レーザ2の集光スポントを補正する
ためのコンデンサーレンズ、5で示すのは半導体レーザ
2の偏光特性を用いて被測定レンズ系(固定しである)
7からの反射像を、指標像拡大用の対物レンズ20.測
定用テレビカメラ(観察光学系)21よりなる結像面部
8方向に反射するためのビームスプリッタ−(片面赤外
反射防止)、5aで示すのはビームスプリンター5から
の直線偏光の射出光を円偏光にするためのλ/4板、6
で示すのは測定用コリメーターレンズで、矢印方向に移
動調節自在の構成となっている。9で示すのは光路をミ
ラー12側に切り換えるためのペリクルビームスプリッ
タ−(片面赤外反射防止)で、収差の影響をできるだけ
少なくする機能を有する。22で示すのは被測定レンズ
系7からの反射光を遮るためのシャ・ツタ−123で示
すのはミラー12側からの反射光を遮るためのシャッタ
ー、24で示すのは光量調整のための絞りである。10
で示すのは、基準軸設定用コリメーターレンズ11、ミ
ラー12のアライメントを一定に保つためのイメージロ
ーテーク、11で示すのはミラー12からの反射像をテ
レビカメラ21側に結像させるための基準軸設定用コリ
メーターレンズ、12は指標を反射するためのミラーで
ある。
3 is a condenser lens for correcting the condensing spot of the semiconductor laser 2, and 5 is a lens system to be measured (fixed) using the polarization characteristics of the semiconductor laser 2.
The reflected image from 7 is transferred to an objective lens 20 for enlarging the target image. A beam splitter (single-sided anti-infrared reflection) for reflecting in the imaging plane 8 direction of the measurement television camera (observation optical system) 21, denoted by 5a, circularly converts the linearly polarized light emitted from the beam splitter 5 into λ/4 plate for polarization, 6
The collimator lens for measurement is shown with a structure that can be moved and adjusted in the direction of the arrow. Reference numeral 9 denotes a pellicle beam splitter (single-sided infrared reflection prevention) for switching the optical path to the mirror 12 side, and has a function of minimizing the influence of aberrations. Reference numeral 22 indicates a shutter for blocking the reflected light from the lens system 7 to be measured. Reference numeral 123 indicates a shutter for blocking the reflected light from the mirror 12 side. Reference numeral 24 indicates a shutter for blocking the reflected light from the mirror 12 side. It's an aperture. 10
11 indicates a collimator lens 11 for setting the reference axis, and an image low-take for keeping the alignment of the mirror 12 constant. A reference axis setting collimator lens 12 is a mirror for reflecting the index.

測定用コリメーターレンズ6及び基準軸設定用コリメー
ターレンズ11は、広い投影能力を有し、かつ操作性を
良くするために1群は凹凸交換でき、2群で調整できる
ように設定しである。
The measurement collimator lens 6 and the reference axis setting collimator lens 11 have a wide projection capability, and are designed so that the first group can be replaced with convex and convex portions and the second group can be adjusted to improve operability. .

次に、上記構成に基づき被測定レンズ系7における被測
定レンズの被測定面のふれ量(偏心量)を測定する作用
について説明する。
Next, the operation of measuring the amount of deflection (amount of eccentricity) of the surface to be measured of the lens to be measured in the lens system to be measured 7 based on the above configuration will be explained.

まず、基準軸設定用光学系側のシャッター23を閉じた
状態で半導体レーザ2から光を出射させ、測定用コリメ
ーターレンズ6を調整し、被測定レンズ系7内の被測定
レンズに指標(点像)を投影する。又、ペリクルビーム
スプリンター9からの反射像をテレビカメラ21に映し
出してその反射像の座標位置を求める。
First, with the shutter 23 on the reference axis setting optical system side closed, light is emitted from the semiconductor laser 2, the measurement collimator lens 6 is adjusted, and an index (point) is placed on the lens to be measured in the lens system 7 to be measured. image). Further, the reflected image from the pellicle beam splinter 9 is projected onto the television camera 21 to determine the coordinate position of the reflected image.

次に、シャッター22を閉じるとともにシャッター23
を開作動させ、イメージローテーク10を回転して基準
軸設定用コリメーターレンズ11を調整し、テレビカメ
ラ21に反射像を映し出す。
Next, the shutter 22 is closed and the shutter 23 is closed.
is opened, the image low take 10 is rotated, the reference axis setting collimator lens 11 is adjusted, and a reflected image is projected onto the television camera 21.

この際、絞り24を介して光量を調整する。そして、こ
のテレビカメラ21の反射像(回転像)の中心座標位置
を求める。このようにして求めた反射像(回転像)の中
心座標位置と、前述のシャ・7ター23を閉じて求めた
反射像の座標位置との差を求めることにより、基準軸設
定用光学系により設定される基準軸に対する指標像のふ
れ量ΔY。
At this time, the amount of light is adjusted via the aperture 24. Then, the central coordinate position of the reflected image (rotated image) of this television camera 21 is determined. By determining the difference between the center coordinate position of the reflected image (rotated image) thus obtained and the coordinate position of the reflected image obtained by closing the shutter 23 described above, the reference axis setting optical system The amount of deviation ΔY of the index image with respect to the set reference axis.

ΔZを求め、これによりレンズ系7の偏心量を測定する
ΔZ is determined, and the amount of eccentricity of the lens system 7 is measured.

特に、本実施例の偏心測定装置1によれば、従来技術、
特に第4図Cにて示す従来技術に比して測定用コリメー
ターレンズ6のアライメントずれを完全に補正できる利
点があり、このことから、測定用コリメーターレンズ6
の交換、移動、調整に対して基準軸設定用光学系の調整
が不必要となり、作業性の向上、測定精度の大幅な向上
が図れる。又、イメージローテークlOを用いているの
で、基準軸設定用光学系のコリメーターレンズ11の交
換、移動による影響を相殺できる利点がある。
In particular, according to the eccentricity measuring device 1 of this embodiment, the conventional technology,
In particular, compared to the prior art shown in FIG.
There is no need to adjust the optical system for setting the reference axis when replacing, moving, and adjusting the reference axis, and work efficiency and measurement accuracy can be greatly improved. Furthermore, since the image low take lO is used, there is an advantage that the influence of exchanging or moving the collimator lens 11 of the optical system for setting the reference axis can be offset.

(第2実施例) 第3図に本発明に係る偏心測定装置1の第2実施例を示
す。本実施例の特徴は、第2図にて示す第1実施例の構
成において、シャッター22゜23を取り除くとともに
、測定用テレビカメラ21を画像処理装置30及び画像
観察用モニター31と接続して構成した点である。画像
処理装置30は、測定用テレビカメラ21にて得られた
画像を処理するためのもので、加算処理機能と重心検出
機能とを有しており、イメージローテークlOの1回転
について8枚の画像をとって加算処理し、9点の重心を
検出することによりふれ量ΔY、ΔZを求めることがで
きるように設定構成しである。その他の構成は第1実施
例と同様であるので、第2図にて示した構成部と同様の
構成部には同一符号を付してその説明を省略する。
(Second Embodiment) FIG. 3 shows a second embodiment of the eccentricity measuring device 1 according to the present invention. The feature of this embodiment is that the shutters 22 and 23 are removed from the configuration of the first embodiment shown in FIG. 2, and the measurement television camera 21 is connected to an image processing device 30 and an image observation monitor 31. This is the point. The image processing device 30 is for processing images obtained by the measurement television camera 21, and has an addition processing function and a center of gravity detection function, and processes eight images per rotation of the image low take lO. The configuration is such that the amounts of deflection ΔY and ΔZ can be determined by taking images, performing addition processing, and detecting the centers of gravity at nine points. Since the other configurations are the same as those of the first embodiment, the same reference numerals are given to the same components as those shown in FIG. 2, and the explanation thereof will be omitted.

本実施例の作用は、第1実施例とほぼ同様である。即ち
、まず、半導体レーザ2から光を出射させ、測定用コリ
メーターレンズ6を調整し、被測定レンズ系7内の被測
定レンズに指標(点像)を投影し、テレビカメラ21に
反射像を映し出す。
The operation of this embodiment is almost the same as that of the first embodiment. That is, first, light is emitted from the semiconductor laser 2, the measurement collimator lens 6 is adjusted, an index (point image) is projected onto the lens to be measured in the lens system 7 to be measured, and a reflected image is projected onto the television camera 21. Project.

次に、イメージローテーク10を回転し、コリメーター
レンズ11と絞り24を調整し、同様にテレビカメラ2
1に反射像(回転像)を映し出す。
Next, rotate the image low take 10, adjust the collimator lens 11 and the aperture 24, and similarly
A reflected image (rotated image) is projected on 1.

そして、イメージローテーク1回転について8枚の画像
をとって加算処理し、9点の重心を検出することにより
、ふれ量ΔY、ΔZを求めるものである。
Then, by taking eight images for one rotation of the image low-take and performing addition processing, and detecting the centers of gravity at nine points, the amounts of deflection ΔY and ΔZ are determined.

本実施例によれば、第1実施例における大型の2個のシ
ャッター22.23を不必要化できる利点がある。その
他の効果は、第1実施例同一であるのでその説明を省略
する。
According to this embodiment, there is an advantage that the two large shutters 22 and 23 in the first embodiment can be made unnecessary. Other effects are the same as those of the first embodiment, so their explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、測定用コリメーターレン
ズのアライメントずれを完全に補正することができ、測
定用コリメーターレンズの交換。
As described above, according to the present invention, it is possible to completely correct the misalignment of the measurement collimator lens, and the measurement collimator lens can be replaced.

移動、調整に対して、基準軸設定用光学系の調整不必要
となり、作業性1作業効率の向上、測定精度の向上が図
れる。
There is no need to adjust the reference axis setting optical system for movement and adjustment, and work efficiency and measurement accuracy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る装置の基本構成説明図、第2図
は、本発明に係る装置の第1実施例を示す構成説明図、 第3図は、本発明に係る装置の第2実施例を示す構成説
明図、 第4図a、b、cは、従来技術の説明図である。 2・・・光源 3・・・コンデンサーレンズ 4・・・指標 5・・・半透鏡 6・・・測定用コリメーターレンズ 7・・・被測定レンズ系 8・・・結像面 9・・・半透鏡 10・・・イメージローテーク 11・・・コリメーターレンズ 12・・・反射鏡
FIG. 1 is an explanatory diagram of the basic configuration of the apparatus according to the present invention, FIG. 2 is an explanatory diagram of the configuration of a first embodiment of the apparatus according to the present invention, and FIG. FIGS. 4A, 4B, and 4C are explanatory views of the prior art. 2... Light source 3... Condenser lens 4... Index 5... Semi-transparent mirror 6... Collimator lens for measurement 7... Lens system to be measured 8... Imaging surface 9... Semi-transparent mirror 10...Image low take 11...Collimator lens 12...Reflector

Claims (1)

【特許請求の範囲】 被測定レンズ系の予め計算された位置に指標像を投影し
、レンズ系内の被測定面による反射像の基準軸からのふ
れ量を観察光学系を用いて測定し、計算により各レンズ
面の偏心量を求めるように構成してなるレンズ系の偏心
測定装置において、 被測定レンズを固定構成し、被測定レンズと測定用コリ
メーターレンズ系との間に、半透鏡、イメージローテー
タ、コリメーターレンズ、反射鏡よりなる基準軸設定用
光学系を配設するとともにその反射像の回転中心を基準
軸とし、被測定レンズ系からの反射像の前記基準軸に対
するふれ量を求めることにより偏心量を測定しうるよう
に構成したことを特徴とするレンズ系の偏心測定装置。
[Scope of Claims] Projecting an index image onto a pre-calculated position of a lens system to be measured, and measuring the amount of deflection from a reference axis of an image reflected by a surface to be measured in the lens system using an observation optical system, In a lens system eccentricity measuring device configured to calculate the eccentricity of each lens surface, the lens to be measured is fixed and a semi-transparent mirror, An optical system for setting a reference axis consisting of an image rotator, a collimator lens, and a reflecting mirror is provided, and the center of rotation of the reflected image is set as the reference axis, and the amount of deviation of the reflected image from the lens system to be measured with respect to the reference axis is determined. What is claimed is: 1. A lens system eccentricity measuring device, characterized in that it is configured to be able to measure an amount of eccentricity.
JP63253231A 1988-10-07 1988-10-07 Method and apparatus for measuring eccentricity of lens system Expired - Fee Related JP2621119B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63253231A JP2621119B2 (en) 1988-10-07 1988-10-07 Method and apparatus for measuring eccentricity of lens system
KR1019890014342A KR920009802B1 (en) 1988-10-07 1989-10-06 Eccentricity measuring apparatus for lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253231A JP2621119B2 (en) 1988-10-07 1988-10-07 Method and apparatus for measuring eccentricity of lens system

Publications (2)

Publication Number Publication Date
JPH0299841A true JPH0299841A (en) 1990-04-11
JP2621119B2 JP2621119B2 (en) 1997-06-18

Family

ID=17248394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253231A Expired - Fee Related JP2621119B2 (en) 1988-10-07 1988-10-07 Method and apparatus for measuring eccentricity of lens system

Country Status (2)

Country Link
JP (1) JP2621119B2 (en)
KR (1) KR920009802B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443936A (en) * 1990-06-08 1992-02-13 Olympus Optical Co Ltd Instrument and method for measuring eccentricity quantity of lens system
JPH0472539A (en) * 1990-07-13 1992-03-06 Olympus Optical Co Ltd Off-center measuring device for lens system
US5844670A (en) * 1995-07-28 1998-12-01 Ricoh Co., Ltd. Method of and systems for measuring eccentricity of an aspherical lens surface
US7511803B2 (en) 2004-05-28 2009-03-31 Canon Kabushiki Kaisha Method for displaying result of measurement of eccentricity
CN113203553A (en) * 2021-04-22 2021-08-03 西安工业大学 Lens center error measuring system and measuring method
CN114624010A (en) * 2022-05-16 2022-06-14 嘉兴中润光学科技股份有限公司 Eccentricity testing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4474150B2 (en) 2003-11-28 2010-06-02 キヤノン株式会社 Eccentricity measurement method
WO2022224344A1 (en) * 2021-04-20 2022-10-27 オリンパス株式会社 Eccentricity measurement method and eccentricity measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443936A (en) * 1990-06-08 1992-02-13 Olympus Optical Co Ltd Instrument and method for measuring eccentricity quantity of lens system
JPH0472539A (en) * 1990-07-13 1992-03-06 Olympus Optical Co Ltd Off-center measuring device for lens system
US5844670A (en) * 1995-07-28 1998-12-01 Ricoh Co., Ltd. Method of and systems for measuring eccentricity of an aspherical lens surface
US7511803B2 (en) 2004-05-28 2009-03-31 Canon Kabushiki Kaisha Method for displaying result of measurement of eccentricity
CN113203553A (en) * 2021-04-22 2021-08-03 西安工业大学 Lens center error measuring system and measuring method
CN113203553B (en) * 2021-04-22 2023-07-14 西安工业大学 Lens center error measuring system and measuring method
CN114624010A (en) * 2022-05-16 2022-06-14 嘉兴中润光学科技股份有限公司 Eccentricity testing method
CN114624010B (en) * 2022-05-16 2022-08-23 嘉兴中润光学科技股份有限公司 Eccentricity testing method

Also Published As

Publication number Publication date
JP2621119B2 (en) 1997-06-18
KR900006758A (en) 1990-05-08
KR920009802B1 (en) 1992-10-22

Similar Documents

Publication Publication Date Title
JP3774476B2 (en) Interferometer system using two wavelengths and lithographic apparatus comprising such a system
US5563706A (en) Interferometric surface profiler with an alignment optical member
EP1347336A1 (en) Interferometer system and lithographic apparatus comprising such a system
US4614431A (en) Alignment apparatus with optical length-varying optical system
JPS62208630A (en) Exposure device
KR100475658B1 (en) Simultaneously achieving circular symmetry and diminishing effects of optical defects and deviations during real time use of optical devices
US20020024673A1 (en) Measuring device and measuring method
JPH0299841A (en) Eccentricity measuring apparatus for lens system
US6738189B1 (en) Microscope for measuring an object from a plurality of angular positions
JP2003107359A (en) Apparatus and method for focus control of microscope with digital imaging, in particular confocal microscope
JP5448494B2 (en) Polarization measuring apparatus, exposure apparatus, and device manufacturing method
JP3073998B2 (en) Measuring device for eccentricity of lens system
US10761398B2 (en) Imaging ellipsometer system utilizing a tunable acoustic gradient lens
JPH11248419A (en) Interferometer and aligner having the same
JP2535435B2 (en) Lens system eccentricity measuring device
JP3372324B2 (en) Lens system eccentricity measuring apparatus and eccentricity measuring method
JPH1194700A (en) Measuring device and method for lens
JP3268873B2 (en) Lens aberration measurement method
JP3162112B2 (en) Method and apparatus for measuring eccentricity of lens
CN117629112A (en) High-precision measuring device and method for relative angular vibration of X-ray double-mirror system
JP3066056B2 (en) Method and apparatus for measuring eccentricity of lens
JPS59197809A (en) Interference measuring device
JP3162106B2 (en) Method and apparatus for measuring eccentricity of lens system
JP3217144B2 (en) Slit laser beam curvature inspection system
JP3193449B2 (en) Lens system eccentricity measuring apparatus and eccentricity measuring method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees