JPS59197809A - Interference measuring device - Google Patents

Interference measuring device

Info

Publication number
JPS59197809A
JPS59197809A JP7257583A JP7257583A JPS59197809A JP S59197809 A JPS59197809 A JP S59197809A JP 7257583 A JP7257583 A JP 7257583A JP 7257583 A JP7257583 A JP 7257583A JP S59197809 A JPS59197809 A JP S59197809A
Authority
JP
Japan
Prior art keywords
stage
light
measuring
array
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7257583A
Other languages
Japanese (ja)
Inventor
Junichi Kitabayashi
淳一 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP7257583A priority Critical patent/JPS59197809A/en
Publication of JPS59197809A publication Critical patent/JPS59197809A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Abstract

PURPOSE:To enable calibration of the positional deviation of a measuring optical system so that not only the flatness of optical parts but also the squareness of two orthotomic surfaces and the parallelism between the surfaces can be measured by providing a rectangular prism to the longitudinal end of an optical part having the two continuous orthotomic surfaces which are objects to be measured. CONSTITUTION:A roof mirror array 4 is held on a stage 28. A rectangular prism 29 is fixed to the longitudinal end of the array 4 on the stage 28. The stage 28 is moved in a way that measuring light 14 falls onto one surface of the prism 29, then only the shutter 18 is opened to align the spot position on a position sensor 27 to the spot position by reference light 15. The point where both positions coincide is determined as the turning origin of a mechanism for turning the stage 28 around the X-axis and Y-axis. Calibration is made and the stage 28 is moved again until the light 14 falls onto the measuring surface of the mirror 4, by which the alignment to each measuring surface is accomplished.

Description

【発明の詳細な説明】 (技術分野) この発明は、ダハミラーアレイのような連続する直交二
平面を長手方向に持った光学部品のための干渉測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an interference measurement device for an optical component having two continuous orthogonal planes in the longitudinal direction, such as a roof mirror array.

(従来技術) ダハミラーアレイとは、レンズアレイと組み合わせて複
写機等の結像装置として用いられるものである。第1図
には、このようなダハミラーアレイを1吏用した結像装
置の一例が概略的に示されている。原稿面1の像は、光
路分割用の直角ミラー2の一方の反射面で反射されて、
これの長手方向に沿って多数のレンズを並べたレンズア
レイ3を通り、ダハミラーアレイ4に入射する。ダハミ
ラーアレイ4は、その長手方向にレンズの数に対応する
数の直交二平面を持ち、レンズアレイ3からの光を反射
して再びし/グアレイ3を通過させる。
(Prior Art) A roof mirror array is used in combination with a lens array as an imaging device for a copying machine or the like. FIG. 1 schematically shows an example of an imaging device using one such roof mirror array. The image on the original surface 1 is reflected by one reflective surface of the right-angle mirror 2 for optical path splitting, and
The light passes through a lens array 3 in which a large number of lenses are arranged along the longitudinal direction, and enters a roof mirror array 4. The roof mirror array 4 has two perpendicular planes in its longitudinal direction, the number of which corresponds to the number of lenses, and reflects the light from the lens array 3 to pass through the mirror array 3 again.

この光は、次いで直角ミラー2の他方の反射面で反射さ
れ、感光体面5上に原稿面1の像が結像される。
This light is then reflected by the other reflective surface of the right-angle mirror 2, and an image of the document surface 1 is formed on the photoreceptor surface 5.

このようなダハミラーアレイ4には、その反射面の平面
度とともに、その直交する二平面の直角度および面相瓦
間の平行度等に厳しい精度が要求される。従来の干渉測
定装置では、−回の測定で一平面しか測定することがで
きず、二平面間の直角度や平行度を測定することは不可
能であった。
Such a roof mirror array 4 is required to have strict accuracy in the flatness of its reflecting surface, the perpendicularity of two orthogonal planes, the parallelism between the facing tiles, and the like. Conventional interference measuring devices can only measure one plane in one measurement, and it is impossible to measure the perpendicularity or parallelism between two planes.

(発明の目的) この発明の目的は、干渉測定装置のアライメント機構を
第1用して、ダ・・ミラーアレイのような連続する直交
二平面を持つ光学部品の平面度のみならず、直交二平面
の直円度および面相瓦間の平行度をも測定することので
きる改良された干渉測定装置を提供することにある。
(Object of the Invention) The object of the present invention is to use the alignment mechanism of an interferometric measuring device to measure not only the flatness of an optical component such as a mirror array having two orthogonal continuous planes, but also the alignment mechanism of an interferometric measuring device. An object of the present invention is to provide an improved interference measuring device that can also measure the circularity of a plane and the parallelism between face tiles.

以上、この発明の構成を、この発明の一実施例を示す第
2図を参照して説明する。
The configuration of this invention will be described above with reference to FIG. 2, which shows one embodiment of this invention.

(発明の構成) 第2図において、レーザ管10から出たレーザ光束は、
レンズ11および12を通って適当な径に調整された後
、ビームスプリッタ13により測定光14と参照光15
とに分けられる。測定光14は、さらにビームスプリ、
り16により二つに分けられ、そ才しそハ、ンヤ、り1
7,18を通ってミラー19.20で反射され、次いで
ダノ・ミラーアレイ4の測定面で反射さ汎、今来た路を
戻ってゆく。一方、参照光15は、シャ、り21を通っ
て基準面22で反射され、同じ光路を戻って来る。戻っ
て来た測定光14と参照光15とは、干渉を起こしなが
らビームスフ。
(Structure of the Invention) In FIG. 2, the laser beam emitted from the laser tube 10 is
After passing through lenses 11 and 12 and being adjusted to an appropriate diameter, a beam splitter 13 separates the measuring beam 14 and reference beam 15.
It can be divided into The measurement light 14 further includes a beam splitter,
Divided into two by ri 16, Sosai Shisoha, Nya, ri 1
7 and 18, is reflected by the mirror 19 and 20, and is then reflected by the measurement surface of the Dunno mirror array 4, and returns along the path it just came. On the other hand, the reference light 15 passes through the shutter 21, is reflected by the reference surface 22, and returns along the same optical path. The returned measurement light 14 and reference light 15 interfere with each other and form beams.

リッタ23およびレンズ24を通ってビデオカメラ25
により肉眼で観察される。ビームスプリ、り23により
分けられたもう一方の光は、レンズ26を通って位置セ
ンサ27に入射する。
The video camera 25 passes through the lens 23 and the lens 24.
observed with the naked eye. The other beam split by the beam splitter 23 passes through the lens 26 and enters the position sensor 27 .

ダハミラーアレイ4は、設置台28の上に保持されてい
る。設置台28のダハミラーアレイ4の長手方向の端に
は、直角プリズム29が固定されている。
The roof mirror array 4 is held on a mounting base 28. A right angle prism 29 is fixed to the longitudinal end of the roof mirror array 4 on the installation base 28.

設置台28は、ダハミラーアレイ4の長手方向に移動可
能であるとともに、少なくともこの長手方向に平行なX
軸とこれに直交するY軸との回ジに回動可能になってい
る。
The installation stand 28 is movable in the longitudinal direction of the roof mirror array 4, and is at least parallel to this longitudinal direction.
It is rotatable between the shaft and the Y-axis perpendicular to this.

いま、シャ、り21だけを開いて他のシャッタ17゜1
8を閉じると、ビームスプリッタ23で反射された参照
光15は、レンズ26で一点のスポット像を位置センサ
27上に結像する。位置センサ27は、このときのスポ
ット位置を読み取ることができる。
Now, open only the shutter 21 and close the other shutters 17°1.
8, the reference light 15 reflected by the beam splitter 23 forms a spot image on the position sensor 27 by the lens 26. The position sensor 27 can read the spot position at this time.

同様にシャ、り17または18だけを開いて他を一閉じ
ると、それぞれに対応した測定光14のスポット像が、
位置センサ27上に結像される。したがって、もし測定
面が傾いているとすると、レンズ26に入射する測定光
14は、参照光15に対しである角度を持つことになる
のて、位置センサ27上に生じるスポット位置が参照光
15のときのそれとはずれてしまう。したがって干渉縞
を発生させるためには、このずれがなくなるようにダハ
ミラー4の測定面を傾けてアライメントする必要がある
Similarly, if only the shutter 17 or 18 is opened and the others are closed, the corresponding spot images of the measuring light 14 will be
An image is formed on the position sensor 27. Therefore, if the measurement surface is tilted, the measurement light 14 entering the lens 26 will have a certain angle with respect to the reference light 15, so that the spot position generated on the position sensor 27 will be different from the reference light 15. It deviates from what it was at the time. Therefore, in order to generate interference fringes, it is necessary to tilt and align the measurement surface of the roof mirror 4 so as to eliminate this deviation.

そこで、プリズム29の一方の面にホ11定光14が当
るように設置台28を移動させ、第3図に示すようにシ
ャ、り18だけを開いてアライメントを行ない、位置セ
ンサ27上のスポット位置が参照光15によるスポット
位置に一致するようにする。そして、この一致したと@
を、設置台28’kX軸および)′(11111の回り
に回動させるための機構の回動原点と定める。次に、ツ
ヤツタ17だけを開いて、プリズノ・29の他力の面か
らの測定光14によるスポット位置を測定する。このス
ポット位置は、ビームスプリ、り16からミラー19ま
での部材で構成される光学系の直角精度を表わす。fな
わちプリズム29の直円度が正しrものとすると、との
スポット位置は−1−記の回動原点と一致するはずであ
るが、こ九が一致してないときは、この部材16. 1
7. 19からなる光学系の直円度が出ていないことを
意味する。したがって、これが一致するように校正を行
iう。この校正は、ダハミラー4の直円度の測定の際に
は常に留意しなければならない。この校正作業が終了す
ると、再び設置台28を移動させて、測定光14がダ・
・ミラー4の測定面に当るようにし、上記したと同様な
手順で各測定面に対するアライメントを行なう。
Therefore, the installation base 28 is moved so that the constant light beam 14 hits one surface of the prism 29, and alignment is performed by opening only the shutter 18 as shown in FIG. is made to coincide with the spot position of the reference light 15. And this match @
is defined as the rotation origin of the mechanism for rotating around the installation table 28'kX-axis and The spot position by the light 14 is measured. This spot position represents the perpendicularity accuracy of the optical system consisting of members from the beam splitter 16 to the mirror 19. If so, the spot position of and should match the rotation origin in -1-, but if these do not match, this member 16.1
7. This means that the optical system consisting of 19 parts is not circular. Therefore, calibration is performed so that they match. This calibration must always be kept in mind when measuring the roundness of the roof mirror 4. When this calibration work is completed, the installation table 28 is moved again and the measurement light 14 is
- Bring it into contact with the measurement surface of the mirror 4, and perform alignment for each measurement surface using the same procedure as described above.

各測定値は、θXおよび0Yの二つの値で表わされる。Each measurement value is represented by two values, θX and 0Y.

第4図に示すように、いまプリズム29を用いた校正時
に、ベクトルABが測定されたものとする。点Aはシャ
ッタ18を開いたときのアライメント、2点Bはシャッ
タ17を開いたときのアライメントにより、それぞれ決
定される。次に、シャ、り18を開いてダノ・ミラー面
をアライメントして点Cが、そしてシャッタ17を開い
て点りがそれぞれ=CEとなる。同様にダ/・ミラー面
を次々に測定したがって、隣り合う二口の直円度jCF
21のみならず、ダ・・ミラー面間の位置関係すなわち
平行度および直円度をも測定することができる。
As shown in FIG. 4, it is assumed that the vector AB has been measured during calibration using the prism 29. Point A is determined by the alignment when the shutter 18 is opened, and point B is determined by the alignment when the shutter 17 is opened. Next, the shutter 18 is opened to align the mirror surface to point C, and the shutter 17 is opened to align the point to =CE. Similarly, the mirror surfaces are measured one after another. Therefore, the roundness of the two adjacent holes jCF
It is possible to measure not only 21 but also the positional relationship between mirror surfaces, that is, parallelism and circularity.

(発明の効果) 以上のように、この発明の干渉測定装置によれば、被測
定物である連続する直交二平面を持つ光学部品の長手方
向の端部に直角プリズムを設けたので、測定の除の回動
原点を知ることができるとともに、41す定光学系の位
置ずれを校正することができ、光学部品の平面度のみな
らず、直交二平面の直円度および面相瓦間の平行度をも
測定することができる。
(Effects of the Invention) As described above, according to the interference measurement device of the present invention, a right angle prism is provided at the longitudinal end of the optical component having two continuous orthogonal planes, which is the object to be measured. In addition to knowing the rotational origin of the rotation, it is also possible to calibrate the positional deviation of the optical system, and it is possible to calibrate not only the flatness of optical components, but also the circularity of two orthogonal planes and the parallelism between the planar tiles. can also be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ダハミラーアレイを備えた結像装置の一例を
示す概略斜視図、第2図は、この発明による干渉411
]定装置4の構成を示す概略図、第3図は、第2図に示
す装置の作用説明図、第4図は、この発明による干渉測
定装置の測定結果を例示する図である。 4・・・ダハミラーアレイ、10・・・レーザ管、13
゜16.23・・ビームスプリッタ、17.18.21
・・シャッタ、22・・・基準面、25・・・ビデオカ
メラ、27・・・位置センサ、28・・・設置台、29
・・直角プリズム。
FIG. 1 is a schematic perspective view showing an example of an imaging device equipped with a roof mirror array, and FIG. 2 is an interference 411 according to the present invention.
FIG. 3 is a diagram illustrating the operation of the device shown in FIG. 2, and FIG. 4 is a diagram illustrating the measurement results of the interference measuring device according to the present invention. 4... Roof mirror array, 10... Laser tube, 13
゜16.23...beam splitter, 17.18.21
... Shutter, 22 ... Reference plane, 25 ... Video camera, 27 ... Position sensor, 28 ... Installation stand, 29
...Right angle prism.

Claims (1)

【特許請求の範囲】[Claims] 連続する直交二平面を長手方向に持った光学部品のため
の干渉測定装置であって、前記光学部品をその長手方向
に移動させる手段と、前記光学部品を少なくともその長
手方向およびこれに直交する方向の軸の回りに回動させ
る手段と、前記光学部品の長平方向の端部に並置された
直角プリズムと1.前記光学部品および前記直角プリズ
ムの直交する二平面を独立して測定することのできる光
学系とを(+iiiえた干渉測定装置。
An interference measuring device for an optical component having two continuous orthogonal planes in the longitudinal direction, comprising means for moving the optical component in the longitudinal direction, and a means for moving the optical component at least in the longitudinal direction and in a direction perpendicular thereto. 1. a right angle prism juxtaposed at the longitudinal end of the optical component; An interference measuring device comprising (+iii) an optical system capable of independently measuring two perpendicular planes of the optical component and the right angle prism.
JP7257583A 1983-04-25 1983-04-25 Interference measuring device Pending JPS59197809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7257583A JPS59197809A (en) 1983-04-25 1983-04-25 Interference measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7257583A JPS59197809A (en) 1983-04-25 1983-04-25 Interference measuring device

Publications (1)

Publication Number Publication Date
JPS59197809A true JPS59197809A (en) 1984-11-09

Family

ID=13493314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7257583A Pending JPS59197809A (en) 1983-04-25 1983-04-25 Interference measuring device

Country Status (1)

Country Link
JP (1) JPS59197809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113974A (en) * 2005-10-19 2007-05-10 Hitachi Zosen Corp Method and apparatus for measuring distortion using phase-shift digital holographic method
JP2011519040A (en) * 2008-04-30 2011-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical apparatus for irradiating the object to be measured, and interference measuring apparatus for measuring the surface of the object to be measured

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113974A (en) * 2005-10-19 2007-05-10 Hitachi Zosen Corp Method and apparatus for measuring distortion using phase-shift digital holographic method
JP2011519040A (en) * 2008-04-30 2011-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical apparatus for irradiating the object to be measured, and interference measuring apparatus for measuring the surface of the object to be measured
US8913249B2 (en) 2008-04-30 2014-12-16 Robert Bosch Gmbh Optical system for illuminating a measured object and interferometric system for measuring surfaces of a measured object

Similar Documents

Publication Publication Date Title
TW579436B (en) Interferometer, beam-combining unit and manipulator system
US5563706A (en) Interferometric surface profiler with an alignment optical member
JPH11504724A (en) Differential interferometer system and lithographic step and scan apparatus equipped with the system
US5694217A (en) Interferometer for testing forms of surface and stress and strain
US6738189B1 (en) Microscope for measuring an object from a plurality of angular positions
US4056323A (en) Interferometer optical system
US4033696A (en) Lens meter
US5383025A (en) Optical surface flatness measurement apparatus
JPS59197809A (en) Interference measuring device
JPH0299841A (en) Eccentricity measuring apparatus for lens system
JP2005292103A (en) Angle measuring apparatus for polygon mirror
JP2001074604A (en) Method for measuring lens characteristics and its optical system
JP3372324B2 (en) Lens system eccentricity measuring apparatus and eccentricity measuring method
US3972620A (en) Azimuth angle measuring apparatus
JP2000205998A (en) Reflection eccentricity measuring apparatus
JP3289865B2 (en) Method and apparatus for measuring component installation state using bidirectional light beam
JP2527176B2 (en) Fringe scanning shearing interferometer
JP2902417B2 (en) Interferometer for measuring wavefront aberration
JP2591143B2 (en) 3D shape measuring device
JP2000230883A (en) Decentering measuring apparatus and its adjusting method
JPH10281720A (en) Stage device and wave front aberration measuring device using the same
JP3162112B2 (en) Method and apparatus for measuring eccentricity of lens
JP3219494B2 (en) End face shape measuring device for obliquely polished optical connector ferrule and method for measuring end face shape of obliquely polished optical connector ferrule
JPH043291Y2 (en)
JP3053135B2 (en) High precision coordinate measuring instrument