JP2007113974A - Method and apparatus for measuring distortion using phase-shift digital holographic method - Google Patents

Method and apparatus for measuring distortion using phase-shift digital holographic method Download PDF

Info

Publication number
JP2007113974A
JP2007113974A JP2005303775A JP2005303775A JP2007113974A JP 2007113974 A JP2007113974 A JP 2007113974A JP 2005303775 A JP2005303775 A JP 2005303775A JP 2005303775 A JP2005303775 A JP 2005303775A JP 2007113974 A JP2007113974 A JP 2007113974A
Authority
JP
Japan
Prior art keywords
measurement
light
measured
phase
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005303775A
Other languages
Japanese (ja)
Other versions
JP4766989B2 (en
Inventor
Akikazu Kitagawa
彰一 北側
Mitsuyoshi Nakatani
光良 中谷
Naoaki Fukuda
直晃 福田
Setsuo Iwata
節雄 岩田
Satoshi Ashida
吏史 芦田
Teruhisa Ishihara
照久 石原
Yoshiharu Morimoto
吉春 森本
Toru Matsui
徹 松井
Motoharu Fujigaki
元治 藤垣
Sakae Meguro
栄 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2005303775A priority Critical patent/JP4766989B2/en
Publication of JP2007113974A publication Critical patent/JP2007113974A/en
Application granted granted Critical
Publication of JP4766989B2 publication Critical patent/JP4766989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distortion measuring method using a phase-shift digital holographic method capable of performing noncontact, wide-range, and highly accurate measurement on distortions of a part to be measured with high spatial resolution. <P>SOLUTION: When the phase-shift digital holographic method and two luminous fluxes of a laser beam R are used to measure in-plane displacements and out-of-plane displacements in the surface of an object to be measured, the laser beam R emitted from one laser irradiator 11 is divided into two measuring lights Ra and Rb. The measuring lights are irradiated to the object M to be measured mounted to a placing surface D in perpendicular in-plane directions which intersect with each other at right angles. Half of each measuring light is directly irradiated to the object to be measured on the placing surface, and the rest halves are reflected at reflecting mirrors 31 and 32 arranged at right angles to the placing surface and made incident at the same angle of incidence from both sides of the object to be measured to measure the amount of displacement in in-plane directions in axial directions of intersection between the placing surface and each perpendicular surface and in out-of-plane directions perpendicular to the placing surface. The amount of displacement in three-dimensional directions is differentiated to determine distortions of the surface of the object to be measured in this method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、位相シフトデジタルホログラフィ法を用いて物体表面の歪を計測する歪計測方法および歪計測装置に関するものである。   The present invention relates to a strain measuring method and a strain measuring apparatus for measuring strain on an object surface using a phase shift digital holography method.

近年、橋梁などの構造物の健全性を評価してアセットマネッジメントを実施することによって、予算を効率的に管理しようとする動きが盛んになってきている。
ところで、構造物の健全性を評価する重要な事項としては疲労破壊がある。
In recent years, there has been an increasing trend to efficiently manage budgets by evaluating the soundness of structures such as bridges and implementing asset management.
By the way, an important matter for evaluating the soundness of a structure is fatigue fracture.

この疲労破壊は、例えば橋梁の場合、車両の走行荷重や風荷重、その他、機械的な振動などの繰り返しにより発生する。
このような疲労破壊を防ぐためには、まず、構造物における歪を計測して変位量を求めることで、応力が集中している箇所を把握することが重要となる。
For example, in the case of a bridge, the fatigue failure occurs due to repeated running load of the vehicle, wind load, and other mechanical vibrations.
In order to prevent such fatigue failure, it is important to first grasp the location where the stress is concentrated by measuring the strain in the structure and obtaining the amount of displacement.

従来、構造物の歪を求めるのに、歪ゲージを用いる方法があるが、この歪ゲージによると、当該歪ゲージを貼付した箇所しか計測することができず、構造物を広範囲に亘って計測するのに適していなかった。   Conventionally, there is a method of using a strain gauge to obtain the strain of a structure. However, according to this strain gauge, only a portion where the strain gauge is attached can be measured, and the structure is measured over a wide range. Not suitable for.

これに対し、非接触で比較的広範囲の歪を計測する方法として、レーザスペックル干渉法が知られている(例えば、特許文献1参照)。
このレーザスペックル干渉法の基本原理は、被計測部分にレーザビームを照射し、その散乱光を撮像手段にてスペックルパターンとして記録しておき、そして被計測部分の変形前後におけるスペックルパターンの移動量に基づき、被計測物における変位および歪を計測するようにしたものである。
特開平8−261730号公報
On the other hand, laser speckle interferometry is known as a method for measuring a relatively wide range of strain without contact (see, for example, Patent Document 1).
The basic principle of this laser speckle interferometry is that a measured part is irradiated with a laser beam, the scattered light is recorded as a speckle pattern by an imaging means, and the speckle pattern before and after deformation of the measured part is measured. Based on the amount of movement, the displacement and distortion of the object to be measured are measured.
JP-A-8-261730

しかし、レーザスペックル干渉法は、レーザビームを被計測物に照射し、生じた散乱光をスペックルパターンとして撮像するに際して、集光レンズにて結像させたうえで撮像するため、スペックルパターンが撮影されることになり、その影響を低減するために、空間的な平滑化などのフィルタリングを掛ける必要があり、したがって空間分解能が低くなるという問題があった。   However, in the laser speckle interferometry, a laser beam is irradiated onto a measurement object, and when the generated scattered light is imaged as a speckle pattern, it is imaged after being focused by a condenser lens. In order to reduce the influence, it is necessary to apply filtering such as spatial smoothing, and thus there is a problem that the spatial resolution is lowered.

また、上記空間分解能の低さから、被計測物表面からの散乱光が弱いと、十分な計測精度が得られないため、被計測物表面に散乱を促進するための薬剤を散布するなどの作業が必要であった。   In addition, due to the low spatial resolution, if the scattered light from the surface of the object to be measured is weak, sufficient measurement accuracy cannot be obtained. Was necessary.

そこで、上記課題を解決するため、本発明は、非接触でかつ広範囲での被計測部分の歪を、高い空間分解能で精度良く計測し得る位相シフトデジタルホログラフィ法を用いた歪計測装置を提供することを目的とする。   Accordingly, in order to solve the above-described problems, the present invention provides a strain measurement apparatus using a phase shift digital holography method that can accurately measure a distortion of a measurement target portion in a non-contact and wide range with high spatial resolution. For the purpose.

上記課題を解決するため、本発明の位相シフトデジタルホログラフィ法を用いた歪計測方法は、レーザ照射器から出射されたレーザ光を計測光として所定の載置面に載置された被計測物体に照射し、その反射した物体光と上記レーザ光から第1ビームスプリッタにより分割され且つ位相がπ/2ずつ1周期分シフトされた参照光とを同軸でもってCCDカメラに入射させて得られたホログラム画像から被計測物体表面の位相分布を位相シフトデジタルホログラフィ法を用いて求める手順を、被計測物体の変形前と変形後とで行い、
これら変形前と変形後との両位相分布の差である位相分布差から物体光の照射方向での被計測物体表面における変位を求める変位演算工程を具備するとともに、
この変位演算工程を、被計測物体の載置面に垂直な第1垂直面の面内および載置面に垂直で且つ上記第1垂直面に垂直な第2垂直面の面内で、それぞれ被計測物体の両側から且つ入射角が等しくされた2つの第1計測光および2つの第2計測光(以下、2つの計測光を2光束という)についてそれぞれ行うことにより、載置面に垂直なz軸方向および載置面と第1垂直面との交差軸であるx軸方向、並びに載置面に垂直なz軸方向および載置面と第2垂直面との交差軸であるy軸方向での変位量をそれぞれ演算し、
上記求められた三次元方向での変位量から被計測物体に生じた歪を算出する歪計測方法であって、
上記第1計測光および第2計測光を、上記第1ビームスプリッタにより分割された計測光を第2ビームスプリッタにて分割することにより得るとともに、この得られた各計測光をそれぞれ2光束でもって被計測物体に照射する際に、それぞれの照射経路に配置された一対のシャッター部材を開閉させることにより、2光束における一方の計測光を直接に被計測物体に照射させるようになし、且つ2光束における他方の計測光を、その照射方向に対向して配置された反射ミラーを介して被計測物体に上記一方の計測光とは反対側から照射させるようにした方法である。
In order to solve the above-described problem, the strain measurement method using the phase shift digital holography method of the present invention applies a laser beam emitted from a laser irradiator to a measurement object placed on a predetermined placement surface as measurement light. The hologram obtained by irradiating and reflecting the reflected object beam and the reference beam which is split from the laser beam by the first beam splitter and whose phase is shifted by π / 2 by one period coaxially to the CCD camera The procedure for obtaining the phase distribution of the surface of the measured object from the image using the phase shift digital holography method is performed before and after the deformation of the measured object.
A displacement calculation step for obtaining a displacement on the surface of the object to be measured in the irradiation direction of the object light from the phase distribution difference that is the difference between both phase distributions before and after the deformation, and
This displacement calculation process is performed on the first vertical surface perpendicular to the placement surface of the object to be measured and on the second vertical surface perpendicular to the placement surface and perpendicular to the first vertical surface. By performing two first measurement lights and two second measurement lights (hereinafter, two measurement lights are referred to as two light beams) having the same incident angle from both sides of the measurement object, z perpendicular to the mounting surface is obtained. An axial direction and an x-axis direction that is an intersection axis between the placement surface and the first vertical surface, and a z-axis direction that is perpendicular to the placement surface and a y-axis direction that is an intersection axis between the placement surface and the second vertical surface. Calculating the displacement amount of
A strain measurement method for calculating a strain generated in an object to be measured from the obtained displacement amount in the three-dimensional direction,
The first measurement light and the second measurement light are obtained by dividing the measurement light divided by the first beam splitter by the second beam splitter, and each of the obtained measurement lights is divided into two light beams. When irradiating the object to be measured, the pair of shutter members arranged in the respective irradiation paths are opened and closed to directly irradiate the object to be measured with one of the two light beams. In this method, the measurement light is irradiated onto the object to be measured from the side opposite to the one measurement light through a reflection mirror arranged opposite to the irradiation direction.

また、本発明の位相シフトデジタルホログラフィ法を用いた歪計測装置は、上述した歪計測方法を用いた歪計測装置であって、
1つのレーザ照射器と、
このレーザ照射器から出射されたレーザ光を2つに分割して計測光と参照光とを得るための第1ビームスプリッタと、
この第1ビームスプリッタを参照光の照射方向に沿って移動させて、当該参照光の位相をπ/2ずつ1周期分シフトさせる移動手段と、
上記第1ビームスプリッタからの計測光をさらに2つに分割して第1計測光と第2計測光とを得るための第2ビームスプリッタと、
この得られた第1計測光および第2計測光の各照射経路の途中にそれぞれ配置されてこれら各計測光を半分ずつ開閉し得る一対の第1シャッター部材および一対の第2シャッター部材と、
被計測物体が載置された載置面に垂直に配置されて、上記一対の第1シャッター部材の一方が開放された際には、その一方側の第1計測光については反射させずに被計測物体に直接照射させるようにするとともに、他方が開放された際に、その他方側の第1計測光を反射させて被計測物体に、上記一方側の第1計測光とは反対側から且つ同じ入射角でもって照射させる第1反射ミラーと、
上記載置面および第1反射ミラーに垂直に配置されて、上記一対の第2シャッター部材の一方が開放された際には、その一方側の第2計測光については反射させずに被計測物に直接照射させるようにするとともに、他方が開放された際に、その他方側の第2計測光を反射させて被計測物体に、当該計測光とは反対側で且つ同じ入射角でもって照射させる第2反射ミラーと、
上記被計測物体の表面にて反射した物体光および上記参照光を同軸でもって入射させて被計測物体表面のホログラム画像を得るためのCCDカメラと、
上記移動手段により参照光の位相がシフトされて得られた複数のホログラム画像から被計測物体表面の位相分布を求める位相分布演算部と、
この位相分布演算部にて求められた被計測物体の変形前と変形後における位相分布の差を求める位相差演算部と、
この位相差演算部にて求められた位相分布差により、載置面内並びにこの載置面に垂直な第1垂直面内、並びにこれら載置面および第1垂直面に垂直な第2垂直面内での変位量を求める変位演算部と、
この変位演算部にて求められた各変位量から被計測物体表面における三次元方向での歪を求める歪算出部とを具備したものである。
Further, a strain measuring apparatus using the phase shift digital holography method of the present invention is a strain measuring apparatus using the above-described strain measuring method,
One laser irradiator;
A first beam splitter for dividing the laser light emitted from the laser irradiator into two to obtain measurement light and reference light;
Moving means for moving the first beam splitter along the irradiation direction of the reference light and shifting the phase of the reference light by π / 2 by one period;
A second beam splitter for further dividing the measurement light from the first beam splitter into two to obtain a first measurement light and a second measurement light;
A pair of first shutter members and a pair of second shutter members which are respectively arranged in the middle of the respective irradiation paths of the obtained first measurement light and second measurement light and which can open and close each of the measurement lights by half;
When one of the pair of first shutter members is opened and placed perpendicular to the placement surface on which the measurement object is placed, the first measurement light on one side is not reflected and is reflected. The measurement object is directly irradiated, and when the other is opened, the first measurement light on the other side is reflected to the measurement object from the side opposite to the first measurement light on the one side and A first reflecting mirror that irradiates with the same incident angle;
When one of the pair of second shutter members is opened perpendicularly to the placement surface and the first reflecting mirror, the second measurement light on one side is not reflected and the object to be measured is not reflected. When the other is opened, the second measurement light on the other side is reflected to irradiate the object to be measured on the opposite side of the measurement light and with the same incident angle. A second reflecting mirror;
A CCD camera for obtaining the hologram image of the surface of the object to be measured by causing the object light reflected on the surface of the object to be measured and the reference light to be incident coaxially;
A phase distribution calculation unit for obtaining a phase distribution of the surface of the object to be measured from a plurality of hologram images obtained by shifting the phase of the reference light by the moving means;
A phase difference calculation unit for obtaining a difference in phase distribution before and after the deformation of the measured object obtained by the phase distribution calculation unit;
Due to the phase distribution difference obtained by the phase difference calculation unit, the placement surface, the first vertical surface perpendicular to the placement surface, and the second vertical surface perpendicular to the placement surface and the first vertical surface. A displacement calculation unit for obtaining a displacement amount in the interior;
And a strain calculation unit that obtains a strain in a three-dimensional direction on the surface of the object to be measured from each displacement amount obtained by the displacement calculation unit.

上記歪計測方法および歪計測装置によると、被計測物体表面の変位を、その変形前と変形後における位相分布差から求める際に、位相シフトデジタルホログラフィ法を用いるようにしたので、非接触でかつ広範囲での被計測部分の歪を高い空間分解能で精度良く計測することができる。   According to the strain measurement method and the strain measurement apparatus, the phase shift digital holography method is used when the displacement of the surface of the object to be measured is obtained from the phase distribution difference before and after the deformation. It is possible to accurately measure the distortion of the measured portion in a wide range with high spatial resolution.

さらに、上記歪計測方法および歪計測装置によると、1つのレーザ照射器から照射されるレーザ光を計測光と参照光とに分割するとともに、この分割された計測光をさらに2つに分割し、これら分割された2つの各計測光の照射経路途中に、各計測光を半分ずつ照射し得るシャッター部材をそれぞれ配置し、そしてシャッター部材により半分に遮られた一方側の計測光を、載置面に載置された被計測物体に直接照射するとともに、他方側の計測光を、載置面に垂直に配置された反射ミラーにより、一方側の計測光とは反対側で且つ同じ入射角で被計測物体に照射するようにして、すなわち互いに垂直な照射面方向で照射される2つの計測光を用いて、被計測物体表面における面内変位および面外変位である三次元方向での変位を求めることにより、歪を計測するようにしたので、その構成自体を簡単なものにし得るとともに、コンパクト化を図ることができる。   Further, according to the strain measurement method and the strain measurement apparatus, the laser light emitted from one laser irradiator is divided into measurement light and reference light, and the divided measurement light is further divided into two parts. A shutter member that can irradiate each measurement light in half is disposed in the middle of the two measurement light irradiation paths, and the measurement light on one side blocked by the shutter member in half is placed on the mounting surface. The measurement object on the other side is directly irradiated and the measurement light on the other side is reflected on the opposite side of the measurement light on the one side and at the same incident angle by the reflection mirror arranged perpendicular to the placement surface. Displacement in the three-dimensional direction, which is in-plane displacement and out-of-plane displacement on the surface of the object to be measured, is obtained by irradiating the measurement object, that is, using two measurement lights irradiated in directions of irradiation surfaces perpendicular to each other. Especially Ri. Thus to measure strain, with can the configuration itself be simplified, can be made compact.

[実施の形態]
以下、本発明の実施の形態に係る位相シフトデジタルホログラフィ法を用いた歪計測方法および歪計測装置を図面に基づき説明する。
[Embodiment]
Hereinafter, a strain measurement method and a strain measurement apparatus using a phase shift digital holography method according to an embodiment of the present invention will be described with reference to the drawings.

まず、位相シフトデジタルホログラフィ法を用いて物体の変位を計測する原理について、簡単に説明する。
この位相シフトデジタルホログラフィ法においては、CCDに物体光(物体からの反射光である)と参照光を同軸(on−axis)で入射させる光学系が用いられ、この状態で再生すると、0次、1次、−1次の回折像が重なって再生されることになるが、位相シフトされている干渉縞の位相解析により、CCD面上の複素振幅を求めて再生を行なうと、1次回折像だけを得ることができる。
First, the principle of measuring the displacement of an object using the phase shift digital holography method will be briefly described.
In this phase shift digital holography method, an optical system is used in which object light (reflected light from an object) and reference light are incident on a CCD on the same axis (on-axis). The first-order and −1st-order diffraction images overlap and are reproduced, but when the complex amplitude on the CCD surface is obtained by phase analysis of the phase-shifted interference fringes, the first-order diffraction image is reproduced. Can only get.

この手法では、光の複素振幅分布を計算により求め、その光の逆伝播を計算して像を再生するため、計算機上で焦点を合わすことができ、しかも再生されている1次回折像は強度だけでなく位相もデジタル情報として得られる特徴を有している。   In this method, the complex amplitude distribution of light is obtained by calculation, the back propagation of the light is calculated and the image is reproduced, so that it can be focused on a computer, and the reproduced first-order diffraction image has an intensity. Not only the phase but also the phase can be obtained as digital information.

ここで、物体光の複素振幅をA(x,y)、参照光の複素振幅をA(x,y)とすると、下記(1)式および(2)式にて表わされる。 Here, when the complex amplitude of the object light is A o (x, y) and the complex amplitude of the reference light is A r (x, y), the following expressions (1) and (2) are given.

Figure 2007113974
Figure 2007113974

ここで、a(x,y)およびa(x,y)はそれぞれ物体光と参照光の振幅分布を表わし、φ(x,y)およびφ(x,y)はそれぞれ物体光と参照光の位相分布を表わす。αはPZTステージに設けられた反射ミラーでシフトさせる参照光の位相シフト量で、それぞれ0,π/2,π,3π/2である。 Here, a o (x, y) and a r (x, y) represent amplitude distributions of the object light and the reference light, respectively, and φ o (x, y) and φ r (x, y) represent the object light, respectively. And the phase distribution of the reference light. α is the phase shift amount of the reference light that is shifted by the reflection mirror provided on the PZT stage, and is 0, π / 2, π, and 3π / 2, respectively.

また、CCDで記録される干渉縞I(x,y,α)は下記(3)式にて表すことができる。   Further, the interference fringes I (x, y, α) recorded by the CCD can be expressed by the following equation (3).

Figure 2007113974
Figure 2007113974

そして、CCD面上での位相解析に際して位相シフト法が用いられる。
すなわち、参照光に平行光を用いるために、記録面における振幅は一定で位相の変化はないため、下記(4)式により記録面での物体光だけの振幅a(x,y)が得られ、また位相φ(x,y)は下記(5)式に示される関係から求めることができる。
A phase shift method is used for phase analysis on the CCD surface.
In other words, since parallel light is used as the reference light, the amplitude on the recording surface is constant and the phase does not change, so that the amplitude a (x, y) of only the object light on the recording surface can be obtained by the following equation (4). Further, the phase φ (x, y) can be obtained from the relationship shown in the following equation (5).

Figure 2007113974
Figure 2007113974

このようにして得られた位相と振幅から記録面での複素振幅分布g(x,y)を求めると、下記(6)式のようになる。   When the complex amplitude distribution g (x, y) on the recording surface is obtained from the phase and amplitude thus obtained, the following equation (6) is obtained.

Figure 2007113974
Figure 2007113974

CCD面上の複素振幅分布から、再生面上の複素振幅分布を求めるのにフレネル回折積分が用いられる。
元の物体の複素振幅分布をu(x,y)とすると、下記(7)式のように表わされる。
Fresnel diffraction integration is used to obtain the complex amplitude distribution on the reproduction surface from the complex amplitude distribution on the CCD surface.
When the complex amplitude distribution of the original object is u (x, y), it is expressed as the following equation (7).

Figure 2007113974
Figure 2007113974

ここで、Fはフーリエ変換を表す演算子、Rは記録面と再生面の距離、kは波数である。
上記説明を踏まえて、被計測物体における変形前と変形後とにおける位相分布差を求める原理について説明する。
Here, F is an operator representing Fourier transform, R is the distance between the recording surface and the reproducing surface, and k is the wave number.
Based on the above description, the principle for obtaining the phase distribution difference of the measured object before and after deformation will be described.

変形前における物体光の再生面の複素振幅分布をA(x,y)、変形後における物体光の再生面の複素振幅分布をA′(x,y)とすると、それぞれ下記(8)式および(9)式のように表すことができる。 Assuming that the complex amplitude distribution on the reproduction surface of the object light before the deformation is A o (x, y) and the complex amplitude distribution on the reproduction surface of the object light after the deformation is A o ′ (x, y), respectively, (8) It can be expressed as Equation (9) and Equation (9).

Figure 2007113974
Figure 2007113974

与えた変形が微小であれば、変形前と変形後における物体光の振幅分布は変化がなく、位相分布のみが変化するといえるため変形後の振幅分布a′(x,y)と位相分布φ′(x,y)は、それぞれ下記(10)式および(11)式のように表すことができる。 If the applied deformation is minute, it can be said that the amplitude distribution of the object light before and after the deformation does not change, and only the phase distribution changes. Therefore, the amplitude distribution a o ′ (x, y) after the deformation and the phase distribution φ o ′ (x, y) can be expressed by the following equations (10) and (11), respectively.

Figure 2007113974
Figure 2007113974

ここで、変形によって生じる位相分布差である位相変化△φ(x,y)は、変形前後における再生像の位相の差をとることで得られる。
そして、本発明の要旨は、載置面(x−y平面)に載置された被計測物体表面における三次元方向での歪、すなわち変位を計測し得るものであり、このため、x−z平面とy−z平面において、それぞれ2光束を用いた変位計測を行い、各平面において、それぞれの座標軸方向(x−z平面では、x軸方向とz軸方向;y−z平面では、y軸方向とz軸方向)での変位を求めるものである。
Here, the phase change Δφ (x, y), which is the phase distribution difference caused by the deformation, is obtained by taking the phase difference of the reproduced image before and after the deformation.
The gist of the present invention is that the strain in the three-dimensional direction on the surface of the measurement object placed on the placement surface (xy plane), that is, the displacement can be measured. For this reason, xz Displacement measurement using two light beams is performed in each of the plane and the yz plane, and in each plane, the respective coordinate axis directions (the x-axis direction and the z-axis direction in the xz plane; the y-axis in the yz plane) Direction and z-axis direction).

次に、2光束を用いた変位計測原理について説明する。
2光束を用いて変位を計測するために、光源と被計測物体と観測点の位置関係を図1に示す。
Next, the principle of displacement measurement using two light beams will be described.
FIG. 1 shows the positional relationship among the light source, the object to be measured, and the observation point in order to measure the displacement using two light beams.

図1においては、光源L,Lから被計測物体Mに平行光を照射し、観測点Oから被計測物体M上の点Qおよびその変位後の点Q′を観測するようにしている。なお、ここではx−z平面について考える。 In FIG. 1, parallel light is irradiated from the light sources L 1 and L 2 to the measured object M, and the point Q on the measured object M and the point Q ′ after the displacement are observed from the observation point O. . Here, the xz plane is considered.

ここで、点Qの変位ベクトルdは、光源L,Lから被計測物体Mまでの距離LQ,LQに比べ十分に小さいため、線分LQとLQ′,LQとLQ′はそれぞれ互いに平行であるとみなせる。同様に、線分QOとQ′Oも平行とみなせる。 Here, since the displacement vector d of the point Q is sufficiently smaller than the distances L 1 Q and L 2 Q from the light sources L 1 and L 2 to the measured object M, the line segments L 1 Q and L 1 Q ′, L 2 Q and L 2 Q ′ can be regarded as being parallel to each other. Similarly, the line segments QO and Q′O can be regarded as parallel.

被計測物体Mから光源L、被計測物体Mから光源L、被計測物体Mから観測点Oに至る単位ベクトルをi,i,iとすると、2つの光路LQOとLQ′Oの差△l、および光路LQOとLQ′Oの差△lは、それぞれ下記(12)式および(13)式のように表すことができる。 Assuming that unit vectors from the measured object M to the light source L 1 , the measured object M to the light source L 2 , and the measured object M to the observation point O are i 1 , i 2 , i 3 , two optical paths L 1 QO and L 1 Q′O difference Δl 1 and optical path L 2 QO and L 2 Q′O difference Δl 2 can be expressed as the following equations (12) and (13), respectively.

Figure 2007113974
Figure 2007113974

物体光には平行光が用いられているため、被計測物体Mから観測点Oに至る単位ベクトルiのx軸方向成分は0(ゼロ)、z軸方向成分は1になる。
また、光源L,Lから被計測物体Mへの入射角をそれぞれθおよび−θとすると、被計測物体Mから光源L、被計測物体Mから光源Lに至る各単位ベクトルi,iのそれぞれの方向成分は、下記(14)式〜(16)式にて表わすことができる。
Since parallel light is used as the object light, the x-axis direction component of the unit vector i 0 from the measured object M to the observation point O is 0 (zero) and the z-axis direction component is 1.
Further, assuming that the incident angles from the light sources L 1 and L 2 to the measured object M are θ and −θ, respectively, each unit vector i 1 from the measured object M to the light source L 1 and from the measured object M to the light source L 2. , I 2 can be expressed by the following equations (14) to (16).

Figure 2007113974
Figure 2007113974

光路差Δl,Δlと,光源L,Lによって生じる位相変化Δφ,Δφの関係は、波長λを用いると、下記(17)式および(18)式にて表すことができる。 The relationship between the optical path differences Δl 1 and Δl 2 and the phase changes Δφ 1 and Δφ 2 caused by the light sources L 1 and L 2 can be expressed by the following formulas (17) and (18) using the wavelength λ. .

Figure 2007113974
Figure 2007113974

変位ベクトルdのx軸方向成分をd、z軸方向成分をdとすると、上述した(12)式〜(18)式によると、下記(19)式および(20)式のようになる。 Assuming that the x-axis direction component of the displacement vector d is d x and the z-axis direction component is d z , the following equations (19) and (20) are obtained according to the equations (12) to (18). .

Figure 2007113974
Figure 2007113974

上記(19)式と(20)式の差および和をとると、下記(21)式および(22)式により、dおよびdが求まる。すなわち、面内変位dと面外変位dをそれぞれ求めることができる。 Taking the difference and sum of the above equations (19) and (20), d x and d z are obtained from the following equations (21) and (22). That is, the in-plane displacement d x and the out-of-plane displacement d z can be obtained respectively.

Figure 2007113974
Figure 2007113974

上記事項を簡単に説明すると、この位相シフトデジタルホログラフィ法は、所定の載置面(x−y平面)に載置された被計測物体の変位を三次元方向で且つ高精度でもって計測する方法で、通常は、一方向から光を照射して面外方向の変位を計測するが、本実施の形態では、2光束を用いて且つ左右方向から同じ入射角で入射させてその反射された物体光と参照光とをCCDカメラで撮影し、この撮影されたホログラム画像から位相分布を求め、しかも左右から反射された物体光による両位相変化(位相分布差)の差に基づき面内変位(x軸方向またはx軸方向での変位)を、また両位相変化の和に基づき面外変位(z軸方向での変位)を得るようにしたものである。   In brief, the phase shift digital holography method is a method for measuring the displacement of a measurement object placed on a predetermined placement surface (xy plane) in a three-dimensional direction with high accuracy. Normally, the displacement in the out-of-plane direction is measured by irradiating light from one direction, but in this embodiment, the reflected object is incident using the two light beams and entering from the left and right directions at the same incident angle. The light and the reference light are photographed with a CCD camera, the phase distribution is obtained from the photographed hologram image, and the in-plane displacement (x is determined based on the difference between both phase changes (phase distribution difference) due to the object light reflected from the left and right. (Displacement in the axial direction or x-axis direction) and out-of-plane displacement (displacement in the z-axis direction) based on the sum of both phase changes.

そして、上記の手順を、2つの照射面方向(2光束が通過する面方向を意味する)からの計測光に適用することにより、被計測物体における三次元方向(x軸方向、y軸方向、z軸方向)での変位量を求めるようにしたものである。   Then, by applying the above procedure to measurement light from two irradiation surface directions (meaning surface directions through which two light beams pass), a three-dimensional direction (x-axis direction, y-axis direction, The amount of displacement in the z-axis direction) is obtained.

次に、上述した位相シフトデジタルホログラフィ法を用いて三次元方向での変位量を計測するとともに、この計測された変位量を微分することにより、歪を求めるようにした歪計測装置を、図2〜図7に基づき説明する。   Next, FIG. 2 shows a strain measuring apparatus that measures the displacement in the three-dimensional direction using the above-described phase shift digital holography method and obtains the strain by differentiating the measured displacement. Description will be made with reference to FIG.

この歪計測装置は、図2に示すように、大きく分けて、被計測物体に照射しその反射光である物体光の位相分布に基づき三次元方向での変位量(面内方向および面外方向の変位である)を求める変位計測部1と、この変位計測部1で計測された変位量を微分することにより歪を求めるための歪算出部2とから構成されており、また本発明の要旨は、上記変位計測部1にあるため、まず変位計測部1の概略構成について説明する。   As shown in FIG. 2, the strain measuring device is roughly divided into three-dimensional displacement amounts (in-plane direction and out-of-plane direction) based on the phase distribution of object light that is irradiated onto the object to be measured and is reflected. And a strain calculation unit 2 for obtaining a strain by differentiating the amount of displacement measured by the displacement measurement unit 1, and a gist of the present invention. Since there is in the displacement measuring unit 1, the schematic configuration of the displacement measuring unit 1 will be described first.

すなわち、この変位計測部1は、図3に示すように、主として、He−Neレーザ光(半導体レーザによるレーザ光を用いてもよい)Rを出射するレーザ照射器11と、このレーザ照射器11から出射されたレーザ光を2つに分割して計測光Rmと参照光Rrを得るための第1ビームスプリッタ(偏光ビームスプリッタが用いられる)12と、この第1ビームスプリッタ12からの計測光をさらに2つに分割して2つの第1および第2計測光Ra,Rbを得るための第2ビームスプリッタ(無偏光ビームスプリッタが用いられる)13と、この第2ビームスプリッタ13にて分割された2つの第1および第2計測光Ra,Rbを水平面(x−y平面)である載置面Dに載置された被計測物体Mに両側方[正確に言えば、x−z平面に沿う照射面方向(以下、x−z平面方向という)およびy−z平面に沿う照射面方向(以下、y−z平面方向という)]から照射させるための第1反射ミラー14および第2反射ミラー15と、被計測物体Mで反射した物体光Roを第3反射ミラー16を介して導き被計測物体Mを撮影するための撮影装置であるCCDカメラ17と、この第3反射ミラー16とCCDカメラ17との間に配置されて第1ビームスプリッタ12からの参照光Rrを物体光Roと同軸にてCCDカメラ17に導くためのハーフミラー18と、上記CCDカメラ17にて撮影されたホログラム画像(輝度データである)を入力して所定の演算を行い被計測物体M表面の三次元方向での変位量を求めるためのコンピュータ装置19とから構成されており、またこのコンピュータ装置19からの制御信号により、参照光の位相シフトが行われるとともに、後述する各シャッター部材が作動される。   That is, as shown in FIG. 3, the displacement measuring unit 1 mainly includes a laser irradiator 11 that emits He-Ne laser light (laser light from a semiconductor laser) R, and the laser irradiator 11. A first beam splitter (a polarization beam splitter is used) 12 for dividing the laser beam emitted from the laser beam into two to obtain the measurement beam Rm and the reference beam Rr, and the measurement beam from the first beam splitter 12 Further divided into two, a second beam splitter (a non-polarized beam splitter is used) 13 for obtaining two first and second measurement lights Ra and Rb, and the second beam splitter 13 The two first and second measurement lights Ra and Rb are placed on both sides of the measurement object M placed on the placement surface D that is a horizontal plane (xy plane), to be precise, along the xz plane. Irradiation A first reflection mirror 14 and a second reflection mirror 15 for irradiating from a direction (hereinafter referred to as an xz plane direction) and an irradiation surface direction along the yz plane (hereinafter referred to as a yz plane direction); A CCD camera 17 that is an imaging device for guiding the object light Ro reflected by the measurement object M through the third reflection mirror 16 to image the measurement object M, and the third reflection mirror 16 and the CCD camera 17. A half mirror 18 arranged between the first beam splitter 12 for guiding the reference light Rr from the first beam splitter 12 to the CCD camera 17 coaxially with the object light Ro, and a hologram image (in luminance data) taken by the CCD camera 17 And a computer device 19 for calculating a displacement amount in the three-dimensional direction of the surface of the object M to be measured. By a control signal from the device 19, together with the phase shift of the reference light is performed, the shutter member to be described later is operated.

そして、上記第1ビームスプリッタ12は、参照光Rrの照射方向で移動させて当該参照光の位相を4段階に、すなわち位相が0(ゼロ)、π/2,π,3π/2)となるように位相をシフトさせるための移動手段であるPZTステージ(ピエゾステージである)20に設けられている。なお、この第1ビームスプリッタ12は、参照光の照射方向で移動された場合でも、計測光側における被計測物体までの距離に変化を与えることはない。   Then, the first beam splitter 12 is moved in the irradiation direction of the reference light Rr, and the phase of the reference light becomes four stages, that is, the phase becomes 0 (zero), π / 2, π, 3π / 2). Thus, it is provided in a PZT stage (which is a piezo stage) 20 which is a moving means for shifting the phase. The first beam splitter 12 does not change the distance to the measurement object on the measurement light side even when it is moved in the reference light irradiation direction.

また、上記レーザ照射器11と第1ビームスプリッタ12との間には、スペーシャルフィルター21、光アイソレータ22、スペーシャルフィルター23、光ファイバー24、スペーシャルフィルター25、偏光ビームスプリッタ26および1/2波長板27が配置されて、レーザ光Rを平行光として第1ビームスプリッタ12に入射させるようにしている。なお、上記光アイソレータ22は光ファイバー24からの反射光を阻止するためのもので、偏光ビームスプリッタ26は光ファイバー24により楕円化した光を直線偏光に整えるためのもの、また1/2波長板27は偏光を回転させることにより第1ビームスプリッタ12で分岐する参照光と計測光の光量比を調整するためのものである。   Between the laser irradiator 11 and the first beam splitter 12, a spatial filter 21, an optical isolator 22, a spatial filter 23, an optical fiber 24, a spatial filter 25, a polarizing beam splitter 26, and a half wavelength are provided. A plate 27 is disposed so that the laser beam R is incident on the first beam splitter 12 as parallel light. The optical isolator 22 is for blocking the reflected light from the optical fiber 24, the polarization beam splitter 26 is for adjusting the light ellipticalized by the optical fiber 24 to linearly polarized light, and the half-wave plate 27 is This is for adjusting the light quantity ratio between the reference light and the measurement light branched by the first beam splitter 12 by rotating the polarized light.

そして、上述したように、第2ビームスプリッタ13で分割された一方の第1計測光Raをy−z平面に対向するように被計測物体Mに照射するとともに、他方の第2計測光Rbをx−z平面方向に対向するように被計測物体Mに照射し、しかも各計測光Ra,Rbを一対のシャッター部材(後述する)により上下に半分ずつ分割して照射し得るような構成(正確に言えば、各計測光においてそれぞれ2光束が得られるような構成)にされている。   Then, as described above, the first measurement light Ra divided by the second beam splitter 13 is irradiated to the measurement object M so as to face the yz plane, and the other second measurement light Rb is irradiated. A configuration (accurate) in which the measurement object M is irradiated so as to face the xz plane direction, and each measurement light Ra, Rb can be irradiated in half vertically by a pair of shutter members (described later). In other words, each measurement light is configured to obtain two light beams.

すなわち、図3〜図6に示すように、被計測物体Mが載置される載置面Dである水平面(x−y平面)に対して、垂直な第2垂直面(y−z平面)と平行に第4反射ミラー31が配置されるとともに、上記載置面Dとこの第2垂直面の両方に垂直な第1垂直面(x−z平面)と平行に第5反射ミラー32が配置され、また第1計測光Raは載置面Dと第4反射ミラー31との両方に跨るように照射されるとともに、第2計測光Rbについても、載置面Dと第5反射ミラー32との両方に跨るように照射されており、しかも、それぞれの照射経路の途中に配置された一対の第1シャッター部材33(33a,33b)および一対の第2シャッター部材34(34a,34b)により、上下半分ずつでもって照射されるように構成されている。簡単に言えば、第4反射ミラー31は第1計測光Raの照射面方向に対向して配置され、また第5反射ミラー32は第2計測光Rbの照射面方向に対向して配置されている。   That is, as shown in FIGS. 3 to 6, the second vertical plane (yz plane) perpendicular to the horizontal plane (xy plane) that is the placement surface D on which the measurement object M is placed. The fourth reflection mirror 31 is arranged in parallel with the first reflection plane, and the fifth reflection mirror 32 is arranged in parallel with the first vertical plane (xz plane) perpendicular to both the placement surface D and the second vertical plane. In addition, the first measurement light Ra is irradiated so as to straddle both the placement surface D and the fourth reflection mirror 31, and the second measurement light Rb also includes the placement surface D and the fifth reflection mirror 32. And a pair of first shutter members 33 (33a, 33b) and a pair of second shutter members 34 (34a, 34b) arranged in the middle of the respective irradiation paths, It is configured to irradiate with upper and lower halves. In short, the fourth reflection mirror 31 is arranged to face the irradiation surface direction of the first measurement light Ra, and the fifth reflection mirror 32 is arranged to face the irradiation surface direction of the second measurement light Rb. Yes.

具体的には、一方の第1シャッター部材33aにより照射経路の上半分が遮られると、下半分の第1計測光Raは載置面D上の被計測物体Mに、直接、所定方向(x−z平面方向)から照射され、また他方の第1シャッター部材33bにより照射経路の反対側の下半分が遮られると、上半分の第1計測光Raは第2垂直面(y−z平面)と平行に立設された第4反射ミラー31にて反射されて、上記所定方向とは反対側で且つ同じ入射角でもって被計測物体Mに照射される。なお、上記第1計測光Raの被計測物体Mに対する入射角は、図4に示すように、50〜70度の範囲、好ましくは、60度にされており、両側から照射された一対の第1計測光Ra,Ra同士の重なり範囲が広くなるようにされている。なお、70度を超えると、重なり範囲は増えるが、分解能が粗くなってしまい、また逆に、50度よりも小さくなると、重なり範囲(計測範囲)が狭くなってしまう。また、上記各シャッター部材33a,33b,34a,34bとしては、例えば矩形状の板体(所謂、スライド式)または円弧状の板体(所謂、回動式)が用いられる。   Specifically, when the upper half of the irradiation path is blocked by one first shutter member 33a, the lower half of the first measurement light Ra is directly directed to the measurement object M on the placement surface D in a predetermined direction (x -Z plane direction), and when the lower half of the opposite side of the irradiation path is blocked by the other first shutter member 33b, the first measurement light Ra in the upper half is second vertical plane (yz plane). The object to be measured M is irradiated on the side opposite to the predetermined direction and at the same incident angle. As shown in FIG. 4, the incident angle of the first measurement light Ra with respect to the measured object M is in the range of 50 to 70 degrees, preferably 60 degrees. The overlapping range of the one measuring light Ra and Ra is widened. If the angle exceeds 70 degrees, the overlapping range increases, but the resolution becomes coarse. Conversely, if the angle is smaller than 50 degrees, the overlapping range (measurement range) becomes narrow. Further, as each of the shutter members 33a, 33b, 34a, and 34b, for example, a rectangular plate (so-called slide type) or an arc-like plate (so-called rotational type) is used.

このように、1つの第1計測光Raを用いて、被計測物体Mのx−z平面方向で、両側から60度の入射角でもって被計測物体Mに照射される2つの第1計測光(所謂、2光束)Ra,Raが得られることになる。   In this way, using the first measurement light Ra, the two first measurement lights irradiated on the measurement object M with the incident angle of 60 degrees from both sides in the xz plane direction of the measurement object M. (So-called two light beams) Ra and Ra are obtained.

また、第2計測光Rbについても、同様に、その照射方向が90度異なるだけであり、したがってy−z平面方向で2つの第2計測光Rb,Rbが得られることになる。
なお、第1および第2反射ミラー14,15により、被計測物体M側にその照射方向が変更された各計測光Ra,Rbは、それぞれの照射経路の途中に配置されたビームエキスパンダ41,42により、所定大きさの光束に拡大される。
Similarly, the irradiation direction of the second measurement light Rb only differs by 90 degrees, so that two second measurement lights Rb and Rb are obtained in the yz plane direction.
In addition, each measurement light Ra and Rb whose irradiation direction has been changed toward the measurement object M by the first and second reflection mirrors 14 and 15 are beam expanders 41 and 32 arranged in the middle of the respective irradiation paths. 42 expands the light beam to a predetermined size.

そして、上記コンピュータ装置19においては、上述した計測原理の箇所にて説明した各計算式を実行するための演算部(例えば、プログラムにより構成されている)が具備されるとともに、所定時間間隔(例えば、0.5秒間隔)で各シャッター部材33,34の開閉動作を行わせるとともに、PZTステージ20を移動させて参照光の位相をπ/2ずつシフトさせ、さらに物体光Roと参照光Rrとを同軸で入射させて得られたホログラム画像を所定のタイミングで撮影するための制御機能が具備されている。なお、参照光Rrの照射経路の途中にも、参照光Rrを遮断するための第3シャッター部材35が配置されている。   The computer device 19 is provided with a calculation unit (for example, configured by a program) for executing each calculation formula described in the above-described measurement principle, and a predetermined time interval (for example, The shutter members 33 and 34 are opened and closed at intervals of 0.5 seconds), the phase of the reference light is shifted by π / 2 by moving the PZT stage 20, and the object light Ro and the reference light Rr Is provided with a control function for photographing a hologram image obtained by making the light incident on the same axis at a predetermined timing. A third shutter member 35 for blocking the reference light Rr is also arranged in the middle of the irradiation path of the reference light Rr.

また、この歪計測装置の少なくとも変位計測部1については、各構成機器が小さい縦置き型のコンピュータのように、幅が狭い側面視が矩形状のケース内に収容されてコンパクト化が図られている。例えば、レーザ照射器11は、ケース内の上部に配置され、各ビームスプリッタ12,13およびシャッター部材33,34などは中間部に配置され、被計測物体Mの載置面Dおよび第4および第5反射ミラー31,32については下部のコーナ部に配置され、また2つの計測光を拡大するビームエキスパンダ41,42については、載置面Dの直交する両側辺に沿う側壁面に沿って配置され、さらにCCDカメラ17はケース内の上部中央寄りに配置されている。   Further, at least the displacement measuring unit 1 of this strain measuring device is compactly made by accommodating a side view with a narrow width in a rectangular case, like a vertical computer in which each component is small. Yes. For example, the laser irradiator 11 is disposed in the upper part of the case, the beam splitters 12 and 13 and the shutter members 33 and 34 are disposed in the middle part, the mounting surface D of the measurement object M, the fourth and the fourth. The five reflecting mirrors 31 and 32 are arranged at the lower corner portion, and the beam expanders 41 and 42 for expanding the two measurement lights are arranged along the side wall surfaces along the two orthogonal sides of the mounting surface D. Further, the CCD camera 17 is arranged near the upper center in the case.

次に、上述した歪計測装置の変位計測部1により、被計測物体の表面での変位を計測する方法について説明する。
レーザ照射器11から照射されたレーザ光である計測光Rは、まず第1ビームスプリッタ12で2分割されるとともに、分割された2つの第1および第2計測光Ra,Rbは、それぞれ第1反射ミラー14、ビームエキスパンダ41および第2反射ミラー15、ビームエキスパンダ42を介して被計測物体Mに照射されるが、その照射経路の途中に配置された各シャッター部材33,34により別々に照射される。
Next, a method for measuring the displacement on the surface of the object to be measured by the displacement measuring unit 1 of the strain measuring apparatus described above will be described.
The measurement light R, which is the laser light emitted from the laser irradiator 11, is first divided into two by the first beam splitter 12, and the two divided first and second measurement lights Ra and Rb are respectively first. The object to be measured M is irradiated through the reflection mirror 14, the beam expander 41, the second reflection mirror 15, and the beam expander 42, but separately by the shutter members 33 and 34 arranged in the middle of the irradiation path. Irradiated.

第1計測光Raについて説明すると、図5に示すように、第1シャッター部材33a,33bが作動されて、x−z平面方向において被計測物体Mの両側から同じ入射角(例えば60度)でもってしかも交互に照射される。例えば、下半分の第1計測光Raから照射されて被計測物体Mの表面で反射した物体光Roは、第3反射ミラー16およびハーフミラー18を介してCCDカメラ17に入射される。   The first measurement light Ra will be described. As shown in FIG. 5, the first shutter members 33a and 33b are operated and the same incident angle (for example, 60 degrees) from both sides of the measurement object M in the xz plane direction. Moreover, it is irradiated alternately. For example, the object light Ro irradiated from the first measurement light Ra in the lower half and reflected by the surface of the measurement object M is incident on the CCD camera 17 via the third reflection mirror 16 and the half mirror 18.

このとき、第1ビームスプリッタ12からの参照光Rrが、ハーフミラー18を介して物体光Roと同軸上でCCDカメラ17に入射されてホログラム画像が得られる。さらに、この参照光Rrについては、PZTステージ20が駆動されて、上述したように、π/2ずつ1周期分位相シフトが行われて、位相がゼロの場合と併せて、4つのホログラム画像が得られる。   At this time, the reference light Rr from the first beam splitter 12 is incident on the CCD camera 17 coaxially with the object light Ro through the half mirror 18 to obtain a hologram image. Further, with respect to the reference light Rr, the PZT stage 20 is driven, and as described above, phase shift is performed by π / 2 by one period, and in addition to the case where the phase is zero, four hologram images are obtained. can get.

これら4つの画像データに、上述した(4)式〜(7)式を適用することにより、被計測物体M表面の位相分布が得られる。
また、他方の第1シャッター部材33bが作動されて、上半分の第1計測光Roが第4反射ミラー31を介して反対側から同じ入射角でもって被計測物体Mに照射され、上記と同じ手順により、反対側からの第1計測光Raによる被計測物体M表面の位相分布が得られる。
By applying the above-described equations (4) to (7) to these four image data, the phase distribution of the surface of the measurement object M can be obtained.
Further, the other first shutter member 33b is operated, and the measurement object M is irradiated with the same incident angle from the opposite side through the fourth reflecting mirror 31 with the first measurement light Ro in the upper half, which is the same as above. According to the procedure, the phase distribution of the surface of the measurement object M by the first measurement light Ra from the opposite side is obtained.

つまり、2光束法により、2つの位相分布φ,φが得られたことになる。
次に、図6に示すように、第2シャッター部材34a,34bを駆動して、第2参照光Rbについても、下半分を被計測物体Mに直接に照射するとともに、上半分を第5反射ミラー32を介して反対側から被計測物体Mに照射させて、上記と同じ手順により、2光束による位相分布φ,φが得られる。
That is, two phase distributions φ 1 and φ 2 are obtained by the two-beam method.
Next, as shown in FIG. 6, the second shutter members 34a and 34b are driven to irradiate the lower half of the second reference light Rb directly onto the measurement object M, and the upper half is reflected to the fifth. The object to be measured M is irradiated from the opposite side via the mirror 32, and phase distributions φ 3 and φ 4 by two light beams are obtained by the same procedure as described above.

次に、被計測物体Mに外力を作用させて変形した状態で、上記と同じ手順により、2光束による位相分布(φ′,φ′,φ′,φ′)を求め、それぞれの計測光の照射方向についての、変形前と変形後における、両位相変化すなわち両位相分布差[Δφ(φ−φ′),Δφ(φ−φ′),Δφ(φ−φ′),Δφ(φ−φ′)]を求める。 Next, the phase distribution (φ ′ 1 , φ ′ 2 , φ ′ 3 , φ ′ 4 ) by two light fluxes is obtained by the same procedure as described above in a state where the external force is applied to the object to be measured M. The phase change before and after the deformation, that is, the phase distribution difference [Δφ 11 −φ ′ 1 ), Δφ 22 −φ ′ 2 ), Δφ 3 ( φ 3 −φ ′ 3 ), Δφ 44 −φ ′ 4 )].

そして、上述した(21)式および(22)式を用いて、変形前と変形後における両位相分布差Δφ,Δφからx軸方向とz軸方向の変位、すなわち面内変位dと面外変位dを求めればよい。また、同様にして、変形前と変形後における両位相分布差Δφ,Δφからy軸方向とz軸方向の変位、すなわち面内変位dと面外変位dを求めればよい。なお、両計測光Ra,Rbにより得られるz軸方向での変位dについては(ΔφとΔφについても)、両方の計測光Ra,Rbから同じものが得られる。 Then, using the above-described equations (21) and (22), the displacement in the x-axis direction and the z-axis direction, that is, the in-plane displacement d x , from both phase distribution differences Δφ 1 and Δφ 2 before and after the deformation. it may be obtained out-of-plane displacement d z. Similarly, both the phase distribution difference [Delta] [phi 3 after deformation prior to deformation, displacement from [Delta] [phi 4 in the y-axis direction and the z-axis direction, that may be obtained in-plane displacement d y and out-of-plane displacement d z. As for the displacement d z in the z-axis direction obtained by both measurement lights Ra and Rb (also for Δφ 2 and Δφ 4 ), the same thing can be obtained from both measurement lights Ra and Rb.

このように、1つ(1台)のレーザ照射器11から照射されるレーザ光だけを用いて被計測物体M表面における三次元方向(x軸方向、y軸方向、z軸方向)での変位量を、一緒に求めることができる。   In this way, the displacement in the three-dimensional direction (x-axis direction, y-axis direction, z-axis direction) on the surface of the object M to be measured using only the laser light emitted from one (one) laser irradiator 11. The quantity can be determined together.

なお、各位相分布φ,φ,φ,φを求める順序については、任意に、変更することができる。
そして、上記変位計測部1にて求められた被計測物体M表面における三次元方向(x軸方向、y軸方向、z軸方向)での変位量が、歪算出部2に入力されて、被計測物体M表面での歪分布が求められる。
In addition, about the order which calculates | requires each phase distribution (phi) 1 , (phi) 2 , (phi) 3 , (phi) 4 , it can be changed arbitrarily.
Then, the displacement amount in the three-dimensional direction (x-axis direction, y-axis direction, z-axis direction) on the surface of the measurement object M obtained by the displacement measurement unit 1 is input to the strain calculation unit 2 to be measured. A strain distribution on the surface of the measurement object M is obtained.

次に、コンピュータ装置19に具備される演算部の主要構成について簡単に説明しておく。
すなわち、このコンピュータ装置19には、図7に示すように、演算処理部として、少なくとも、移動手段であるPZTステージ20により参照光の位相がシフトされて得られた複数のホログラム画像から被計測物体M表面の位相分布を求める位相分布演算部51と、この位相分布演算部51にて求められた被計測物体Mの変形前と変形後における位相分布の差を求める位相差演算部52と、この位相差演算部52にて求められた位相分布差により、載置面D内およびこの載置面Dに垂直な第1垂直面と平行な照射面方向、並びに載置面Dと第1垂直面との両方に垂直な第2垂直面と平行な照射面方向での変位量をそれぞれ求める変位演算部53とが具備されている。
Next, the main configuration of the calculation unit provided in the computer device 19 will be briefly described.
That is, as shown in FIG. 7, the computer device 19 includes, as an arithmetic processing unit, at least an object to be measured from a plurality of hologram images obtained by shifting the phase of the reference light by the PZT stage 20 that is a moving unit. A phase distribution calculation unit 51 for obtaining a phase distribution of the M surface, a phase difference calculation unit 52 for obtaining a difference in phase distribution before and after the deformation of the measured object M obtained by the phase distribution calculation unit 51, and Due to the phase distribution difference obtained by the phase difference calculation unit 52, the irradiation surface direction parallel to the first vertical surface perpendicular to the placement surface D and the placement surface D, and the placement surface D and the first vertical surface. And a displacement calculating unit 53 for determining the amount of displacement in the direction of the irradiation surface parallel to the second vertical surface perpendicular to both.

ここで、上述した歪計測方法の主要部分を纏めると以下のようになる。
すなわち、この歪計測方法は、レーザ照射器から出射されたレーザ光を計測光として所定の載置面に載置された被計測物体に照射し、その反射した物体光と上記レーザ光から第1ビームスプリッタにより分割され且つ位相がπ/2ずつ1周期分シフトされた参照光とを同軸でもってCCDカメラに入射させて得られたホログラム画像から被計測物体表面の位相分布を位相シフトデジタルホログラフィ法を用いて求める手順を、被計測物体の変形前と変形後とで行い、
これら変形前と変形後との両位相分布の差である位相分布差から物体光の照射方向での被計測物体表面における変位を求める変位演算工程を具備するとともに、
この変位演算工程を、被計測物体の載置面に垂直な第1垂直面の面内および載置面に垂直で且つ上記第1垂直面に垂直な第2垂直面の面内で、それぞれ被計測物体の両側から且つ入射角が等しくされた2つの第1計測光および2つの第2計測光(以下、2つの計測光を2光束という)についてそれぞれ行うことにより、載置面に垂直なz軸方向および載置面と第1垂直面との交差軸であるx軸方向、並びに載置面に垂直なz軸方向および載置面と第2垂直面との交差軸であるy軸方向での変位量をそれぞれ演算し、
上記求められた三次元方向での変位量から被計測物体に生じた歪を算出する歪計測方法であって、
上記第1計測光および第2計測光を、上記第1ビームスプリッタにより分割された計測光を第2ビームスプリッタにて分割することにより得るとともに、この得られた各計測光をそれぞれ2光束でもって被計測物体に照射する際に、それぞれの照射経路に配置された一対のシャッター部材を開閉させることにより、2光束における一方の計測光を直接に被計測物体に照射させるようになし、且つ2光束における他方の計測光を、その照射方向に対向して配置された反射ミラーを介して被計測物体に上記一方の計測光とは反対側から照射させるようにした方法である。
Here, it is as follows when the main part of the distortion measuring method mentioned above is put together.
That is, in this strain measurement method, laser light emitted from a laser irradiator is irradiated as a measurement light onto a measured object placed on a predetermined placement surface, and the first object is obtained from the reflected object light and the laser light. Phase shift digital holography method for phase distribution of the surface of the object to be measured from a hologram image obtained by making the reference beam split by the beam splitter and shifted in phase by π / 2 by one period on the same axis. The procedure to obtain using is performed before and after deformation of the measured object,
A displacement calculation step for obtaining a displacement on the surface of the object to be measured in the irradiation direction of the object light from the phase distribution difference that is the difference between both phase distributions before and after the deformation, and
This displacement calculation process is performed on the first vertical surface perpendicular to the placement surface of the object to be measured and on the second vertical surface perpendicular to the placement surface and perpendicular to the first vertical surface. By performing two first measurement lights and two second measurement lights (hereinafter, two measurement lights are referred to as two light beams) having the same incident angle from both sides of the measurement object, z perpendicular to the mounting surface is obtained. An axial direction and an x-axis direction that is an intersection axis between the placement surface and the first vertical surface, and a z-axis direction that is perpendicular to the placement surface and a y-axis direction that is an intersection axis between the placement surface and the second vertical surface. Calculating the displacement amount of
A strain measurement method for calculating a strain generated in an object to be measured from the obtained displacement amount in the three-dimensional direction,
The first measurement light and the second measurement light are obtained by dividing the measurement light divided by the first beam splitter by the second beam splitter, and each of the obtained measurement lights is divided into two light beams. When irradiating the object to be measured, the pair of shutter members arranged in the respective irradiation paths are opened and closed to directly irradiate the object to be measured with one of the two light beams. In this method, the measurement light is irradiated onto the object to be measured from the side opposite to the one measurement light through a reflection mirror arranged opposite to the irradiation direction.

ところで、上述した変位計測部1においては、2つの第1および第2計測光Ra,Rbを、互いに90度異なる照射面方向から被計測物体Mに照射して、それぞれの照射面方向において、面内変位(x軸方向変位またはy軸方向変位)と面外変位(z軸方向変位)を計測するようにしたので、図8に示すように、被計測物体M表面に凸部Maがあって、一方側の第1計測光Raについては照射し得るが、他方側の第1計測光Rbの第4反射ミラー31により反射された計測光が凸部Maにより遮断される計測部分Sについては、本来、その計測部分Sにおける変位を計測することはできないが、第2計測光Rbによる2光束法により、この照射面方向での面内変位(y軸方向変位)と面外変位(z軸方向変位)を計測し得る場合には、第1計測光Raの照射面方向での面内変位(x軸方向変位)を求めることができる。   By the way, in the displacement measuring unit 1 described above, the two first and second measurement lights Ra and Rb are irradiated to the measurement object M from the irradiation surface directions different from each other by 90 degrees. Since the internal displacement (x-axis direction displacement or y-axis direction displacement) and the out-of-plane displacement (z-axis direction displacement) are measured, there is a convex portion Ma on the surface of the measurement object M as shown in FIG. The first measurement light Ra on one side can be irradiated, but the measurement light S reflected by the fourth reflection mirror 31 of the first measurement light Rb on the other side is blocked by the convex portion Ma. Originally, the displacement in the measurement portion S cannot be measured, but in-plane displacement (y-axis direction displacement) and out-of-plane displacement (z-axis direction) in the irradiation surface direction by the two-beam method using the second measurement light Rb. (Displacement) can be measured, the first meter It can be determined plane displacement at the irradiation surface direction of the light Ra and (x-axis direction displacement).

すなわち、第2計測光Rbの2光束により、2方向からの位相分布差(Δφ,Δφ)が得られるとともに、y軸方向およびz軸方向についての変位dおよびdが得られる。 That is, phase distribution differences (Δφ 3 , Δφ 4 ) from two directions are obtained by the two light beams of the second measurement light Rb, and displacements dy and d z in the y-axis direction and the z-axis direction are obtained.

そして、第1計測光Raについては、1つの光束しか用いることができないため、この光束により1方向からの位相分布差(Δφ)が得られ、一方、反対側の光束による位相分布差(Δφ)を未知数とすると、Δφとdとが既知であるため、上述した(22)式からΔφを求めることができる。 Since only one light beam can be used for the first measurement light Ra, a phase distribution difference (Δφ 1 ) from one direction is obtained by this light beam, while a phase distribution difference (Δφ 1 ) due to the light beam on the opposite side is obtained. If 2 ) is an unknown, Δφ 1 and d z are known, and therefore Δφ 1 can be obtained from the above-described equation (22).

すなわち、ΔφとΔφとが求まるため、上述した(21)式からx軸方向についての変位量dが得られる。
そして、また上記変位計測部1のコンピュータ装置19には、上述した一方の計測光により求められた位相分布差並びに面内変位量および面外変位量に基づき、他方の計測光が1つしか照射できない場合に、残りの面内変位量を求める面内変位演算部61が具備されている。
That is, since Δφ 1 and Δφ 2 are obtained, the displacement d x in the x-axis direction is obtained from the above-described equation (21).
Further, the computer device 19 of the displacement measuring unit 1 is irradiated with only one other measurement light based on the phase distribution difference obtained from the one measurement light and the in-plane displacement and the out-of-plane displacement. If this is not possible, an in-plane displacement calculation unit 61 for determining the remaining in-plane displacement amount is provided.

すなわち、2つの計測光を互いに90度異なる方向から被計測物体に照射することにより、一方向からの計測光が照射できないような、例えば凸部により遮られて影となる計測部分についても、他方向からの計測光による計測結果を用いて、三次元方向での変位量を計測することができる。   That is, by irradiating the object to be measured from two directions different from each other by 90 degrees, it is not possible to irradiate the measurement light from one direction. The displacement amount in the three-dimensional direction can be measured using the measurement result of the measurement light from the direction.

なお、上記変位計測部1においては、ホログラム画像の一部を切り出すとともに、この切り出された画像データに上述した演算処理を施して、位相分布差および変位量を求めるようにしたので、その演算処理の対象を、ホログラム画像全体とする場合に比べて、迅速に求めることができ、したがってほぼリアルタイムで変位を計測することができる。また、この求められた画像から、計測範囲を確かめることができる。すなわち、被計測物体Mの位置合わせを行うことができる。   In the displacement measuring unit 1, a part of the hologram image is cut out, and the above-described calculation process is performed on the cut-out image data so as to obtain the phase distribution difference and the displacement amount. Compared with the case where the object is the entire hologram image, the object can be obtained quickly, and therefore the displacement can be measured almost in real time. In addition, the measurement range can be confirmed from the obtained image. That is, the measurement object M can be aligned.

また、上述した変位の計測に際しマスク処理が行われて、計測範囲以外の部分については除去されている。このマスク処理としては、計測部分の複素振幅分布における強度(輝度値)に対して閾値を設けておき、閾値以下の部分については、マスクがかけられるようにされている。閾値としては、レーザ光が照射されていない、すなわち計測範囲以外の暗い部分での強度よりも少し大きい値が用いられるか、または計測している範囲内の強度の平均値が用いられる。   In addition, mask processing is performed in the above-described displacement measurement, and portions other than the measurement range are removed. In this mask process, a threshold is provided for the intensity (luminance value) in the complex amplitude distribution of the measurement portion, and the portion below the threshold is masked. As the threshold value, a value slightly larger than the intensity in a dark portion other than the measurement range where the laser beam is not irradiated, or the average value of the intensity within the measurement range is used.

上述した歪計測方法および歪計測装置によると、被計測物体表面の変位を、その変形前と変形後における位相分布差から求める際に、位相シフトデジタルホログラフィ法を用いるようにしたので、非接触でかつ広範囲での被計測部分の歪を高い空間分解能で精度良く計測することができる。   According to the strain measurement method and the strain measurement device described above, the phase shift digital holography method is used in a non-contact manner when the displacement of the surface of the object to be measured is obtained from the phase distribution difference before and after the deformation. In addition, it is possible to accurately measure the distortion of the measured portion in a wide range with high spatial resolution.

さらに、上記歪計測方法および歪計測装置によると、1つのレーザ照射器から照射されるレーザ光を計測光と参照光とに分割するとともに、この分割された計測光をさらに2つに分割し、これら分割された2つの各計測光の照射経路途中に、各計測光を半分ずつ照射し得るシャッター部材をそれぞれ配置し、そしてシャッター部材により半分に遮られた一方側の計測光を、載置面に載置された被計測物体に直接照射するとともに、他方側の計測光を、載置面に垂直に配置された反射ミラーにより、一方側の計測光とは反対側で且つ同じ入射角で被計測物体に照射するようにして、すなわち互いに垂直な照射面方向で照射される2つの計測光を用いて、被計測物体表面における面内変位および面外変位である三次元方向での変位を求めることにより、歪を計測するようにしたので、その構成自体を簡単なものにし得るとともに、コンパクト化を図ることができる。   Further, according to the strain measurement method and the strain measurement apparatus, the laser light emitted from one laser irradiator is divided into measurement light and reference light, and the divided measurement light is further divided into two parts. A shutter member that can irradiate each measurement light in half is disposed in the middle of the two measurement light irradiation paths, and the measurement light on one side blocked by the shutter member in half is placed on the mounting surface. The measurement object on the other side is directly irradiated and the measurement light on the other side is reflected on the opposite side of the measurement light on the one side and at the same incident angle by the reflection mirror arranged perpendicular to the placement surface. Displacement in the three-dimensional direction, which is in-plane displacement and out-of-plane displacement on the surface of the object to be measured, is obtained by irradiating the measurement object, that is, using two measurement lights irradiated in directions of irradiation surfaces perpendicular to each other. Especially Ri. Thus to measure strain, with can the configuration itself be simplified, can be made compact.

本発明の実施の形態に係る歪計測方法に用いられる位相シフトデジタルホログラフィ法を説明するための図である。It is a figure for demonstrating the phase shift digital holography method used for the distortion measuring method which concerns on embodiment of this invention. 本発明の実施の形態に係る歪計測装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the distortion measuring device which concerns on embodiment of this invention. 同歪計測装置の変位計測部におけるレーザ光の経路を示す概略構成図である。It is a schematic block diagram which shows the path | route of the laser beam in the displacement measurement part of the distortion measuring device. 同歪計測方法における被計測物体への計測光の照射方向を説明するための斜視図である。It is a perspective view for demonstrating the irradiation direction of the measurement light to the to-be-measured object in the distortion measuring method. 図3のA−A矢視図である。It is an AA arrow line view of FIG. 図3のB−B矢視図である。It is a BB arrow line view of FIG. 同歪計測装置の変位計測部における主要演算処理部の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the main arithmetic processing part in the displacement measurement part of the distortion measuring device. 同歪計測方法における被計測物体への計測光の1つが使用できない場合の計測方法を説明するための側面図である。It is a side view for demonstrating the measuring method when one of the measurement lights to the to-be-measured object in the distortion measuring method cannot be used.

符号の説明Explanation of symbols

D 載置面
M 被計測物体
R レーザ光
Rm 計測光
Ro 物体光
Rr 参照光
Ra 第1計測光
Rb 第2計測光
D 載置面
1 変位計測部
2 歪算出部
11 レーザ照射器
12 第1ビームスプリッタ
13 第2ビームスプリッタ
14 第1反射ミラー
15 第2反射ミラー
16 第3反射ミラー
17 CCDカメラ
18 ハーフミラー
19 コンピュータ装置
20 PZTステージ
31 第4反射ミラー
32 第5反射ミラー
33 第1シャッター部材
34 第2シャッター部材
51 位相分布演算部
52 位相差演算部
53 変位演算部
61 面内変位演算部
D Placement surface M Object to be measured R Laser light Rm Measurement light Ro Object light Rr Reference light Ra First measurement light Rb Second measurement light D Placement surface 1 Displacement measurement unit 2 Strain calculation unit 11 Laser irradiator 12 First beam Splitter 13 second beam splitter 14 first reflecting mirror 15 second reflecting mirror 16 third reflecting mirror 17 CCD camera 18 half mirror 19 computer device 20 PZT stage 31 fourth reflecting mirror 32 fifth reflecting mirror 33 first shutter member 34 first 2 shutter member 51 phase distribution calculation unit 52 phase difference calculation unit 53 displacement calculation unit 61 in-plane displacement calculation unit

Claims (2)

レーザ照射器から出射されたレーザ光を計測光として所定の載置面に載置された被計測物体に照射し、その反射した物体光と上記レーザ光から第1ビームスプリッタにより分割され且つ位相がπ/2ずつ1周期分シフトされた参照光とを同軸でもってCCDカメラに入射させて得られたホログラム画像から被計測物体表面の位相分布を位相シフトデジタルホログラフィ法を用いて求める手順を、被計測物体の変形前と変形後とで行い、
これら変形前と変形後との両位相分布の差である位相分布差から物体光の照射方向での被計測物体表面における変位を求める変位演算工程を具備するとともに、
この変位演算工程を、被計測物体の載置面に垂直な第1垂直面の面内および載置面に垂直で且つ上記第1垂直面に垂直な第2垂直面の面内で、それぞれ被計測物体の両側から且つ入射角が等しくされた2つの第1計測光および2つの第2計測光(以下、2つの計測光を2光束という)についてそれぞれ行うことにより、載置面に垂直なz軸方向および載置面と第1垂直面との交差軸であるx軸方向、並びに載置面に垂直なz軸方向および載置面と第2垂直面との交差軸であるy軸方向での変位量をそれぞれ演算し、
上記求められた三次元方向での変位量から被計測物体に生じた歪を算出する歪計測方法であって、
上記第1計測光および第2計測光を、上記第1ビームスプリッタにより分割された計測光を第2ビームスプリッタにて分割することにより得るとともに、この得られた各計測光をそれぞれ2光束でもって被計測物体に照射する際に、それぞれの照射経路に配置された一対のシャッター部材を開閉させることにより、2光束における一方の計測光を直接に被計測物体に照射させるようになし、且つ2光束における他方の計測光を、その照射方向に対向して配置された反射ミラーを介して被計測物体に上記一方の計測光とは反対側から照射させるようにした
ことを特徴とする位相シフトデジタルホログラフィ法を用いた歪計測方法。
A laser beam emitted from a laser irradiator is irradiated as a measurement beam onto a measured object placed on a predetermined placement surface, and the reflected object beam and the laser beam are split by the first beam splitter and have a phase of The procedure for obtaining the phase distribution of the surface of the object to be measured from the hologram image obtained by coaxially entering the CCD camera with the reference beam shifted by π / 2 by one period using the phase shift digital holography method is as follows. Before and after deformation of the measurement object,
A displacement calculation step for obtaining a displacement on the surface of the object to be measured in the irradiation direction of the object light from the phase distribution difference that is the difference between both phase distributions before and after the deformation, and
This displacement calculation process is performed on the first vertical surface perpendicular to the placement surface of the object to be measured and on the second vertical surface perpendicular to the placement surface and perpendicular to the first vertical surface. By performing two first measurement lights and two second measurement lights (hereinafter, two measurement lights are referred to as two light beams) having the same incident angle from both sides of the measurement object, z perpendicular to the mounting surface is obtained. An axial direction and an x-axis direction that is an intersection axis between the placement surface and the first vertical surface, and a z-axis direction that is perpendicular to the placement surface and a y-axis direction that is an intersection axis between the placement surface and the second vertical surface. Calculating the displacement amount of
A strain measurement method for calculating a strain generated in an object to be measured from the obtained displacement amount in the three-dimensional direction,
The first measurement light and the second measurement light are obtained by dividing the measurement light divided by the first beam splitter by the second beam splitter, and each of the obtained measurement lights is divided into two light beams. When irradiating the object to be measured, the pair of shutter members arranged in the respective irradiation paths are opened and closed to directly irradiate the object to be measured with one of the two light beams. The phase-shift digital holography is characterized in that the other measurement light is irradiated to the object to be measured from the opposite side of the one measurement light via a reflection mirror arranged opposite to the irradiation direction. Strain measurement method using the method.
請求項1に記載の歪計測方法を用いた歪計測装置であって、
1つのレーザ照射器と、
このレーザ照射器から出射されたレーザ光を2つに分割して計測光と参照光とを得るための第1ビームスプリッタと、
この第1ビームスプリッタを参照光の照射方向に沿って移動させて、当該参照光の位相をπ/2ずつ1周期分シフトさせる移動手段と、
上記第1ビームスプリッタからの計測光をさらに2つに分割して第1計測光と第2計測光とを得るための第2ビームスプリッタと、
この得られた第1計測光および第2計測光の各照射経路の途中にそれぞれ配置されてこれら各計測光を半分ずつ開閉し得る一対の第1シャッター部材および一対の第2シャッター部材と、
被計測物体が載置された載置面に垂直に配置されて、上記一対の第1シャッター部材の一方が開放された際には、その一方側の第1計測光については反射させずに被計測物体に直接照射させるようにするとともに、他方が開放された際に、その他方側の第1計測光を反射させて被計測物体に、上記一方側の第1計測光とは反対側から且つ同じ入射角でもって照射させる第1反射ミラーと、
上記載置面および第1反射ミラーに垂直に配置されて、上記一対の第2シャッター部材の一方が開放された際には、その一方側の第2計測光については反射させずに被計測物に直接照射させるようにするとともに、他方が開放された際に、その他方側の第2計測光を反射させて被計測物体に、当該計測光とは反対側で且つ同じ入射角でもって照射させる第2反射ミラーと、
上記被計測物体の表面にて反射した物体光および上記参照光を同軸でもって入射させて被計測物体表面のホログラム画像を得るためのCCDカメラと、
上記移動手段により参照光の位相がシフトされて得られた複数のホログラム画像から被計測物体表面の位相分布を求める位相分布演算部と、
この位相分布演算部にて求められた被計測物体の変形前と変形後における位相分布の差を求める位相差演算部と、
この位相差演算部にて求められた位相分布差により、載置面内並びにこの載置面に垂直な第1垂直面内、並びにこれら載置面および第1垂直面に垂直な第2垂直面内での変位量を求める変位演算部と、
この変位演算部にて求められた各変位量から被計測物体表面における三次元方向での歪を求める歪算出部と
を具備したことを特徴とする歪計測装置。
A strain measurement apparatus using the strain measurement method according to claim 1,
One laser irradiator;
A first beam splitter for dividing the laser light emitted from the laser irradiator into two to obtain measurement light and reference light;
Moving means for moving the first beam splitter along the irradiation direction of the reference light and shifting the phase of the reference light by π / 2 by one period;
A second beam splitter for further dividing the measurement light from the first beam splitter into two to obtain a first measurement light and a second measurement light;
A pair of first shutter members and a pair of second shutter members which are respectively arranged in the middle of the respective irradiation paths of the obtained first measurement light and second measurement light and which can open and close each of the measurement lights by half;
When one of the pair of first shutter members is opened and placed perpendicular to the placement surface on which the measurement object is placed, the first measurement light on one side is not reflected and is reflected. The measurement object is directly irradiated, and when the other is opened, the first measurement light on the other side is reflected to the measurement object from the side opposite to the first measurement light on the one side and A first reflecting mirror that irradiates with the same incident angle;
When one of the pair of second shutter members is opened perpendicularly to the placement surface and the first reflecting mirror, the second measurement light on one side is not reflected and the object to be measured is not reflected. When the other is opened, the second measurement light on the other side is reflected to irradiate the object to be measured on the opposite side of the measurement light and with the same incident angle. A second reflecting mirror;
A CCD camera for obtaining the hologram image of the surface of the object to be measured by causing the object light reflected on the surface of the object to be measured and the reference light to be incident coaxially;
A phase distribution calculation unit for obtaining a phase distribution of the surface of the object to be measured from a plurality of hologram images obtained by shifting the phase of the reference light by the moving means;
A phase difference calculation unit for obtaining a difference in phase distribution before and after the deformation of the measured object obtained by the phase distribution calculation unit;
Due to the phase distribution difference obtained by the phase difference calculation unit, the placement surface, the first vertical surface perpendicular to the placement surface, and the second vertical surface perpendicular to the placement surface and the first vertical surface. A displacement calculation unit for obtaining a displacement amount in the interior;
A strain measurement device comprising: a strain calculation unit that calculates a strain in a three-dimensional direction on the surface of the object to be measured from each displacement amount obtained by the displacement calculation unit.
JP2005303775A 2005-10-19 2005-10-19 Strain measuring method and strain measuring apparatus using phase shift digital holography method Expired - Fee Related JP4766989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303775A JP4766989B2 (en) 2005-10-19 2005-10-19 Strain measuring method and strain measuring apparatus using phase shift digital holography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303775A JP4766989B2 (en) 2005-10-19 2005-10-19 Strain measuring method and strain measuring apparatus using phase shift digital holography method

Publications (2)

Publication Number Publication Date
JP2007113974A true JP2007113974A (en) 2007-05-10
JP4766989B2 JP4766989B2 (en) 2011-09-07

Family

ID=38096311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303775A Expired - Fee Related JP4766989B2 (en) 2005-10-19 2005-10-19 Strain measuring method and strain measuring apparatus using phase shift digital holography method

Country Status (1)

Country Link
JP (1) JP4766989B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519040A (en) * 2008-04-30 2011-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical apparatus for irradiating the object to be measured, and interference measuring apparatus for measuring the surface of the object to be measured
DE102010020860A1 (en) * 2010-05-18 2011-11-24 Fachhochschule Trier Mikroferoskop
WO2012099220A1 (en) * 2011-01-21 2012-07-26 兵庫県 Three-dimensional shape measurement method and three-dimensional shape measurement device
JP2012220349A (en) * 2011-04-08 2012-11-12 Wakayama Univ Displacement and distortion distribution measurement optical system and measurement method
RU2491503C1 (en) * 2012-04-23 2013-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУВПО "СГГА") Method of recognising three-dimensional form of objects
CN103822587A (en) * 2014-02-25 2014-05-28 西安电子科技大学 Interference measurement system for microstructural three-dimensional deformation and displacement tests
JP2018205430A (en) * 2017-05-31 2018-12-27 国立研究開発法人産業技術総合研究所 Phase shift digital holography apparatus and program thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197809A (en) * 1983-04-25 1984-11-09 Ricoh Co Ltd Interference measuring device
JPH07260419A (en) * 1994-03-24 1995-10-13 Fuji Photo Optical Co Ltd Oblique incident interferometer
JPH0861927A (en) * 1994-08-26 1996-03-08 Matsushita Electric Works Ltd Contour measuring method and device therefor
JPH1089927A (en) * 1996-09-11 1998-04-10 Fujitsu Ltd Bump inspection device
JP2007071584A (en) * 2005-09-05 2007-03-22 Wakayama Univ Method and device measuring displacement distribution using digital holography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197809A (en) * 1983-04-25 1984-11-09 Ricoh Co Ltd Interference measuring device
JPH07260419A (en) * 1994-03-24 1995-10-13 Fuji Photo Optical Co Ltd Oblique incident interferometer
JPH0861927A (en) * 1994-08-26 1996-03-08 Matsushita Electric Works Ltd Contour measuring method and device therefor
JPH1089927A (en) * 1996-09-11 1998-04-10 Fujitsu Ltd Bump inspection device
JP2007071584A (en) * 2005-09-05 2007-03-22 Wakayama Univ Method and device measuring displacement distribution using digital holography

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519040A (en) * 2008-04-30 2011-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Optical apparatus for irradiating the object to be measured, and interference measuring apparatus for measuring the surface of the object to be measured
US8913249B2 (en) 2008-04-30 2014-12-16 Robert Bosch Gmbh Optical system for illuminating a measured object and interferometric system for measuring surfaces of a measured object
DE102010020860A1 (en) * 2010-05-18 2011-11-24 Fachhochschule Trier Mikroferoskop
DE102010020860B4 (en) * 2010-05-18 2020-01-30 Fachhochschule Trier Mikroferoskop
EP2572158A1 (en) * 2010-05-18 2013-03-27 Hochschule Trier Microferoscope
JP5467321B2 (en) * 2011-01-21 2014-04-09 公立大学法人兵庫県立大学 3D shape measuring method and 3D shape measuring apparatus
JPWO2012099220A1 (en) * 2011-01-21 2014-06-30 公立大学法人兵庫県立大学 3D shape measuring method and 3D shape measuring apparatus
US9036900B2 (en) 2011-01-21 2015-05-19 University Of Hyogo Three-dimensional shape measurement method and three-dimensional shape measurement device
WO2012099220A1 (en) * 2011-01-21 2012-07-26 兵庫県 Three-dimensional shape measurement method and three-dimensional shape measurement device
JP2012220349A (en) * 2011-04-08 2012-11-12 Wakayama Univ Displacement and distortion distribution measurement optical system and measurement method
RU2491503C1 (en) * 2012-04-23 2013-08-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУВПО "СГГА") Method of recognising three-dimensional form of objects
CN103822587A (en) * 2014-02-25 2014-05-28 西安电子科技大学 Interference measurement system for microstructural three-dimensional deformation and displacement tests
CN103822587B (en) * 2014-02-25 2017-05-17 西安电子科技大学 Interference measurement system for microstructural three-dimensional deformation and displacement tests
JP2018205430A (en) * 2017-05-31 2018-12-27 国立研究開発法人産業技術総合研究所 Phase shift digital holography apparatus and program thereof

Also Published As

Publication number Publication date
JP4766989B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US7538891B1 (en) Surface characterization based on lateral shearing of diffracted wave fronts to measure in-plane and out-of-plane displacement gradient fields
JP4766989B2 (en) Strain measuring method and strain measuring apparatus using phase shift digital holography method
EP2602583B1 (en) Low coherence interferometric system for phase stepping shearography combined with 3D profilometry
US9494411B2 (en) Three-dimensional shape measuring device, method for acquiring hologram image, and method for measuring three-dimensional shape
JP2009535609A (en) Method and apparatus for image recording and surface inspection
WO2020045589A1 (en) Surface shape measurement device and surface shape measurement method
JP4025879B2 (en) Displacement distribution measuring method and apparatus using digital holography
JP5354675B2 (en) Displacement distribution measuring method, apparatus and program
JP2018205430A (en) Phase shift digital holography apparatus and program thereof
JP2012145361A (en) Digital holography device
JP5825622B2 (en) Displacement / strain distribution measurement optical system and measurement method
JP4025878B2 (en) Apparatus for obtaining reproduced image of object, phase shift digital holographic displacement distribution measuring apparatus, and parameter identifying method
JP4025880B2 (en) Method for reproducing phase shift digital holography using spherical wave reference light and method and apparatus for measuring displacement distribution
KR100686923B1 (en) Phase-shifting Method Using Waveplates in Shearography and System for Measuring Deformation Using The Same
JP2003098040A (en) Optical system evaluation device and method
JP7215719B2 (en) Method and apparatus for measuring out-of-plane displacement distribution and three-dimensional shape of measurement object
JP3327998B2 (en) Shape measuring method and device
Sivakumar et al. Measurement of surface profile in vibrating environment with instantaneous phase shifting interferometry
Baumbach et al. Application of comparative digital holography for distant shape control
JP4789799B2 (en) Apparatus and method for generating carrier wave in interferogram
WO2011135698A1 (en) Method of measuring deformation
JP2002013919A (en) Plane shape measuring method for phase-shift interference fringe simultaneous photographing device
JP2008249349A (en) Method and apparatus for measuring attitude change
Morimoto et al. Three-dimensional displacement and strain measurements by windowed phase-shifting digital holographic interferometry
JP2014010019A (en) Interference measurement

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R151 Written notification of patent or utility model registration

Ref document number: 4766989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees